Download Author Version (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Download Author Version (PDF) Analyst Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/analyst Page 1 of 7 Journal Name Analyst Dynamic Article Links ► 1 2 3 Cite this: DOI: 10.1039/c0xx00000x 4 5 www.rsc.org/xxxxxx ARTICLE TYPE 6 7 In-vivo and continuous measurement of bisulfide in the hippocampus of 8 9 rat’s brain by on-line integrated microdialysis/droplet-based 10 11 microfluidic system 12 a a a a b b b 13 Feidan Gu , Xiaoyu Zhou , Xiaocui Zhu , Meiping Zhao* , Jie Hao , Ping Yu , and Lanqun Mao* 14 5 Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX 15 DOI: 10.1039/b000000x 16 17 An on-line and continuous approach was demonstrated for in 50 dissociated and associated forms of H S. Polarographic sensor 18 2 vivo measurement of bisulfide in rat’s brain. A modified has been developed for real-time measurement of H S production 19 2 droplet-based microfluidic system was constructed which in biological samples, including cells, organ homogenates, and 20 10 allowed on-line qualification of the fluorescence responses of intact tissues.8 The gas/ion chromatography combined with 21 the gold nanoparticle-glutathione-fluorescein isothiocyanate electrochemical detection has also been applied for measurement 22 probe to the variation of bisulfide in the presence of the 9 55 of H S levels in brain. However, no approaches have been 23 cerebral microdialysate background. The on-line method 2 reported for on-line and continuous monitoring of the in-vivo 24 achieved a dynamic working range from 5.0 µM to 40 µM concentrations of H S in the brain tissues of living animals. A 25 15 and a detection limit of 2.5 µM. The in-vivo bisulfide 2 concentration in the hippocampus of rat’s brain was number of factors such as the instability and high volatility of 26 measured under different physiological conditions. The on- bisulfide make it difficult to obtain the actual value of H2S level 27 Manuscript line method may facilitate the study of H 2S biology by 60 in the brain tissues. To explore the functions of H S in nervous 28 2 providing a previously unattainable continuous record of H 2S systems, it is of great importance to develop more r eliable and 29 20 variation in living animals. It also provides a practical validated methods for in-vivo H S detection. platform for in-vivo and continuous monitoring of other 2 30 In-vivo microdialysis is a minimally-invasive technique for important species in cerebral systems. 31 continuously sampling small molecules or ions from extracellular 32 10 65 fluids of various tissues. Droplet-based microfluidic systems are 33 25 Introduction useful tools for measurement of the small-volume samples with 34 high temporal resolution. 11-16 In our previous work, we have 35 Hydrogen sulfide (H 2S), known as a toxic gas and an synthesized a gold nanoparticle-glutathione-fluorescein 36 environmental hazard, has been recently identified as the third isothiocyanate (AuNP-GSH-FITC) probe for rapid and sensitive 37 Accepted endogenously produced gaseous transmitter, along with nitric 70 detection of bisulfide through a specific anion-for-molecule 38 oxide (NO) and carbon monoxide (CO).1, 2 It functions both in the ligand exchange reaction.17 By co-immobilization of thiol- 39 3- 30 cardiovascular system and in the central nervous system (CNS). polyethylene glycol (HS-PEG-COOH) onto the surface of the 40 5 In the CNS, H2S is mainly produced from L-cysteine (Cys) and AuNPs, the probe showed high stability in high salty solution 41 homocysteine (Hcy) by the actions of cystathionine b-synthase. such as artificial cerebrospinal fluids (aCSF). Using the AuNP- 42 In addition to biosynthesis, there are two forms of sulfur stores in 75 GSH-FITC probe, a preliminary droplet-based microfluidic 43 mammals, acid-labile sulfur and bound sulfane sulfur, which fluorescent sensor was further constructed for online monitoring 44 35 release H2S under acidic conditions and reducing conditions, of bisulfide variation in the microdialysate in aCSF. 45 Analyst respectively. Bound sulfur may be a source of H2S in brain and it In this work, we attempt to further improve the integrated 46 can immediately release H2S in response to physiologic microdialysis/droplet-based microfluidic chip system for in-vivo 6 - 47 stimulation. In the CNS, H2S facilitates long-term potentiation 80 measurement of the HS concentration in rat’s brain. As displayed 48 and regulates intracellular calcium concentration and pH level in in Scheme 1, a new droplet-generation design was employed. In 49 40 brain cells. Abnormal generation and metabolism of H2S have addition to the inlets of the sample solution and the probe 50 been reported in the pathogenesis of ischemic stroke, Alzheimer’s solution, a third inlet was added for on-line measurement quality 51 disease, Parkinson’s disease, and recurrent febrile seizure. 7 On control. The flow rates and other experimental conditions were 52 the other hand, exogenously applied H2S is demonstrated to have 85 optimized and the integrated system was successfully applied to 53 value for the treatment of febrile seizure and Parkinson’s disease. track the variation of in vivo bisulfide concentration in the rat’s 54 45 Thus, it is assumed that H2S may play a neuroprotective role at brain under different physiological conditions. To the best of our 55 physiological concentrations but may exhibit neurotoxic effects at knowledge, this is the first report on on-line and continuous 56 significantly higher concentrations. measurement of in-vivo concentration of bisulfide in the brain of 57 Under physiological conditions, >80% of hydrogen sulfide 90 living animals. - 58 exists as bisulfide (HS ). Free H2S usually refers to the sum of 59 This journal is © The Royal Society of Chemistry [year] [journal] , [year], [vol] , 00–00 | 1 60 Analyst Page 2 of 7 1 poly(tetrafluoroethylene) (PTFE) tube (0.6 mm i.d./1.0 mm o.d.). 2 The microfluidic channels were created by using a dry film 3 photolithography fabrication technique as previously described. 17 4 50 The channels for oil phase and aqueous solution were both 80 µm 5 wide, and the nozzle where the droplets were formed was 30 µm 6 wide (Scheme 1A). The main channel where the droplets flew 7 through was 120 µm wide. The depth was 40 µm for all the 8 channels. Standard solutions of Na S in aCSF at different 9 2 55 concentrations were directly injected into the microchip via inlet 10 S to calibrate the droplet fluorescence and the bisulfide 11 concentration. 12 13 Integration of the droplet-based microfluidic chip with 14 microdialysis sampling system for continuous on-line 15 Scheme 1. (A) CAD design of the droplet-formation microfluidic 60 measurement 16 5 chip; (B) Illustration of the integrated microdialysis/droplet-based microfluidic chip system for in-vivo measurement of the HS - For the on-line monitoring of bisulfide in the effluent of 17 microdialysis, the microdialysis probe was inserted into the 18 concentration in rat’s brain. standard solution of Na 2S in aCSF or the rat brain (Scheme 1B). 19 Then the microdialysis probe was perfused with aCSF driven by a 20 Experimental 65 microinjection pump through fluorinated ethylene propylene 21 (FEP) tube. The flow rates of microdialysis probe injection and 10 Reagents and Instrumentation 22 oil phase delivering were set at 1.0 µL/min and 9.0 µL/min, 23 Sodium sulfide nonahydrate (Na 2S⋅9H 2O), hydrogen tetrachloroaurate trihydrate (HAuCl ), sodium citrate, and other respectively. A pump was attached to the outlets of the PTFE 24 4 inorganic chemicals were purchased from Beijing Chemical tube to reduce the pressure and the flow rate was set at 19 µL/min. 25 Reagent Corporation (Beijing, China). L-glutathione, reduced 70 The microdialysis recovery was determined by comparing the 26 droplet fluorescent intensity of the same concentration of 15 (purity 499.5%) (GSH) and fluorescein isothiocyanate (FITC 27 Manuscript Isomer I (TLC 495%)) were purchased from Merck (Frankfurter, bisulfide in aCSF solution with and without microdialysis. For 28 Germany). Mineral oil (light oil, neat) was purchased from Sigma the in vivo measurements, brain microdialysates were sampled 29 (St. Louis, USA). Thiol-polyethylene glycol (HS-PEG-COOH) from the rat brain with MAB6 (15 kD, 2 mm) because of the size 30 was purchased from Taiyuan Pegchem. Co., Ltd. (Taiyuan, 75 of hippocampus. 31 20 China). All chemicals were of analytical reagent grade and used 32 as received without any further purification. Animal surgery 33 Sylgard 184 prepolymer and its curing agent were purchased Animal surgery was carried out following the procedures as 18 34 from Dow Corning (Midland, USA). A film mask from Shenzhen described previously.
Recommended publications
  • Toxicological Profile for Hydrogen Sulfide and Carbonyl Sulfide
    HYDROGEN SULFIDE AND CARBONYL SULFIDE 149 6. POTENTIAL FOR HUMAN EXPOSURE 6.1 OVERVIEW Hydrogen sulfide has been found in at least 34 of the 1,832 waste sites that have been proposed for inclusion on the EPA National Priorities List (NPL) and carbonyl sulfide was detected in at least 4 of the 1,832 waste sites (ATSDR 2015). However, the number of sites evaluated for these substances is not known and hydrogen sulfide and carbonyl sulfide are ubiquitous in the atmosphere. The frequency of these sites can be seen in Figures 6-1 and 6-2. Carbonyl sulfide and hydrogen sulfide are principal components in the natural sulfur cycle. Bacteria, fungi, and actinomycetes (a fungus-like bacteria) release hydrogen sulfide during the decomposition of 2- sulfur containing proteins and by the direct reduction of sulfate (SO4 ). Hydrogen sulfide is also emitted from volcanoes, stagnant or polluted waters, and manure or coal pits with low oxygen content (Aneja 1990; Khalil and Ramussen 1984). The majority of carbonyl sulfide that enters the environment is released to air and it is very abundant in the troposphere (Conrad and Meuser 2000; EPA 1994c, 1994d; Meinrat et al. 1992; Simmons et al. 2012; Stimler et al. 2010). It enters the atmosphere from both natural and anthropogenic sources (EPA 1994c, 1994d; Meinrat et al. 1992; Stimler et al. 2010). Carbonyl sulfide is released from wetlands, salt marshes, soil, oceans, deciduous and coniferous trees, and volcanic gases (Blake et al. 2004; EPA 1994c, 1994d; Meinrat et al. 1992; Rasmussen et al. 1982a, 1982b; Stimler et al.
    [Show full text]
  • Chemical Resistance Guide
    CATALOG C-CRG-0517 VALVES Pressure-rated bronze, iron and alloy-iron gate, globe and check valves • Pressure- rated bronze ball valves • Boiler specialty valves • Commercial and industrial butterfly valves • Lined butterfly valves • Circuit balancing valves and kits • Carbon and stainless steel ball valves • ANSI flanged steel ball valves • Lined ball valves • Pneumatic and electric actuators and controls • Grooved ball and butterfly valves • High performance butterfly valves • UL/FM fire protection valves • MSS specification valves • Bronze specialty valves • Low pressure gate, globe, -GU check and ball valves • Frostproof sillcocks • Quarter-turn supply stops • Quarter- EM ID turn low pressure valves • PVC and CPVC plumbing and industrial ball valves • H Bronze and iron y-strainers • Sample valves • Sanitary valves • Lead-free valves E • Hydronic valves • Labor saving valves • Manifold systems • Water temperature C control valves • System quality valves • Press x PEX transition valves FITTINGS Wrot and cast copper pressure and drainage fittings • Cast copper alloy flanges • Powder coated steel companion flanges • Wrot and cast press fittings • ABS and PVC DWV fittings • Schedule 40 PVC pressure fittings • CPVC CTS fittings • CPVC CTS-to-metal transition fittings • Schedule 80 PVC and CPVC systems • Lead-free fittings • Press x PEX transition fittings • Cast bronze push fittings LEAD-FREE: Weighted average lead content ≤0.25% FLEXIBLE PIPING SYSTEMS PE-RT and PEX tubing for potable and radiant applications • Insulated tubing • Risers
    [Show full text]
  • SAFETY DATA SHEET Sodium Hydrosulfide Solution
    SAFETY DATA SHEET Sodium Hydrosulfide Solution Section 1. Identification Product name : Sodium Hydrosulfide Solution Synonyms : NaHS, sodium hydrogen sulfide, sodium bisulfide, sodium mercaptan Relevant identified uses of the substance or mixture and uses advised against Product use : Industrial Manufacturer : HollyFrontier Refining & Marketing LLC 2828 North Harwood Suite 1300 Dallas, Texas 75201 USA Customer Service: (888) 286-8836 Emergency telephone : CHEMTREC® (800) 424-9300 number CCN 201319 Section 2. Hazards identification OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the : CORROSIVE TO METALS - Category 1 substance or mixture ACUTE TOXICITY (oral) - Category 4 SKIN CORROSION - Category 1 SERIOUS EYE DAMAGE - Category 1 GHS label elements Hazard pictograms : Signal word : Danger Hazard statements : May be corrosive to metals. Harmful if swallowed. Causes severe skin burns and eye damage. Precautionary statements Prevention : Wear protective gloves. Wear eye or face protection. Wear protective clothing. Keep only in original container. Do not eat, drink or smoke when using this product. Wash hands thoroughly after handling. Response : Absorb spillage to prevent material damage. IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. Immediately call a POISON CENTER or physician. IF SWALLOWED: Immediately call a POISON CENTER or physician. Rinse mouth. Do NOT induce vomiting. IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water or shower. Wash contaminated clothing before reuse. Immediately call a POISON CENTER or physician. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do.
    [Show full text]
  • Technical Guide for Solutions of Sodium Hydrosulfide Technical Guide for Solutions of Sodium Hydrosulfide
    TECHNICAL GUIDE FOR SOLUTIONS OF SODIUM HYDROSULFIDE TECHNICAL GUIDE FOR SOLUTIONS OF SODIUM HYDROSULFIDE TABLE OF CONTENTS TOPIC PAGE Overview 1 Health Hazards and First Aid 2 Flammability and Fire Response / Storage 3 Handling (PPE) 4 Equipment Recommendations / Transfers 5 Shipping 13 Releases 14 APPENDIX Material Safety Data Sheet 16 H2S Monitors 23 Hydrogen Sulfide Toxicity Chart 26 Density, Boiling and Freezing Points of 28 Sodium Hydrosulfide Viscosity of Typical 45% Sodium 30 Hydrosulfide Solution Sodium Hydrosulfide Site Assessment 32 Checklist TECHNICAL GUIDE FOR SOLUTIONS OF SODIUM HYDROSULFIDE Overview Sodium Hydrosulfide, chemical formula NaHS, is a highly alkaline salt solution with a pH of 11.5 to 12.5. The solution is typically yellow to dark green and has a rotten-egg odor due to the Hydrogen Sulfide (H2S) content. The product strength ranges from 20% to 45% by weight and weighs 9 to 11 pounds per gallon (specific gravity from 1.13 to 1.30 g/cm3). Solutions of NaHS are considered stable in normal transportation. The vapor space over NaHS solutions contains highly toxic Hydrogen Sulfide gas. The Hydrogen Sulfide gas is colorless and it is heavier than air. It will remain close to the ground and collect in low lying areas. The amount of Hydrogen Sulfide gas evolved from NaHS solutions is noticeably increased when the pH of the solution is below the pH of 10.2. This hap pens when the solution comes into contact with acidic materials or other materials that have a pH lower than 10.2. Dilution of the material will also create a minimal amount of Hydrogen Sulfide gas due to the lower pH of water coming in contact with the solution.
    [Show full text]
  • Fate of Sodium Sulfide.Pdf
    ---· fate of SodiuM Sulfide and SodiuM ·sisul'ticte . ' 3 in SteaM Muffler Effluent ·,·:,· ~Jr l'f·;'.lfR & -..... _, __ . --.-- _,_,-; .'~;ENT The cheMical species generated by the treatMent of geotherMal steaM with sodiuM hydroxide <HaOH> include sodiuM carbonate <Haf0 3>, sodiuM bicarbonate <HaHCO?, sodiuM sulfide <HazS>, and sodiuM bisulfide <HaHS>. The forMer t~o cheMicals are environMentally benign and their disposal will have no significant effect on groundwater quality. SodiuM sulfide and bisulfide can 7 however~ have substantial iMpacts on water quality due to their toxicity at Moderate concentrations and their potential for odor generation at extreMely low concentrations. Hence 7 the fate of these cheMicals under norMal environMental conditions is of concern in considering their production and disposal as a result of treatMent of geotherMal steaM. Hydrogen sulfide abateMent froM geotherMal steaM has been accoMplished in Hawaii by the injection of a lOX solution of sodiuM hydroxide into the steaM phase at a Mole ratio of three Moles of sodiuM hydroxide to one Mole of hydrogen sulfide. The pH of the resultant solution will be in the range of 12 to 13 and hence the predoMinant sulfide species in solution will be sodiuM sulfide- Because a quantitative reaction of hydrogen sulfide to sodiuM sulfide ~auld require only two Moles of caustic to one MOle of sulfide~ an excess of caustic will be present that will Maintain the pH at a high level for a substantial period after the scrubber effluent is exposed to atMospheric air. Upon exposure of the sodiuM sulfide solution to air 7 the Most iMportant reaction that will occur is the oxidation of the sodiuM sulfide.
    [Show full text]
  • In Situ Continuous Measurement of Dissolved Sulfide in Sewer Systems
    In Situ Continuous Measurement of Dissolved Sulfide in Sewer Systems L Sutherland-Stacey 1, 2, S. Corrie 3, A. Neethling 2, I. Johnson 3, O. Gutierrez 4, R. Dexter 2, Z. Yuan 4, J. Keller 4, G. Hamilton 3 1 Physics Department, University of Auckland, Symonds Street, Auckland (Email: [email protected] ) 2 DCM Process Control, (Email: [email protected] ; [email protected] ; [email protected] ) 3 Gold Coast City Council (Email: [email protected]; [email protected]; [email protected] ) 4 Advanced Wastewater Management Centre, University of Queensland, (Email: [email protected]; [email protected]; [email protected] ) Abstract Sulfides are particularly problematic in the sewage industry. Hydrogen sulfide causes corrosion of concrete infrastructure, is dangerous at high concentrations and foul smelling at low concentrations. Despite the importance of sulfide monitoring there is no commercially available system to quantify sulfide in situ in waste water. In this article we report on our use of an s::can spectro::lyser TM to quantify bisulfide in waste water and additional analysis with a pH probe to calculate total dissolved sulfide. Our results show it is possible to use existing commercially available and field proven sensors to measure sulfide to mg/L levels continuously with little operator intervention and no sample preparation. Keywords: In-situ, on-line, sulfide, septic sewage, real-time INTRODUCTION Hydrogen sulfide (H 2S) is generated in the aqueous phase of wastewater by bacterial reduction of sulfate under anaerobic conditions (Tanaka et al. , 2000).
    [Show full text]
  • Sodium Hydrogen Sulfide
    Product Safety Summary Sodium Hydrogen Sulfide, Solid (70-72% with Crystallization Waters < 25%) CAS No. 16721-80-5 This Product Safety Summary is intended to provide a general overview of the chemical substance. The information on the summary is basic information and is not intended to provide emergency response information, medical information or treatment information. The summary should not be used to provide in-depth safety and health information. In-depth safety and health information can be found on the Safety Data Sheet (SDS) for the chemical substance. Names Sodium hydrogen sulfide (sulphide) Sodium hydrosulfide (hydrosulphide) Sodium mercaptan Sodium sulfhydrate Sodium bisulfide Sodium mercaptide Product Overview Solvay Fluorides, LLC does not sell sodium hydrogen sulfide directly to consumers. Consumers are unlikely to be exposed to sodium hydrogen sulfide in any of the consumer product applications listed below and only where the sodium hydrogen sulfide is not transformed or reacted. Sodium hydrogen sulfide is a yellow, solid flake with a sulfurous (rotten egg) smell. It is used in water treatment, the pulp and paper industry, and in leather processing as a tanning agent or hair remover (from hides). Sodium hydrogen sulfide may be used in the making of colors and dyes. It can also be used in the manufacture of other chemicals, metals or in ore processing (mining) and in waste water, soil and process sludge treatment. Exposure to sodium hydrogen sulfide can cause severe irritation to the skin, eyes, and respiratory tract. Sodium hydrogen sulfide may cause sensitization (develop an allergic reaction). Breathing sodium hydrogen sulfide dusts may aggravate asthma or other pulmonary (breathing) diseases and may cause headaches, dizziness, nausea and vomiting.
    [Show full text]
  • Sulfoxide Directed Metal-Free Cross Coupling: Propargylation of Aromatic and Heteroaromatic Systems
    Sulfoxide Directed Metal-free Cross Coupling: Propargylation of Aromatic and Heteroaromatic Systems A dissertation submitted to The University of Manchester for the degree of Master of Science by Research in the Faculty of Engineering and Physical Science. 2015 Yuntong Zhang School of Chemistry Contents List of Tables: ............................................................................... 4 List of Abbreviations ..................................................................... 5 Abstract ......................................................................................... 9 Declaration .................................................................................. 10 Copyright Statement .................................................................... 11 Acknowledgement ....................................................................... 12 Chapter 1: Introduction ............................................................... 13 1.1 Pummerer and Pummerer-type Reactions............................ 13 1.1.1 The Classical Pummerer Rearrangement .................... 13 1.1.2 Additive and Vinylogous Pummerer Reactions .......... 14 1.1.3 Interrupted Pummerer Reactions ................................ 18 1.2 Pummerer-Type Reactions Extended to Aromatic Systems . 24 1.2.1 Aromatic and Hetero-aromatic Pummerer-type Reactions ................................................................................. 24 1.2.2 Ortho Alkylations of Aryl and Heteroaryl Systems .... 29 1.3 Beyond Classical Pummerer Reaction Electrophiles
    [Show full text]
  • Chemistry of Boranes Pdf
    Chemistry of boranes pdf Continue Boron is a compound consisting of boron and hydrogen. In the early 19th century they were systematically examined by the German scientist Alfred Stock. The most basic example is diborán (\(\ce{B2H6}\)), all borons are electron-deficient compounds. \(\ce{B2H6}\) typically require 14 electrons to create 2c,2e bonds, but only 12 electron cylinders are present. For this reason, there are two B-H-B bonds that have three centers, but only two electrons (3c, 2e bond). This can be interpreted as molecular orbital, which is formed by a combination of contributed atomic orbits of three atoms. In the more complex boranes not only B-H-B bonds, but also B-B-B 3c, 2e-bonds occur. In such a bond, three B-atoms lie at the corners of an equilateral triangle with their sp3 hybrid orbits overlapping at its center. One of the common properties of borons is that they are flammable or react spontaneously through air. They burn with a characteristic green flame. And they're colorless, diamagnetic substances. In neutral boranes, the number of boron atoms is given by the prefix and the number of hydrogen atoms is given in brackets after the name. example: \(\ce{B5H11}\) -&gt; pentaborán(11), \(\ce{B4H10}\) -&gt; tetraborán(10) For ions, the number of hydrogen atoms is given in brackets and, as indicated by the number of boron-atoms, the fee is given in brackets after the name. example: \(\ce{[B6H6]^{2-}}\) -&gt; hexahydrohexaborat(2-) Wades rule helps predict the total boron shape from its formula.
    [Show full text]
  • ACS ENVR Final Program
    Division of Environmental Chemistry Technical Program Division of Environmental Chemistry Contacts CHAIR CHAIR-ELECT George P. Cobb Dionysios Dionysiou Baylor University University of Cincinnati [email protected] [email protected] IMMEDIATE PAST CHAIR TREASURER Tracy Williamson Xiaoping Pan U.S. EPA East Carolina University [email protected] [email protected] SECRETARY WEBMASTER Lindsey Welch Aditya (Ashi) Savara Cedar Crest College Oak Ridge National Laboratory [email protected] [email protected] PROGRAM CHAIRS: BUSINESS OFFICE Spring: Sherine Obare Peney Patton, Manager Western Michigan University [email protected] [email protected] Fall: Jillian Goldfarb www.acsenvr.com Boston University @ACS_envr [email protected] ACSenvr ENVR Acknowledgments Financial Contributors The Division of Environmental Chemistry gratefully acknowledges the financial and other contributions made to the ENVR program by the individuals and institutions listed below. Jeff and Lynne Rosen Shanghai AB Sciex Analytical Instrument Trading Co., Ltd. Michael J. McGuire Non-Financial Supporters Association of Environmental Engineering & Science Professors ACS Committee on Environmental Improvement Division of Agricultural and Food Chemistry Division of Agrochemicals Division of Analytical Chemistry Division of Chemical Education Division of Geochemistry Division of Medicinal Chemistry Division of Organic Chemistry Division of Small Chemical Business ENVR Governance Meetings Sunday, April 2, 2017 Golden Gate Ballroom C3, San Francisco Marriott
    [Show full text]
  • Laboratory Manual of Inorganic Chemistry and Elementary
    Class Q~D 4* ^_ Book._MU_ Copyright^0_ COPYRIGHT DEPOSIT GPO f * . ■ ■ ■ ■ ' * ' • * • . • nr i f«K . »J ’ P ‘ ' , v » 1 • ^ ‘ *-• ■ 1 * / ‘ ■ i LABORATORY MANUAL OF INORGANIC CHEMISTRY ----- AND ELEMENTARY QUALITATIVE ANALYSIS C. C. HEDGES HEAD OF DEPARTMENT OF CHEMISTRY AND CHEMICAL ENGINEERING H. R. BRAYTON PROFESSOR OF INORGANIC CHEMISTRY IN THE AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS D. C. HEATH AND COMPANY BOSTON NEW YORK CHICAGO ATLANTA SAN FRANCISCO DALLAS LONDON ABRIDGED TABLE ATOMIC ATOMIC ELEMENT SYMBOL ELEMENT SYMBOL WEIGHT WEIGHT Aluminum. A1 26.97 Lithium.... Li 6.94 Antimony. Sb 121.77 Magnesium. 24.32 Arsenic. 74.96 Manganese. .. Mn 54.93 Barium. Ba 137.37 Mercury.. Hg 200.6 Bismuth. Bi 209.00 Molybdenum.. Mo 96.0 Boron. B 10.82 Nickel. ... Ni 58.69 Bromine..... Br 79.92 Nitrogen. N 14.01 Calcium. 40.07 Oxygen.. O 16.0 Carbon. C 12.00 Phosphorus. P 31.03 Chlorine. Cl 35.46 Platinum.... Pt 195.23 Chromium. Cr 52.00 Potassium. K 39.10 Cobalt. Co 58.94 Silicon.. Si 28.06 Copper. Cu 63.57 Silver ... Ag 107.88 Fluorine. .. F 19.00 Sodium. Na 23.00 Gold. Au 197.20 Strontium. Sr 87.63 Hydrogen. H 1.008 Sulfur.. .. S 32.06 Iodine. I 126.93 Tin. .. Sn 118.70 Iron. Fe 55.84 Uranium. U 238.17 Lead. Pb 207.20 Zinc. Zn 65.38 COMMON VALENCE OF ELEMENTS AND RADICALS i 2 3 4 5 6 Br Ba A1 C Sb Cr Cl Ca Sb N As S Cu C As Pt N F Co Bi Si P H Cu B s I Fe Cr Sn Li Pb Au (Si04) Hg Mg Fe N Mn N K Hg Ni Ag Ni P Na N (BO,) (NO*) O (AsO,) (NO,) Sr (As04) (Mn04) S (PO,) (C*H,0*) Sn (P04) (OH) Zn (CIO) (SO,) (CIO*) (S04) (ClOa) (CO,) (CIO*) (Cr04) (Cr*07) (B407) Note.
    [Show full text]
  • Dairygem Reference Manual | 0
    Title Page DAIRY GAS EMISSIONS MODEL Reference Manual Version 3.3 C. Alan Rotz, Dawn S. Chianese, Felipe Montes, Sasha Hafner and Henry F. Bonifacio Pasture Systems and Watershed Management Research Unit Agricultural Research Service United States Department of Agriculture September 2016 1 Table of Contents Title Page -2 1. Table of Contents -1-1 EXECUTIVE SUMMARY 2-3 INTRODUCTION 4-5 Model Scope 5-6 Model Overview 6-8 Figure 1.1 - Production System Boundaries and Components 9 AVAILABLE FEEDS 10 Pasture Use 10-12 Feed Characteristics 12-14 Table 2.1 - Fill and Roughage Factors 14 DAIRY HERD 15 Animal and Herd Characteristics 15-16 Feed Allocation 16-17 Animal Nutrient Requirements 17-19 Feed Intake and Milk Production 19-20 Manure DM and Nutrient Production 20-21 Table 2.2 - Dairy Cow Characteristics 22 Table 2.3 - Dairy Ration Constraints 23-24 MANURE AND NUTRIENTS 25 Manure Handling 25-26 Manure Import and Export 27-28 Anaerobic Digestion 28-31 Manure Composting 31-38 Table 3.1 - Model Equations 39-41 Table 3.2 - Simulation Settings 42 Figure 3.1 - Model flow for a compost windrow 43 Figure 3.2 - Compost Simulation Profiles 43 Figure 3.3 - Compost carbon and nitrogen flows 44 AMMONIA EMISSIONS 45 Formation and Emission Processes 45-49 Animal Housing 49-57 DairyGEM Reference Manual | 0 Manure Storage 57-58 Field Application 58-60 Grazing Deposits 60-61 Table 4.1 - Bedding Material Properties 62 HYDROGEN SULFIDE 63 Formation and Emission Processes 63-68 Enteric Emission 68 Housing Floor 68-69 Manure Storage 69-70 Field Applied Manure
    [Show full text]