Chemistry of Boranes Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Chemistry of Boranes Pdf Chemistry of boranes pdf Continue Boron is a compound consisting of boron and hydrogen. In the early 19th century they were systematically examined by the German scientist Alfred Stock. The most basic example is diborán (\(\ce{B2H6}\)), all borons are electron-deficient compounds. \(\ce{B2H6}\) typically require 14 electrons to create 2c,2e bonds, but only 12 electron cylinders are present. For this reason, there are two B-H-B bonds that have three centers, but only two electrons (3c, 2e bond). This can be interpreted as molecular orbital, which is formed by a combination of contributed atomic orbits of three atoms. In the more complex boranes not only B-H-B bonds, but also B-B-B 3c, 2e-bonds occur. In such a bond, three B-atoms lie at the corners of an equilateral triangle with their sp3 hybrid orbits overlapping at its center. One of the common properties of borons is that they are flammable or react spontaneously through air. They burn with a characteristic green flame. And they're colorless, diamagnetic substances. In neutral boranes, the number of boron atoms is given by the prefix and the number of hydrogen atoms is given in brackets after the name. example: \(\ce{B5H11}\) -> pentaborán(11), \(\ce{B4H10}\) -> tetraborán(10) For ions, the number of hydrogen atoms is given in brackets and, as indicated by the number of boron-atoms, the fee is given in brackets after the name. example: \(\ce{[B6H6]^{2-}}\) -> hexahydrohexaborat(2-) Wades rule helps predict the total boron shape from its formula. count the number of B-H units, each B-H unit contains 4 cylinder electrons, but two of them are needed to determine the bond between B and H, so each B-H unit contributes two electrons of skeletal electrons. each additional H-Atom contributes additional electrons to skeletal electrons and the charge contributes electrons the resulting number of electrons must be divided by two in order to make the number of skeletal electron pairs in boran. General structure is defined by the number of skeletal electron pairs Type of skeletal skeletal pair type \(\ce{[B_{n} H_{n}]^{2-}}\) n+1 closo \(\ce{B_{n} H_{n + 4}}} \) n +) 2 nido \(\ce{B_{n} H_{n + 6}}\) n+3 arachno \(\ce{B_{n} H_{n + 8}}\) n+4 polyhedra hype always consists of triangular faces , so they are called deltahedra. Usually there are three possible types of structures: Closo-boranes closed deltahedra without B-H-B 3c,2e-binding thermally stable and slightly reactive. example: \(\ce{[B5H5]^{2-}}\): The ion builds trigonal, bipyramide polyhedron Nido-boranes closo boran with one corner less, and the addition of two hydrogen atoms instead of B-H-B bonds and B-B-bonds is possible. thermal stability lies between clozo- and arachno-boranes. example: \(\ce{B5H9}\) its structure can be assumed as octagonal deltahedron \(\ce{[B6H6]^{2-}}\) without one corner of the tetragonal pyramid of closo deltahedron, but with two BH-units removed and two H-atoms added. must have B-H-B 3c, 2e bonds. unstable at room temperature and highly reactive. example: \{\ce{B4H10}\) structure can be derived from \(\ce{[B6H6]^{2-}}\) -> deltahedron with two corners less. There are other structures, such as hypho-boranes, but they are less important. Diboran may be synthesized by an exchange reaction (metathesis) of boron halide with \(\ce{LiAlH4}\) or \(\ce{LiBH4}\) on the ether, for example: \[\ce{3 LiAlH4 + 4 BF3 -> 2 B2H6 + 3 LiAlF4}\] The reaction must be carried out under vacuum or excluding air because the diboran burns in contact with air. Higher borels are obtained by controlled pyrolysis of diboran in the gas phase. example: \[\ce{H2B6 g) -> 2BH3 (g)}\] \[\ce{B2H6 g) + BH3(g) -> B3H7(g) + H2(g)}\] \[\ce{BH3 g) + B3H7(g) -> B4H10(g)}\] Resources D. F. Shriver, P.W. Atkins, Inorganic Chemistry Third Edition, Oxford University Press, 2001 Contributors and Attribution Discuss composition and properties of boranes. Common reactions with boranes are: electrophilic substitutions, nucleophilic replacement of Lewis base, deprotonation with strong foundations, cluster building reactions with borohydrides, and nido-boran reactions with alkyne to give carboran cluster. The parent member of BH3 is called borate, located only in the gaseous state, and dimerizes form diborán, B2H6. The most important borres are diboran B2H6, pentaboran B5H9 and decaboran B10H14. Boranes are colorless and diamagnetic. They are reactive compounds and some are pyrophoric. Boranes are chemical compounds of boron and hydrogen. Borres form a large group of compounds with the general formula BxHy. These compounds do not occur in nature. Many of the boranes easily oxidize when in contact with air, some violently. The parent member of BH3 is called borate, is known only in the gaseous state, and dimerizes form diborán, B2H6. Larger borones all consist of boron clusters that are polyhedral, some of which exist as isomers. For example, B20H26 iomers are based on the fusion of two 10-atomic clusters. The most important borres are diboran B2H6, pentaboran B5H9 and decaboran B10H14. The development of boron hydride chemistry has led to new experimental techniques and theoretical concepts. Boron hydrides have been studied as potential fuels, for rockets, and for automotive use. BoraneBall-and-stick model boran, BH3, which is highly reactive. The names of the boron series are derived from the following general scheme for cluster geometry: hypercloso- (from Greek for via cage) closed complete cluster (e.g. B8Cl8 is a slightly distorted dodecahedron) closo- (from Greek to cage) closed complete cluster (e.g. icosahedral B12H122−) nido- (from Latin to nest) B occupies n peaks n +1 deltahedron (e.g. B5H9 and octave missing one peak) arachno- (from Greek for cobweb) B occupies n peaks of deltahedron n+2 (e.g. B4H10 octagon missing two peaks) hypho- (from Greek for net) B occupies n peaks n + 3 deltahedron (e.g. maybe B8H16 has this structure, the octagon lacks three peaks) conjunctors- two or more of the above are fused together (eg. , the edge or two of the peak dampened B19H221−, the face or three peak dampened B21H181−, and the four peak dampened B20H16) Boranes are colourless and diamagnetic. They are reactive compounds and some are pyrophoric. Most of them are highly toxic and require special handling measures. Properties and reactivity: closo- Not known neutral closo boran. The salts of kloso, BnHn2- are stable in neutral aqueous solution and their stability increases with size. Nido-Pentaborán(9) and decaborán(14) are the most stable nido-boranes, unlike nido-B8H12, which extends above -35o. Again, larger compounds tend to be more stable. Typical reactions of boranes are: electrophilic substitution nucleophilic substitution Lewis base deprotonation strong foundations cluster building reaction with borohydrides reaction nido-borane with alkyne, so that carboran cluster Boranes can act as ligands in coordinating compounds. Boranes can respond to a form of hetero-boranes (e.g. carboráns or metallopranos), clusters that contain boron and metal atoms. Decaborane (14), B10H14 Boranes is the name given to the class of synthetic boron hydrides with the general formula BxHy. In the past, boron molecules were often labeled as electron-deficient because of their more multicentre bonding (in which a pair of bonding electrons connects more than two atoms than in 3-center-2-electron bonds); this was done in order to distinguish such molecules from hydrocarbons and other classically combined compounds. However, this use is incorrect because most boranes and associated clusters such as carberanes are actually electron-accurate, not electron-deficient. For example, the extremely stable icosahedral B12H122-dianion, whose 26 cluster of valence electrons accurately fill 13 bonding molecular orbitals, is in no real sense a lack of electrons; in fact, it is more thermodynamically much more stable than benzene. [1] While some borons are highly reactive when it comes to electron pair donors, others are not, for example, Some of the lower boreons are pyrophoric in the air and react with water. Borres belong to the class of cluster compounds that were the subject of the development of the theory of chemical bonding. Many of the relatives of anionic hydridoborates have also been synthesized. History of Chemistry Development several challenges. Firstly, new laboratory techniques had to be developed to process these often pyrophoric compounds. Alfred Stock created a glass vacuum line, now known as the Schlenk line, for synthesis and manipulation. The very reactive nature of the lower boranes meant that crystal structure determination was impossible as William Lipscomb developed the necessary techniques. Finally, once the structures were known, it became clear that new theories of chemical connections were needed to explain them. Lipscomb won the Nobel Prize in Chemistry in 1976 for his achievements in this field. The correct structure of the diboran was predicted by H. Christopher Longuet-Higgins[2] five years before its designation. Polyhedral skeletal electron pair theory (Wade rules) can be used to predict the structure of boranes. [3] Interest in boranes increased during The Second World War due to the potential of uranium borohydride for uranium isotope enrichment. In the US, a team led by Schlesinger developed the basic chemistry of boron hydrides and related aluminium hydrides. Although uranium borohydride was not used for isotopic separations, Schlesinger's work laid the foundation for a range of boron hydride agents for organic synthesis,
Recommended publications
  • Toxicological Profile for Hydrogen Sulfide and Carbonyl Sulfide
    HYDROGEN SULFIDE AND CARBONYL SULFIDE 149 6. POTENTIAL FOR HUMAN EXPOSURE 6.1 OVERVIEW Hydrogen sulfide has been found in at least 34 of the 1,832 waste sites that have been proposed for inclusion on the EPA National Priorities List (NPL) and carbonyl sulfide was detected in at least 4 of the 1,832 waste sites (ATSDR 2015). However, the number of sites evaluated for these substances is not known and hydrogen sulfide and carbonyl sulfide are ubiquitous in the atmosphere. The frequency of these sites can be seen in Figures 6-1 and 6-2. Carbonyl sulfide and hydrogen sulfide are principal components in the natural sulfur cycle. Bacteria, fungi, and actinomycetes (a fungus-like bacteria) release hydrogen sulfide during the decomposition of 2- sulfur containing proteins and by the direct reduction of sulfate (SO4 ). Hydrogen sulfide is also emitted from volcanoes, stagnant or polluted waters, and manure or coal pits with low oxygen content (Aneja 1990; Khalil and Ramussen 1984). The majority of carbonyl sulfide that enters the environment is released to air and it is very abundant in the troposphere (Conrad and Meuser 2000; EPA 1994c, 1994d; Meinrat et al. 1992; Simmons et al. 2012; Stimler et al. 2010). It enters the atmosphere from both natural and anthropogenic sources (EPA 1994c, 1994d; Meinrat et al. 1992; Stimler et al. 2010). Carbonyl sulfide is released from wetlands, salt marshes, soil, oceans, deciduous and coniferous trees, and volcanic gases (Blake et al. 2004; EPA 1994c, 1994d; Meinrat et al. 1992; Rasmussen et al. 1982a, 1982b; Stimler et al.
    [Show full text]
  • Chemical Resistance Guide
    CATALOG C-CRG-0517 VALVES Pressure-rated bronze, iron and alloy-iron gate, globe and check valves • Pressure- rated bronze ball valves • Boiler specialty valves • Commercial and industrial butterfly valves • Lined butterfly valves • Circuit balancing valves and kits • Carbon and stainless steel ball valves • ANSI flanged steel ball valves • Lined ball valves • Pneumatic and electric actuators and controls • Grooved ball and butterfly valves • High performance butterfly valves • UL/FM fire protection valves • MSS specification valves • Bronze specialty valves • Low pressure gate, globe, -GU check and ball valves • Frostproof sillcocks • Quarter-turn supply stops • Quarter- EM ID turn low pressure valves • PVC and CPVC plumbing and industrial ball valves • H Bronze and iron y-strainers • Sample valves • Sanitary valves • Lead-free valves E • Hydronic valves • Labor saving valves • Manifold systems • Water temperature C control valves • System quality valves • Press x PEX transition valves FITTINGS Wrot and cast copper pressure and drainage fittings • Cast copper alloy flanges • Powder coated steel companion flanges • Wrot and cast press fittings • ABS and PVC DWV fittings • Schedule 40 PVC pressure fittings • CPVC CTS fittings • CPVC CTS-to-metal transition fittings • Schedule 80 PVC and CPVC systems • Lead-free fittings • Press x PEX transition fittings • Cast bronze push fittings LEAD-FREE: Weighted average lead content ≤0.25% FLEXIBLE PIPING SYSTEMS PE-RT and PEX tubing for potable and radiant applications • Insulated tubing • Risers
    [Show full text]
  • SAFETY DATA SHEET Sodium Hydrosulfide Solution
    SAFETY DATA SHEET Sodium Hydrosulfide Solution Section 1. Identification Product name : Sodium Hydrosulfide Solution Synonyms : NaHS, sodium hydrogen sulfide, sodium bisulfide, sodium mercaptan Relevant identified uses of the substance or mixture and uses advised against Product use : Industrial Manufacturer : HollyFrontier Refining & Marketing LLC 2828 North Harwood Suite 1300 Dallas, Texas 75201 USA Customer Service: (888) 286-8836 Emergency telephone : CHEMTREC® (800) 424-9300 number CCN 201319 Section 2. Hazards identification OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the : CORROSIVE TO METALS - Category 1 substance or mixture ACUTE TOXICITY (oral) - Category 4 SKIN CORROSION - Category 1 SERIOUS EYE DAMAGE - Category 1 GHS label elements Hazard pictograms : Signal word : Danger Hazard statements : May be corrosive to metals. Harmful if swallowed. Causes severe skin burns and eye damage. Precautionary statements Prevention : Wear protective gloves. Wear eye or face protection. Wear protective clothing. Keep only in original container. Do not eat, drink or smoke when using this product. Wash hands thoroughly after handling. Response : Absorb spillage to prevent material damage. IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. Immediately call a POISON CENTER or physician. IF SWALLOWED: Immediately call a POISON CENTER or physician. Rinse mouth. Do NOT induce vomiting. IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water or shower. Wash contaminated clothing before reuse. Immediately call a POISON CENTER or physician. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do.
    [Show full text]
  • Technical Guide for Solutions of Sodium Hydrosulfide Technical Guide for Solutions of Sodium Hydrosulfide
    TECHNICAL GUIDE FOR SOLUTIONS OF SODIUM HYDROSULFIDE TECHNICAL GUIDE FOR SOLUTIONS OF SODIUM HYDROSULFIDE TABLE OF CONTENTS TOPIC PAGE Overview 1 Health Hazards and First Aid 2 Flammability and Fire Response / Storage 3 Handling (PPE) 4 Equipment Recommendations / Transfers 5 Shipping 13 Releases 14 APPENDIX Material Safety Data Sheet 16 H2S Monitors 23 Hydrogen Sulfide Toxicity Chart 26 Density, Boiling and Freezing Points of 28 Sodium Hydrosulfide Viscosity of Typical 45% Sodium 30 Hydrosulfide Solution Sodium Hydrosulfide Site Assessment 32 Checklist TECHNICAL GUIDE FOR SOLUTIONS OF SODIUM HYDROSULFIDE Overview Sodium Hydrosulfide, chemical formula NaHS, is a highly alkaline salt solution with a pH of 11.5 to 12.5. The solution is typically yellow to dark green and has a rotten-egg odor due to the Hydrogen Sulfide (H2S) content. The product strength ranges from 20% to 45% by weight and weighs 9 to 11 pounds per gallon (specific gravity from 1.13 to 1.30 g/cm3). Solutions of NaHS are considered stable in normal transportation. The vapor space over NaHS solutions contains highly toxic Hydrogen Sulfide gas. The Hydrogen Sulfide gas is colorless and it is heavier than air. It will remain close to the ground and collect in low lying areas. The amount of Hydrogen Sulfide gas evolved from NaHS solutions is noticeably increased when the pH of the solution is below the pH of 10.2. This hap pens when the solution comes into contact with acidic materials or other materials that have a pH lower than 10.2. Dilution of the material will also create a minimal amount of Hydrogen Sulfide gas due to the lower pH of water coming in contact with the solution.
    [Show full text]
  • Fate of Sodium Sulfide.Pdf
    ---· fate of SodiuM Sulfide and SodiuM ·sisul'ticte . ' 3 in SteaM Muffler Effluent ·,·:,· ~Jr l'f·;'.lfR & -..... _, __ . --.-- _,_,-; .'~;ENT The cheMical species generated by the treatMent of geotherMal steaM with sodiuM hydroxide <HaOH> include sodiuM carbonate <Haf0 3>, sodiuM bicarbonate <HaHCO?, sodiuM sulfide <HazS>, and sodiuM bisulfide <HaHS>. The forMer t~o cheMicals are environMentally benign and their disposal will have no significant effect on groundwater quality. SodiuM sulfide and bisulfide can 7 however~ have substantial iMpacts on water quality due to their toxicity at Moderate concentrations and their potential for odor generation at extreMely low concentrations. Hence 7 the fate of these cheMicals under norMal environMental conditions is of concern in considering their production and disposal as a result of treatMent of geotherMal steaM. Hydrogen sulfide abateMent froM geotherMal steaM has been accoMplished in Hawaii by the injection of a lOX solution of sodiuM hydroxide into the steaM phase at a Mole ratio of three Moles of sodiuM hydroxide to one Mole of hydrogen sulfide. The pH of the resultant solution will be in the range of 12 to 13 and hence the predoMinant sulfide species in solution will be sodiuM sulfide- Because a quantitative reaction of hydrogen sulfide to sodiuM sulfide ~auld require only two Moles of caustic to one MOle of sulfide~ an excess of caustic will be present that will Maintain the pH at a high level for a substantial period after the scrubber effluent is exposed to atMospheric air. Upon exposure of the sodiuM sulfide solution to air 7 the Most iMportant reaction that will occur is the oxidation of the sodiuM sulfide.
    [Show full text]
  • In Situ Continuous Measurement of Dissolved Sulfide in Sewer Systems
    In Situ Continuous Measurement of Dissolved Sulfide in Sewer Systems L Sutherland-Stacey 1, 2, S. Corrie 3, A. Neethling 2, I. Johnson 3, O. Gutierrez 4, R. Dexter 2, Z. Yuan 4, J. Keller 4, G. Hamilton 3 1 Physics Department, University of Auckland, Symonds Street, Auckland (Email: [email protected] ) 2 DCM Process Control, (Email: [email protected] ; [email protected] ; [email protected] ) 3 Gold Coast City Council (Email: [email protected]; [email protected]; [email protected] ) 4 Advanced Wastewater Management Centre, University of Queensland, (Email: [email protected]; [email protected]; [email protected] ) Abstract Sulfides are particularly problematic in the sewage industry. Hydrogen sulfide causes corrosion of concrete infrastructure, is dangerous at high concentrations and foul smelling at low concentrations. Despite the importance of sulfide monitoring there is no commercially available system to quantify sulfide in situ in waste water. In this article we report on our use of an s::can spectro::lyser TM to quantify bisulfide in waste water and additional analysis with a pH probe to calculate total dissolved sulfide. Our results show it is possible to use existing commercially available and field proven sensors to measure sulfide to mg/L levels continuously with little operator intervention and no sample preparation. Keywords: In-situ, on-line, sulfide, septic sewage, real-time INTRODUCTION Hydrogen sulfide (H 2S) is generated in the aqueous phase of wastewater by bacterial reduction of sulfate under anaerobic conditions (Tanaka et al. , 2000).
    [Show full text]
  • Sodium Hydrogen Sulfide
    Product Safety Summary Sodium Hydrogen Sulfide, Solid (70-72% with Crystallization Waters < 25%) CAS No. 16721-80-5 This Product Safety Summary is intended to provide a general overview of the chemical substance. The information on the summary is basic information and is not intended to provide emergency response information, medical information or treatment information. The summary should not be used to provide in-depth safety and health information. In-depth safety and health information can be found on the Safety Data Sheet (SDS) for the chemical substance. Names Sodium hydrogen sulfide (sulphide) Sodium hydrosulfide (hydrosulphide) Sodium mercaptan Sodium sulfhydrate Sodium bisulfide Sodium mercaptide Product Overview Solvay Fluorides, LLC does not sell sodium hydrogen sulfide directly to consumers. Consumers are unlikely to be exposed to sodium hydrogen sulfide in any of the consumer product applications listed below and only where the sodium hydrogen sulfide is not transformed or reacted. Sodium hydrogen sulfide is a yellow, solid flake with a sulfurous (rotten egg) smell. It is used in water treatment, the pulp and paper industry, and in leather processing as a tanning agent or hair remover (from hides). Sodium hydrogen sulfide may be used in the making of colors and dyes. It can also be used in the manufacture of other chemicals, metals or in ore processing (mining) and in waste water, soil and process sludge treatment. Exposure to sodium hydrogen sulfide can cause severe irritation to the skin, eyes, and respiratory tract. Sodium hydrogen sulfide may cause sensitization (develop an allergic reaction). Breathing sodium hydrogen sulfide dusts may aggravate asthma or other pulmonary (breathing) diseases and may cause headaches, dizziness, nausea and vomiting.
    [Show full text]
  • Sulfoxide Directed Metal-Free Cross Coupling: Propargylation of Aromatic and Heteroaromatic Systems
    Sulfoxide Directed Metal-free Cross Coupling: Propargylation of Aromatic and Heteroaromatic Systems A dissertation submitted to The University of Manchester for the degree of Master of Science by Research in the Faculty of Engineering and Physical Science. 2015 Yuntong Zhang School of Chemistry Contents List of Tables: ............................................................................... 4 List of Abbreviations ..................................................................... 5 Abstract ......................................................................................... 9 Declaration .................................................................................. 10 Copyright Statement .................................................................... 11 Acknowledgement ....................................................................... 12 Chapter 1: Introduction ............................................................... 13 1.1 Pummerer and Pummerer-type Reactions............................ 13 1.1.1 The Classical Pummerer Rearrangement .................... 13 1.1.2 Additive and Vinylogous Pummerer Reactions .......... 14 1.1.3 Interrupted Pummerer Reactions ................................ 18 1.2 Pummerer-Type Reactions Extended to Aromatic Systems . 24 1.2.1 Aromatic and Hetero-aromatic Pummerer-type Reactions ................................................................................. 24 1.2.2 Ortho Alkylations of Aryl and Heteroaryl Systems .... 29 1.3 Beyond Classical Pummerer Reaction Electrophiles
    [Show full text]
  • ACS ENVR Final Program
    Division of Environmental Chemistry Technical Program Division of Environmental Chemistry Contacts CHAIR CHAIR-ELECT George P. Cobb Dionysios Dionysiou Baylor University University of Cincinnati [email protected] [email protected] IMMEDIATE PAST CHAIR TREASURER Tracy Williamson Xiaoping Pan U.S. EPA East Carolina University [email protected] [email protected] SECRETARY WEBMASTER Lindsey Welch Aditya (Ashi) Savara Cedar Crest College Oak Ridge National Laboratory [email protected] [email protected] PROGRAM CHAIRS: BUSINESS OFFICE Spring: Sherine Obare Peney Patton, Manager Western Michigan University [email protected] [email protected] Fall: Jillian Goldfarb www.acsenvr.com Boston University @ACS_envr [email protected] ACSenvr ENVR Acknowledgments Financial Contributors The Division of Environmental Chemistry gratefully acknowledges the financial and other contributions made to the ENVR program by the individuals and institutions listed below. Jeff and Lynne Rosen Shanghai AB Sciex Analytical Instrument Trading Co., Ltd. Michael J. McGuire Non-Financial Supporters Association of Environmental Engineering & Science Professors ACS Committee on Environmental Improvement Division of Agricultural and Food Chemistry Division of Agrochemicals Division of Analytical Chemistry Division of Chemical Education Division of Geochemistry Division of Medicinal Chemistry Division of Organic Chemistry Division of Small Chemical Business ENVR Governance Meetings Sunday, April 2, 2017 Golden Gate Ballroom C3, San Francisco Marriott
    [Show full text]
  • Laboratory Manual of Inorganic Chemistry and Elementary
    Class Q~D 4* ^_ Book._MU_ Copyright^0_ COPYRIGHT DEPOSIT GPO f * . ■ ■ ■ ■ ' * ' • * • . • nr i f«K . »J ’ P ‘ ' , v » 1 • ^ ‘ *-• ■ 1 * / ‘ ■ i LABORATORY MANUAL OF INORGANIC CHEMISTRY ----- AND ELEMENTARY QUALITATIVE ANALYSIS C. C. HEDGES HEAD OF DEPARTMENT OF CHEMISTRY AND CHEMICAL ENGINEERING H. R. BRAYTON PROFESSOR OF INORGANIC CHEMISTRY IN THE AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS D. C. HEATH AND COMPANY BOSTON NEW YORK CHICAGO ATLANTA SAN FRANCISCO DALLAS LONDON ABRIDGED TABLE ATOMIC ATOMIC ELEMENT SYMBOL ELEMENT SYMBOL WEIGHT WEIGHT Aluminum. A1 26.97 Lithium.... Li 6.94 Antimony. Sb 121.77 Magnesium. 24.32 Arsenic. 74.96 Manganese. .. Mn 54.93 Barium. Ba 137.37 Mercury.. Hg 200.6 Bismuth. Bi 209.00 Molybdenum.. Mo 96.0 Boron. B 10.82 Nickel. ... Ni 58.69 Bromine..... Br 79.92 Nitrogen. N 14.01 Calcium. 40.07 Oxygen.. O 16.0 Carbon. C 12.00 Phosphorus. P 31.03 Chlorine. Cl 35.46 Platinum.... Pt 195.23 Chromium. Cr 52.00 Potassium. K 39.10 Cobalt. Co 58.94 Silicon.. Si 28.06 Copper. Cu 63.57 Silver ... Ag 107.88 Fluorine. .. F 19.00 Sodium. Na 23.00 Gold. Au 197.20 Strontium. Sr 87.63 Hydrogen. H 1.008 Sulfur.. .. S 32.06 Iodine. I 126.93 Tin. .. Sn 118.70 Iron. Fe 55.84 Uranium. U 238.17 Lead. Pb 207.20 Zinc. Zn 65.38 COMMON VALENCE OF ELEMENTS AND RADICALS i 2 3 4 5 6 Br Ba A1 C Sb Cr Cl Ca Sb N As S Cu C As Pt N F Co Bi Si P H Cu B s I Fe Cr Sn Li Pb Au (Si04) Hg Mg Fe N Mn N K Hg Ni Ag Ni P Na N (BO,) (NO*) O (AsO,) (NO,) Sr (As04) (Mn04) S (PO,) (C*H,0*) Sn (P04) (OH) Zn (CIO) (SO,) (CIO*) (S04) (ClOa) (CO,) (CIO*) (Cr04) (Cr*07) (B407) Note.
    [Show full text]
  • Dairygem Reference Manual | 0
    Title Page DAIRY GAS EMISSIONS MODEL Reference Manual Version 3.3 C. Alan Rotz, Dawn S. Chianese, Felipe Montes, Sasha Hafner and Henry F. Bonifacio Pasture Systems and Watershed Management Research Unit Agricultural Research Service United States Department of Agriculture September 2016 1 Table of Contents Title Page -2 1. Table of Contents -1-1 EXECUTIVE SUMMARY 2-3 INTRODUCTION 4-5 Model Scope 5-6 Model Overview 6-8 Figure 1.1 - Production System Boundaries and Components 9 AVAILABLE FEEDS 10 Pasture Use 10-12 Feed Characteristics 12-14 Table 2.1 - Fill and Roughage Factors 14 DAIRY HERD 15 Animal and Herd Characteristics 15-16 Feed Allocation 16-17 Animal Nutrient Requirements 17-19 Feed Intake and Milk Production 19-20 Manure DM and Nutrient Production 20-21 Table 2.2 - Dairy Cow Characteristics 22 Table 2.3 - Dairy Ration Constraints 23-24 MANURE AND NUTRIENTS 25 Manure Handling 25-26 Manure Import and Export 27-28 Anaerobic Digestion 28-31 Manure Composting 31-38 Table 3.1 - Model Equations 39-41 Table 3.2 - Simulation Settings 42 Figure 3.1 - Model flow for a compost windrow 43 Figure 3.2 - Compost Simulation Profiles 43 Figure 3.3 - Compost carbon and nitrogen flows 44 AMMONIA EMISSIONS 45 Formation and Emission Processes 45-49 Animal Housing 49-57 DairyGEM Reference Manual | 0 Manure Storage 57-58 Field Application 58-60 Grazing Deposits 60-61 Table 4.1 - Bedding Material Properties 62 HYDROGEN SULFIDE 63 Formation and Emission Processes 63-68 Enteric Emission 68 Housing Floor 68-69 Manure Storage 69-70 Field Applied Manure
    [Show full text]
  • Towson University Office of Graduate Studies
    TOWSON UNIVERSITY OFFICE OF GRADUATE STUDIES ANAEROBIC ABIOTIC REDUCTION OF DICHLOROACETAMIDE SAFENERS: EFFECTS OF MANGANESE OXIDES AND AGROCHEMICAL CO-FORMULANTS by Allison Ricko A thesis Presented to the faculty of Towson University in partial fulfillment of the requirements for the degree Master of Science Environmental Science Towson University Towson, MD 21252 August 2015 ACKNOWLEDGEMENTS First and foremost, I would like to thank my advisor, Dr. John Sivey, for his support and guidance throughout my graduate career. His input has been instrumental in both the completion of this research and my education. I cannot thank him enough for his willingness to take on a graduate student who didn’t have a chemistry background and for his patience as I learned the fundamentals necessary to successfully complete this research. The input I’ve received throughout this process has been invaluable. I would like to thank the thesis committee, Dr. Joel Moore, Dr. Tim Brunker, and Dr. Ryan Casey, for their input on the experimental design and writing. The entire committee provided useful insight into each of their areas of expertise, contributing to the coherency of the final document. Dr. Tim Brunker performed most of the NMR analyses reported here, and I am grateful for his interpretation of the results. Several undergraduate students provided support and assistance throughout the research process: Mark Burton, Mark Bickley, Dan Victor, Nick Sapienza, and Nick Race. I would also like to thank Dave Szymanik and Sarah Krause, who performed additional NMR analyses. The continued encouragement from my family and friends has been instrumental in the success of my academic career.
    [Show full text]