Globular Clusters

Total Page:16

File Type:pdf, Size:1020Kb

Globular Clusters v 2016-07-07 <<< The 110 Best Globular Clusters >>> Page 1 of 2 ^NGC Name Type Mag Size RA DEC Date Constellation 288 GC 8.1 13' 00:52.8 -26° 35' Oct 19 Sculptor formax 2 GC 13.5 1' 02:38.7 -34° 49' Oct 29 Fornax 1049 fornax 3 GC 12.6 1' 02:39.8 -34° 15' Oct 29 Fornax formax 4 GC 13.6 1' 02:40.1 -34° 32' Oct 29 Fornax formax 5 GC 13.4 1' 02:42.3 -34° 06' Oct 30 Fornax palomar 1 GC 13.6 3' 03:33.4 +79° 35' Nov 12 Cepheus palomar 2 GC 13.0 2' 04:46.1 +31° 23' Dec 01 Auriga 1851 GC 7.1 12' 05:14.1 -40° 03' Dec 09 Columba 1904 M79 GC 7.7 10' 05:24.2 -24° 31' Dec 11 Lepus 2298 GC 9.3 5' 06:49.0 -36° 00' Jan 02 Puppis 2419 GC 10.4 5' 07:38.1 +38° 53' Jan 14 Lynx pyxis GC 12.9 2' 09:07.9 -37° 14' Feb 06 Pyxis palomar 3 GC 13.9 2' 10:05.5 +00° 04' Feb 20 Sextans 3201 GC 6.8 20' 10:17.6 -46° 25' Feb 23 Vela 4147 GC 10.3 4' 12:10.1 +18° 33' Apr 06 Coma Berenices 4590 M68 GC 7.8 11' 12:39.5 -26° 45' Apr 16 Hydra 5024 M53 GC 7.6 13' 13:12.9 +18° 10' Apr 24 Coma Berenices 5053 GC 9.5 10' 13:16.5 +17° 43' Apr 25 Coma Berenices 5139 Omega Centaurus GC 7.7 55' 13:26.8 -47° 29' Apr 27 Centaurus 5272 M3 GC 6.2 18' 13:42.2 +28° 23' May 02 Canes Venatici 5466 GC 9.0 9' 14:05.5 +28° 32' May 07 Bootes 5634 GC 9.5 6' 14:29.6 -05° 59' May 14 Virgo 5694 GC 10.2 4' 14:39.6 -26° 32' May 16 Hydra 5824 GC 9.1 7' 15:04.0 -33° 04' May 22 Lupus palomar 5 GC 11.8 5' 15:16.1 -00° 07' May 26 Serpens 5897 GC 8.5 11' 15:17.5 -21° 01' May 26 Libra 5904 M5 GC 5.7 23' 15:18.6 +02° 05' May 27 Serpens 5986 GC 7.5 10' 15:46.1 -37° 47' Jun 01 Lupus 6093 M80 GC 7.3 10' 16:17.0 -22° 59' Jun 09 Scorpius 6121 M4 GC 5.6 36' 16:23.6 -26° 32' Jun 11 Scorpius 6139 GC 9.0 8' 16:27.7 -38° 51' Jun 12 Scorpius 6144 GC 9.0 7' 16:27.2 -26° 01' Jun 12 Scorpius terzan 3 GC 12.0 1' 16:28.7 -35° 20' Jun 13 Scorpius 6171 M107 GC 7.9 13' 16:32.5 -13° 03' Jun 13 Ophiuchus 6205 M13 GC 5.8 20' 16:41.7 +36° 28' Jun 15 Hercules 6218 M12 GC 6.7 16' 16:47.2 -01° 57' Jun 15 Ophiuchus 6229 GC 9.4 5' 16:47.0 +47° 32' Jun 15 Hercules 6235 GC 10.0 5' 16:53.4 -22° 11' Jun 18 Ophiuchus 6254 M10 GC 6.6 20' 16:57.1 -04° 06' Jun 20 Ophiuchus 6256 GC 11.3 4' 16:59.5 -37° 07' Jun 20 Scorpius 6266 M62 GC 6.5 15' 17:01.2 -30° 07' Jun 20 Ophiuchus 6273 M19 GC 6.8 17' 17:02.6 -26° 16' Jun 20 Ophiuchus 6284 GC 8.8 6' 17:04.5 -24° 46' Jun 21 Ophiuchus 6287 GC 9.4 5' 17:05.2 -22° 42' Jun 21 Ophiuchus 6293 GC 8.2 4' 17:10.2 -26° 35' Jun 22 Ophiuchus 6304 GC 8.4 4' 17:14.5 -29° 28' Jun 24 Ophiuchus 6316 GC 8.4 5' 17:16.6 -28° 08' Jun 25 Ophiuchus 6325 GC 10.3 4' 17:18.0 -23° 46' Jun 25 Ophiuchus 6333 M9 GC 7.7 12' 17:19.2 -18° 31' Jun 25 Ophiuchus 6341 M92 GC 6.4 14' 17:17.1 +43° 08' Jun 24 Hercules 6342 GC 9.7 4' 17:21.2 -19° 35' Jun 25 Ophiuchus 6355 GC 9.1 4' 17:24.0 -26° 21' Jun 26 Ophiuchus 6356 GC 8.3 10' 17:23.6 -17° 49' Jun 26 Ophiuchus ic 1257 GC 13.1 5' 17:27.1 -07° 06' Jun 27 Ophiuchus 6366 GC 9.2 13' 17:27.7 -05° 05' Jun 27 Ophiuchus Page 2 of 2 <<< The 110 Best Globular Clusters >>> Page 2 of 2 ^NGC Name Type Mag Size RA DEC Date Constellation h-p 1 GC 12.5 1' 17:31.1 -29° 59' Jun 28 Ophiuchus 6380 Ton 1 GC 11.3 4' 17:34.5 -39° 04' Jun 29 Scorpius pismis 1 Ton 2 GC 12.2 1' 17:36.2 -38° 33' Jun 29 Scorpius 6388 GC 6.7 10' 17:36.3 -44° 44' Jun 29 Scorpius 6401 GC 9.5 5' 17:38.6 -23° 55' Jun 29 Ophiuchus 6402 M14 GC 7.6 11' 17:37.6 -03° 15' Jun 30 Ophiuchus palomar 6 GC 11.6 1' 17:43.7 -26° 13' Jul 02 Ophiuchus 6426 GC 11.0 4' 17:44.9 +03° 10' Jul 02 Ophiuchus terzan 5 GC 13.9 2' 17:48.1 -24° 47' Jul 02 Sagittarius 6440 GC 9.2 4' 17:48.9 -20° 22' Jul 03 Sagittarius 6441 GC 7.2 10' 17:50.2 -37° 03' Jul 03 Scorpius terzan 6 GC 13.9 1' 17:50.8 -31° 17' Jul 03 Scorpius 6453 GC 10.1 8' 17:50.9 -34° 36' Jul 03 Scorpius 6496 GC 8.5 6' 17:59.0 -44° 16' Jul 06 Scorpius 6517 GC 10.2 4' 18:01.8 -08° 58' Jul 06 Ophiuchus 6522 GC 8.3 9' 18:03.6 -30° 02' Jul 07 Sagittarius 6528 GC 9.6 5' 18:04.8 -30° 03' Jul 07 Sagittarius 6535 GC 10.5 3' 18:03.8 +00° 18' Jul 07 Ophiuchus 6539 GC 9.3 8' 18:04.8 -07° 35' Jul 07 Ophiuchus 6540 GC 14.6 1' 18:06.1 -27° 46' Jul 07 Sagittarius 6541 GC 6.3 15' 18:08.0 -43° 30' Jul 08 Corona Australis 6544 GC 7.8 9' 18:07.3 -25° 00' Jul 08 Sagittarius 6553 GC 8.1 9' 18:09.3 -25° 55' Jul 08 Sagittarius 6558 GC 9.3 4' 18:10.3 -31° 46' Jul 08 Sagittarius palomar 7 ic1276 GC 10.3 8' 18:10.7 -07° 12' Jul 08 Serpens 6569 GC 8.6 6' 18:13.6 -31° 50' Jul 10 Sagittarius 6624 GC 7.9 9' 18:23.7 -30° 22' Jul 12 Sagittarius 6626 M28 GC 6.8 14' 18:24.5 -24° 52' Jul 12 Sagittarius 6637 M69 GC 7.6 7' 18:31.4 -32° 21' Jul 14 Sagittarius 6638 GC 9.0 7' 18:30.9 -25° 30' Jul 14 Sagittarius 6642 GC 9.1 6' 18:31.9 -23° 29' Jul 14 Sagittarius 6652 GC 8.6 6' 18:35.8 -32° 59' Jul 15 Sagittarius 6656 M22 GC 5.1 32' 18:36.4 -23° 54' Jul 15 Sagittarius palomar 8 GC 10.9 3' 18:41.5 -19° 50' Jul 15 Sagittarius 6681 M70 GC 7.9 8' 18:43.2 -32° 18' Jul 18 Sagittarius 6712 GC 8.1 10' 18:53.1 -08° 42' Jul 20 Scutum 6715 M54 GC 7.6 12' 18:55.1 -30° 29' Jul 20 Sagittarius 6717 palomar 9 GC 9.3 5' 18:55.1 -22° 42' Jul 20 Sagittarius 6723 GC 7.0 13' 18:59.6 -36° 38' Jul 21 Sagittarius 6749 GC 12.4 4' 19:05.3 +01° 54' Jul 22 Aquila 6760 GC 8.9 10' 19:11.2 +01° 02' Jul 24 Aquila 6779 M56 GC 8.3 9' 19:16.6 +30° 11' Jul 25 Lyra palomar 10 GC 13.2 4' 19:18.0 +18° 34' Jul 26 Sagitta 6809 M55 GC 6.3 19' 19:40.0 -30° 58' Jul 30 Sagittarius palomar 11 GC 9.8 5' 19:45.2 -08° 00' Aug 01 Aquilla 6838 M71 GC 8.2 7' 19:53.8 18° 47' Aug 03 Sagitta 6864 M75 GC 8.5 7' 20:06.1 -21° 55' Aug 06 Sagittarius 6934 GC 8.8 7' 20:34.2 +07° 24' Aug 14 Delphinus 6981 M72 GC 9.3 7' 20:53.5 -12° 32' Aug 19 Aquarius 7006 GC 10.6 4' 21:01.5 +16° 11' Aug 20 Delphinus 7078 M15 GC 6.2 18' 21:30.0 +12° 10' Aug 28 Pegasus 7089 M2 GC 6.5 16' 21:33.5 +00° 49' Aug 29 Aquarius 7099 M30 GC 7.2 12' 21:40.4 -23° 11' Aug 31 Capricornus palomar 12 GC 11.7 3' 21:46.6 -21° 15' Sep 01 Capricornus 7492 GC 11.3 4' 23:08.4 -15° 37' Sep 22 Aquarius.
Recommended publications
  • Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects
    Juliana Crestani Ribeiro de Souza Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects Porto Alegre 2017 Juliana Crestani Ribeiro de Souza Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects Dissertação elaborada sob orientação do Prof. Dr. Eduardo Luis Damiani Bica, co- orientação do Prof. Dr. Charles José Bon- ato e apresentada ao Instituto de Física da Universidade Federal do Rio Grande do Sul em preenchimento do requisito par- cial para obtenção do título de Mestre em Física. Porto Alegre 2017 Acknowledgements To my parents, who supported me and made this possible, in a time and place where being in a university was just a distant dream. To my dearest friends Elisabeth, Robert, Augusto, and Natália - who so many times helped me go from "I give up" to "I’ll try once more". To my cats Kira, Fen, and Demi - who lazily join me in bed at the end of the day, and make everything worthwhile. "But, first of all, it will be necessary to explain what is our idea of a cluster of stars, and by what means we have obtained it. For an instance, I shall take the phenomenon which presents itself in many clusters: It is that of a number of lucid spots, of equal lustre, scattered over a circular space, in such a manner as to appear gradually more compressed towards the middle; and which compression, in the clusters to which I allude, is generally carried so far, as, by imperceptible degrees, to end in a luminous center, of a resolvable blaze of light." William Herschel, 1789 Abstract We provide a sample of 170 Galactic Globular Clusters (GCs) and analyse its spatial distribution properties.
    [Show full text]
  • Galactic Astronomy with AO: Nearby Star Clusters and Moving Groups
    Galactic astronomy with AO: Nearby star clusters and moving groups T. J. Davidgea aDominion Astrophysical Observatory, Victoria, BC Canada ABSTRACT Observations of Galactic star clusters and objects in nearby moving groups recorded with Adaptive Optics (AO) systems on Gemini South are discussed. These include observations of open and globular clusters with the GeMS system, and high Strehl L observations of the moving group member Sirius obtained with NICI. The latter data 2 fail to reveal a brown dwarf companion with a mass ≥ 0.02M in an 18 × 18 arcsec area around Sirius A. Potential future directions for AO studies of nearby star clusters and groups with systems on large telescopes are also presented. Keywords: Adaptive optics, Open clusters: individual (Haffner 16, NGC 3105), Globular Clusters: individual (NGC 1851), stars: individual (Sirius) 1. STAR CLUSTERS AND THE GALAXY Deep surveys of star-forming regions have revealed that stars do not form in isolation, but instead form in clusters or loose groups (e.g. Ref. 25). This is a somewhat surprising result given that most stars in the Galaxy and nearby galaxies are not seen to be in obvious clusters (e.g. Ref. 31). This apparent contradiction can be reconciled if clusters tend to be short-lived. In fact, the pace of cluster destruction has been measured to be roughly an order of magnitude per decade in age (Ref. 17), indicating that the vast majority of clusters have lifespans that are only a modest fraction of the dynamical crossing-time of the Galactic disk. Clusters likely disperse in response to sudden changes in mass driven by supernovae and stellar winds (e.g.
    [Show full text]
  • Young Globular Clusters and Dwarf Spheroidals
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Young Globular Clusters and Dwarf Spheroidals Sidney van den Bergh Dominion Astrophysical Observatory Herzberg Institute of Astrophysics National Research Council of Canada 5071 West Saanich Road Victoria, British Columbia, V8X 4M6 Canada ABSTRACT Most of the globular clusters in the main body of the Galactic halo were formed almost simultaneously. However, globular cluster formation in dwarf spheroidal galaxies appears to have extended over a significant fraction of a Hubble time. This suggests that the factors which suppressed late-time formation of globulars in the main body of the Galactic halo were not operative in dwarf spheroidal galaxies. Possibly the presence of significant numbers of “young” globulars at RGC > 15 kpc can be accounted for by the assumption that many of these objects were formed in Sagittarius-like (but not Fornax-like) dwarf spheroidal galaxies, that were subsequently destroyed by Galactic tidal forces. It would be of interest to search for low-luminosity remnants of parental dwarf spheroidals around the “young” globulars Eridanus, Palomar 1, 3, 14, and Terzan 7. Furthermore multi-color photometry could be used to search for the remnants of the super-associations, within which outer halo globular clusters originally formed. Such envelopes are expected to have been tidally stripped from globulars in the inner halo. Subject headings: Globular clusters - galaxies: dwarf The galaxy is, in fact, nothing but a congeries of innumerable stars grouped together in clusters. Galileo (1610) –2– 1. Introduction The vast majority of Galactic globular clusters appear to have formed at about the same time (e.g.
    [Show full text]
  • Educator's Guide: Orion
    Legends of the Night Sky Orion Educator’s Guide Grades K - 8 Written By: Dr. Phil Wymer, Ph.D. & Art Klinger Legends of the Night Sky: Orion Educator’s Guide Table of Contents Introduction………………………………………………………………....3 Constellations; General Overview……………………………………..4 Orion…………………………………………………………………………..22 Scorpius……………………………………………………………………….36 Canis Major…………………………………………………………………..45 Canis Minor…………………………………………………………………..52 Lesson Plans………………………………………………………………….56 Coloring Book…………………………………………………………………….….57 Hand Angles……………………………………………………………………….…64 Constellation Research..…………………………………………………….……71 When and Where to View Orion…………………………………….……..…77 Angles For Locating Orion..…………………………………………...……….78 Overhead Projector Punch Out of Orion……………………………………82 Where on Earth is: Thrace, Lemnos, and Crete?.............................83 Appendix………………………………………………………………………86 Copyright©2003, Audio Visual Imagineering, Inc. 2 Legends of the Night Sky: Orion Educator’s Guide Introduction It is our belief that “Legends of the Night sky: Orion” is the best multi-grade (K – 8), multi-disciplinary education package on the market today. It consists of a humorous 24-minute show and educator’s package. The Orion Educator’s Guide is designed for Planetarians, Teachers, and parents. The information is researched, organized, and laid out so that the educator need not spend hours coming up with lesson plans or labs. This has already been accomplished by certified educators. The guide is written to alleviate the fear of space and the night sky (that many elementary and middle school teachers have) when it comes to that section of the science lesson plan. It is an excellent tool that allows the parents to be a part of the learning experience. The guide is devised in such a way that there are plenty of visuals to assist the educator and student in finding the Winter constellations.
    [Show full text]
  • Searching for Star-Forming Dwarf Galaxies in the Antlia Cluster?
    A&A 563, A118 (2014) Astronomy DOI: 10.1051/0004-6361/201322615 & c ESO 2014 Astrophysics Searching for star-forming dwarf galaxies in the Antlia cluster? O. Vaduvescu1,C.Kehrig2, L. P. Bassino3,4,5, A. V. Smith Castelli3,4,5, and J. P. Calderón3,4,5 1 Isaac Newton Group of Telescopes, Apto. 321, 38700 Santa Cruz de la Palma, Canary Islands, Spain e-mail: [email protected] 2 Instituto de Astrofísica de Andalucía (CSIC), Apto. 3004, 18080 Granada, Spain 3 Grupo de Investigación CGGE, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque, B1900FWA La Plata, Argentina 4 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina 5 Instituto de Astrofísica de La Plata (CCT-La Plata, CONICET-UNLP), Paseo del Bosque, B1900FWA La Plata, Argentina Received 5 September 2013 / Accepted 31 January 2014 ABSTRACT Context. The formation and evolution of dwarf galaxies in clusters need to be understood, and this requires large aperture telescopes. Aims. In this sense, we selected the Antlia cluster to continue our previous work in the Virgo, Fornax, and Hydra clusters and in the Local Volume (LV). Because of the scarce available literature data, we selected a small sample of five blue compact dwarf (BCD) candidates in Antlia for observation. Methods. Using the Gemini South and GMOS camera, we acquired the Hα imaging needed to detect star-forming regions in this sample. With the long-slit spectroscopic data of the brightest seven knots detected in three BCD candidates, we derived their basic chemical properties.
    [Show full text]
  • The Spitzer C2d Survey of Large, Nearby, Interstellar Clouds. IV
    Draft version October 24, 2018 A Preprint typeset using LTEX style emulateapj v. 08/22/09 THE SPITZER C2D SURVEY OF LARGE, NEARBY, INTERSTELLAR CLOUDS. IV. LUPUS OBSERVED WITH MIPS Nicholas L. Chapman1, Shih-Ping Lai1,2,3, Lee G. Mundy1, Neal J. Evans II4, Timothy Y. Brooke5, Lucas A. Cieza4, William J. Spiesman4, Luisa M. Rebull6, Karl R. Stapelfeldt7, Alberto Noriega-Crespo6, Lauranne Lanz1, Lori E. Allen8, Geoffrey A. Blake9, Tyler L. Bourke8, Paul M. Harvey4, Tracy L. Huard8, Jes K. Jørgensen8, David W. Koerner10, Philip C. Myers8, Deborah L. Padgett6, Annelia I. Sargent5, Peter Teuben1, Ewine F. van Dishoeck11, Zahed Wahhaj12, & Kaisa E. Young4,13 Draft version October 24, 2018 ABSTRACT We present maps of 7.78 square degrees of the Lupus molecular cloud complex at 24, 70, and 160µm. They were made with the Spitzer Space Telescope’s Multiband Imaging Photometer for Spitzer (MIPS) instrument as part of the Spitzer Legacy Program, “From Molecular Cores to Planet-Forming Disks” (c2d). The maps cover three separate regions in Lupus, denoted I, III, and IV. We discuss the c2d pipeline and how our data processing differs from it. We compare source counts in the three regions with two other data sets and predicted star counts from the Wainscoat model. This comparison shows the contribution from background galaxies in Lupus I. We also create two color magnitude diagrams using the 2MASS and MIPS data. From these results, we can identify background galaxies and distinguish them from probable young stellar objects. The sources in our catalogs are classified based on their spectral energy distribution (SED) from 2MASS and Spitzer wavelengths to create a sample of young stellar object candidates.
    [Show full text]
  • Arxiv:2012.05245V2 [Astro-Ph.GA] 5 May 2021
    Draft version May 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 Charting the Galactic acceleration field I. A search for stellar streams with Gaia DR2 and EDR3 with follow-up from ESPaDOnS and UVES Rodrigo Ibata 1 | Khyati Malhan 2 | Nicolas Martin 1, 3 | Dominique Aubert1 | Benoit Famaey 1 | Paolo Bianchini 1 | Giacomo Monari 1 | Arnaud Siebert 1 | Guillaume F. Thomas 4, 5 | Michele Bellazzini 6 | Piercarlo Bonifacio7 | Elisabetta Caffau7 | Florent Renaud 8 | arXiv:2012.05245v2 [astro-ph.GA] 5 May 2021 1Universit´ede Strasbourg, CNRS, Observatoire astronomique de Strasbourg, UMR 7550, F-67000 Strasbourg, France 2The Oskar Klein Centre, Department of Physics, Stockholm University, AlbaNova, SE-10691 Stockholm, Sweden 3Max-Planck-Institut f¨urAstronomie, K¨onigstuhl17, D-69117, Heidelberg, Germany 4Instituto de Astrof´ısica de Canarias, E-38205 La Laguna, Tenerife, Spain 5Universidad de La Laguna, Dpto. Astrof´ısica, E-38206 La Laguna, Tenerife, Spain 6INAF - Osservatorio di Astrofisica e Scienza dello Spazio, via Gobetti 93/3, I-40129 Bologna, Italy 7GEPI, Observatoire de Paris, Universit´ePSL, CNRS, 5 Place Jules Janssen, 92190 Meudon, France 8Department of Astronomy and Theoretical Physics, Lund Observatory, Box 43, 221 00 Lund, Sweden Corresponding author: Rodrigo Ibata [email protected] 2 Ibata et al. Submitted to ApJ ABSTRACT We present maps of the stellar streams detected in the Gaia Data Release 2 (DR2) and Early Data Release 3 (EDR3) catalogs using the STREAMFINDER algorithm. We also report the spectroscopic follow-up of the brighter DR2 stream members obtained with the high-resolution CFHT/ESPaDOnS and VLT/UVES spectrographs as well as with the medium-resolution NTT/EFOSC2 spectrograph.
    [Show full text]
  • Kiski Astronomers at Cherry Springs: Perseids - August, 2015
    Kiski Astronomers at Cherry Springs: Perseids - August, 2015 After finishing my trip to the Lehigh Valley Amateur Astronomical Society ’s Pulpit Rock Observatory the weekend of August 7 th – 9th, I headed over to Cherry Springs to take in the annual Perseid Meteor shower with several other members of the Kiski Astronomers. Monday 08/10/2015: Leaving a damp Pulpit Rock behind, I made the 3 hour drive from Eastern PA to the Astronomers Paradise – Cherry Springs State Park. Arrived late afternoon to find Bob K already there, and setup my camp across from him. Assembled the telescope, but wasn’t able to do much more, as clouds rolled in at sunset. Headed inside to read and early to bed. Tuesday 08/11/2015: Spent the day setting up a few more camping items and visiting with Bob N from the Kiski Club and Mike P from Niagara Canada who arrived and setup with us, and planning for the observing that evening. The sky stayed clear for the afternoon, and once the sun went down, we all got to work. Using my StellaCam-3 videocamera and 8” SCT optical tube on a C-Gem mount, I started working thru my constellation survey, chasing faint galaxies in Ursa Major. These included NGC-3065 & 3066, 3259, 3348, and 3516. Would like to have gone after more galaxies in the Great Bear, but he was too low in the tree tops. Have to wait till next year to re -visit that dipper! I then chased down the faint and elusive globular cluster Palomar -12 in Capricornus.
    [Show full text]
  • PALOMAR 12 AS a PART of the SAGITTARIUS STREAM: the EVIDENCE from ABUNDANCE RATIOS1 Judith G
    The Astronomical Journal, 127:1545–1554, 2004 March A # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. PALOMAR 12 AS A PART OF THE SAGITTARIUS STREAM: THE EVIDENCE FROM ABUNDANCE RATIOS1 Judith G. Cohen2 Received 2003 November 7; accepted 2003 December 11 ABSTRACT We present a detailed abundance analysis for 21 elements based on high-dispersion, high spectral resolution Keck spectra for four members of the outer halo ‘‘young’’ Galactic globular cluster Palomar 12. All four stars show identical abundance distributions with no credible indication of any star-to-star scatter. However, the abundance ratios of the Pal 12 stars are very peculiar. There is no detected enhancement of the -elements; the mean of [Si/Fe], [Ca/Fe], and [Ti/Fe] is À0:07 Æ 0:05 dex, O/Fe is also solar, while Na is very deficient. The distribution among the heavy elements shows anomalies as well. These are inconsistent with those of almost all Galactic globular clusters or of field stars in the Galaxy. The peculiarities shown by the Pal 12 stars are, however, in good general agreement with the trends established by Smecker-Hane & McWilliam and by Bonifacio et al. for stars in the Sagittarius dwarf spheroidal (dSph) galaxy evaluated at the [Fe/H] of Pal 12. This reinforces earlier suggestions that Pal 12 originally was a cluster in the Sgr dSph galaxy that during the process of accretion of this galaxy by our own was tidally stripped from the Sgr galaxy to become part of the extended Sgr stream. Key words: globular clusters: general — globular clusters: individual (Palomar 12) — galaxies: individual (Sagittarius dSph) — stars: abundances On-line material: machine-readable table 1.
    [Show full text]
  • Celestial Home of Stars Magda Streicher [email protected]
    deep-sky delights Celestial Home of Stars Magda Streicher [email protected] In an�quity the Capricornus constella- �on was seen as a monster with the head and forelegs of a goat and the posterior of a fish. The creature could almost be compared to the so-called Mermaid but Image source: Stellarium.org could also some�mes, in the case of Cap- ricornus, refer to the Fishman. served towards the east it indicates the The name ‘Tropic of Capricornus’ origi- point of the winter sols�ce, this sols�ce nates from the fact that when first ob- at present being 33o to the west in the figure of Sagi�arius. The constella�on is special to the au- thor for two good reasons. Not only does she live right inside the old Tropic of Capricorn Circle, but the image also reflects a par�cular shape: it looks very much like a huge lopsided triangle, and special in the star composi�on. Heaven alone knows how anyone could see a sea goat with horns in that par�cular star pa�ern, but be that as it may … We will carefully unravel the constella�on, which holds a large number of bright stars to pleasure the eye. The constella�on occupies 414 square degrees of sky and is situated just east of Sagi�arius, but sadly it is not rich in Monument marking the tropic of Capricorn deep-sky objects. S�ll, it is an easily outside Polokwane, Limpopo province. recognisable compila�on, with several mnassa vol 72 nos 5 & 6 126 127 june 2013 capricornus: celestial home of stars look-alike double stars and is, famously, The lovely double star, alpha Capri- a close neighbour to the centre of the corni, also the star closest to the Sagit- Milky Way.
    [Show full text]
  • Oriontelescopes.Com Oct
    THE EVENING SKY FOR OCTOBER, 2014 NORTH Early October — 10 p.m. Mid October — 9 p.m. URSA MAJOR Late October — 8 p.m. Pointers Big Dipper M51 ζ M81 Winter Hexagon2281 M82 κ M101 LYNX BOÖTES URSA μ M37 AURIGA MINOR M I L K Y W A Y DRACO CAMELOPARDALIS M36 Polaris Little Dipper M38 Capella α CORONA 16,17 BOREALIS ε M1 6543 ν M13 SERPENS CAPUT Double M92 Cluster CEPHEUS Keystone M103 ρ 457 Algol β PERSEUS η M52 Aldebaran μ E M34 δ Vega C 7789 ε Double-Double L γ Hyades I M45 CASSIOPEIA ζ HERCULES P Pleiades M39 Deneb LYRA T TRIANGULUM ORION I M31 α C 7243 M57 752 M110 CYGNUS EAST 7000 M29 χ M32 61 M56 (P a M33 6871 th β o ANDROMEDA Albireo f ARIES OPHIUCHUS WEST S LACERTA Summer Triangle u n TAURUS & VULPECULA I.4665 p γ M27 la n 6633 et s) SAGITTA E 70 Q Great Square DELPHINUS U γ A T γ PISCES of Pegasus O ϑ M14 R PEGASUS M15 Altair Uranus α γ ζ SERPENS EQUULEUS CAUDA Mira ο TX AQUILA M I L KM11 Y W A Y SCUTUM M26 ζ M2 M16 ERIDANUS M17 Neptune M18 AQUARIUS α M24 M25 CETUS M28 M22 7293 FORNAX 253 M30 SAGITTARIUS CAPRICORNUS Teapot Fomalhaut M55 SCULPTOR PISCIS AUSTRINUS 0 55 MICROSCOPIUM 0 20 Star magnitudes N IO R TI Moon IL PHOENIX W Phases GRUS –1 012345 FIRST Oct. 1 SOUTH Double star FULL How To Use This Chart Variable star Oct.
    [Show full text]
  • Using Herschel and Planck Observations to Delineate the Role of Magnetic Fields in Molecular Cloud Structure
    Astronomy & Astrophysics manuscript no. 35779arxiv c ESO 2019 September 12, 2019 Using Herschel and Planck observations to delineate the role of magnetic fields in molecular cloud structure Juan D. Soler1 1. Max Planck Institute for Astronomy, Konigstuhl¨ 17, 69117, Heidelberg, Germany. [email protected] Received 26 APR 2019 / Accepted 07 AUG 2019 ABSTRACT We present a study of the relative orientation between the magnetic field projected onto the plane of sky (B?) on scales down to 0.4 pc, inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz, and the distribution of gas column density (NH) structures on scales down to 0.026 pc, derived from the observations by Herschel in submillimeter wavelengths, toward ten nearby (d < 450 pc) molecular clouds. Using the histogram of relative orientation technique in combination with tools from circular statistics, we found that the mean relative orientation between NH and B? toward these regions increases progressively ◦ ◦ from 0 , where the NH structures lie mostly parallel to B?, with increasing NH, in many cases reaching 90 , where the NH structures lie mostly perpendicular to B?. We also compared the relative orientation between NH and B? and the distribution of NH, which is characterized by the slope of the tail of the NH probability density functions (PDFs). We found that the slopes of the NH PDF tail are steepest in regions where NH and B? are close to perpendicular. This coupling between the NH distribution and the magnetic field suggests that the magnetic fields play a significant role in structuring the interstellar medium in and around molecular clouds.
    [Show full text]