The Development of Varying Methodologies to Speciate and Monitor the Interactions of Selenium and Environmental Contaminants in Plants

Total Page:16

File Type:pdf, Size:1020Kb

The Development of Varying Methodologies to Speciate and Monitor the Interactions of Selenium and Environmental Contaminants in Plants The development of varying methodologies to speciate and monitor the interactions of selenium and environmental contaminants in plants A dissertation submitted to the Division of Research and Advanced Studies of the University of Cincinnati In partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY In the Department of Chemistry of the College of Arts and Sciences 2008 By Scott Ellington Afton B.S., Chemistry, Andrews University, 2004 Committee Chair: Dr. Joseph A. Caruso Abstract of dissertation There is a multitude of contaminated waste sites worldwide due to anthropogenic activities. When assessing the potential toxicological effects of environmental contaminants, prior concern has dealt with simply quantifying the total concentration of the particular contaminating element. With the increasing awareness of the often significant differences in toxicity between the varying environmental contaminants, elemental speciation and percent distribution must be determined. Conventional remediation efforts have been effective in contaminant removal, but are generally very costly. As a result, phytoremediation, which utilizes plants, has recently gained popularity for removing contaminants from soil. It is also known that a toxic concentration of selenium and arsenic/mercury, if administered simultaneously, produce a nontoxic metabolite in a mammal. The studies in this dissertation utilize novel methodologies to speciate and monitor the interactions of selenium and environmental contaminants, arsenic and mercury, in plants. Eight predominant selenium and arsenic species were simultaneously separated using ion-pairing reversed phase liquid chromatography (IPRP) coupled with inductively coupled plasma mass spectrometry (ICPMS) and electrospray ionization ion trap mass spectrometry within 18 minutes and applied to river water, plant extract and urine matrices. The differences metabolic pathways, including location and identity, of selenium and arsenic species were elucidated after single and simultaneous supplementation in the Chlorophytum comosum, spider plant via size exclusion chromatography (SEC) and IPRP coupled to ICPMS. Although total elemental analysis demonstrates a selenium and arsenic antagonism, a compound containing selenium and arsenic was not found in the general aqueous extract of the plant. iii Increasing the difference between the voltage on the extraction lens and the octopole, plus using a positive voltage between the octopole and quadrupole provided the lowest sulfur detection limits using xenon as the collision reaction cell (CRC) gas in ICPMS. Energy 32 + 32 + discrimination is the predominant mechanism for removing the O2 interference of S . Optimization parameters were also suggested for a standard solution comprised of 52 elements, including sulfur. Similar detection limits were acquired when comparing Xe to He or H2 CRC gas with a general trend comparable to detection levels for He. Capillary reversed phase chromatography (capRPLC) and SEC were coupled to ICPMS to investigate the metabolic fate of mercury in conjunction with or exclusion of selenium in the Allium fistulosum. The data suggests a possible selenium-mercury association in a proteinaceous macromolecule which is not readily translocated to the aerial plant regions. Data from x-ray fluorescence mapping of a freshly excised root and capRPLC-ICPMS of homogenized root extract suggest the formation of a mercury-selenium species and a similarly structured mercury- sulfur species predominantly residing in the cell wall of the epidermal root tissue. Utilizing x- ray absorption near edge structure analysis, the local environment of mercury and selenium qualitatively coincided with the mercury-selenium species formed in a mammal via a Hg-Se- S(GSH) moiety. The local environment of mercury also coincided with (GS)2Hg. iv v Acknowledgements This dissertation is dedicated to my parents, Rick and Anne Afton. Besides being kind enough to bring me into the world, they have continuously supported me throughout my many years of education financially, spiritually and educationally. I hope the accomplishment of this dissertation represents a small token of my appreciation. I also would like to thank my parents for the multitude of important life lessons that have been instilled in me such as the seven P’s: prior proper planning prevents pitiful poor performance. I would also like to acknowledge my sister, Danielle, for conversations we have had throughout my graduate career. I could not have come this far without my family’s constant love and support. I would like to thank my advisor Dr. Joseph Caruso “Doc” for his continued support over the past few years. Of the many benefits gained by joining the Caruso group, Dr. Caruso has granted me almost complete independence to decide the direction and projects of my research. This has allowed for multiple failures and successes that have made me into the scientist I am today. In addition, he was there to provide support and guidance when needed and entrusted responsibilities to me that allowed for external collaborations that otherwise would not have been possible. He has been a wonderful advisor and friend. I would also like to thank Judy Caruso for her kindness and support. She has always made me feel as though I was part of her extended family. In addition to my advisor, I would like to thank my committee members Dr. William Heineman, Dr. Bruce Ault and a previous member Dr. Theresa Reineke. They each have offered invaluable advice and support that aided in reaching my research goals and I greatly appreciate the time and effort they extended. I would also like to thank the rest of the analytical faculty: Dr. Patrick Limbach, Dr. Thomas Ridgway and Dr. Apryll Stalcup for their support and insightful vi questions. In addition, I would like to thank Dr. Peter Padolik and Dr. John Breiner for all the good times during my teaching assistantship. I would like to thank the many collaborators that I have had the privilege of working with that has resulted in multiple publications and still continues to date: Dr. David McNear from the University of Kentucky; Dr. Steve Sutton and Dr. Matt Newville from Argonne National Laboratories; Dr. Julio Figueroa, Dr. Katarzyna Wrobel and Dr. Kazimierz Wrobel from the Universidad de Guanajuato; Dr. Jeff Lehman from Otterbein College; Dr. Mary Beth Genter, Dr. Zhenyu Qin, Dr. Michael Craig, Elizabeth LaPensee, Dr. Nira Ben-Jonathan, Dr. Erin Haynes, Dr. Bin Wang, Scott Schneider and Jed Thorn from the University of Cincinnati. I would also like to thank Agilent Technologies and CEM Corporation for continued support through instrumentation, which has enabled the Caruso group the capability to investigate and answer interesting research questions. I would also like to thank the past and present members of the Caruso group for their support, advice and willingness to incorporate a family atmosphere in the office and laboratory: Dr. Oktay Cankur, Dr. Baki Sadi, Dr. Juris Meja, Dr. Katie DeNicola, Dr. Monica Shah, Dr. Santha Yathavakilla, Dr. Sarath Jayasinghe, Dr. Kevin Kubachka, Dr. Douglas Richardson, Allison Krentz, Heather Trenary, Dr. Jenny Ellis, Dr. Kirk Lokits, Qilin Chan, Yaofang Zhang, Karolin Kroening, Jen Siverling, Chris Tompson, Dean Stuart, Brittany Catron and Renee Easter. It would not be possible to list everyone outside the Caruso group that has made my graduate experience enjoyable; however, I would specifically like to thank a few good men, which include Phillip Durham, Michael Haven and Kevin Parker. I thank you for all of the good times, off-color jokes and the plethora of awkward moments that have culminated into my graduate experience, which will be greatly missed. vii Last but certainly not least, I would like to thank my best friend and my wife, Dr. Lisa Afton. I will try not to hold a grudge against you for finishing your doctorate in audiology before me for too long. My wife was a major influence on me when I considered the possibility of attending graduate school. During our simultaneous graduate careers, we have shared in good times and hardships that have brought us closer together and strengthened our marriage. My graduate journey would have been nearly as fruitful without your love and support. I look forward to the many adventures and experiences ahead. I love you sooooooooooooooooooooo much. -SEA viii Table of contents Abstract of dissertation iii Acknowledgments vi Figures 4 Tables 7 Chapter 1 - Methodologies used for biological contaminant remediation and speciation 1.1 Contaminant remediation 1.1.1 Ex situ methodologies 1.1.2 In situ methodologies 1.1.3 Phytoremediation 1.1.4 Selenium, arsenic and mercury remediation 1.2 Inductively coupled plasma mass spectrometry (ICPMS) 1.2.1 Instrument setup and theory 1.2.2 Theory of interference removal with the collision/reaction cell 1.3 High performance liquid chromatography (HPLC) 1.3.1 Size exclusion chromatography (SEC) 1.3.2 Ion-pairing reversed phase chromatography (IPRP) 1.4 X-ray absorption fine structure (XAFS) 1.4.1 Instrument setup and operation 1.4.2 X-ray absorption fine structure theory 1.5 References Chapter 2 – Simultaneous characterization of selenium and arsenic analytes via ion-pairing reversed phase chromatography with inductively coupled plasma and electrospray ionization ion trap mass spectrometry for detection; applications of river water, plant extract and urine matrices 2.1 Abstract 2.2 Introduction 2.3 Experimental 2.3.1 Instrumentation 2.3.2 Reagents and standards
Recommended publications
  • Did You Grow Your Greens?
    Did you Grow your Greens? A Share-Net Resource Book Reading-to-learn curriculum materials to support Language, Natural Sciences, Social Sciences, Life Orientation and Arts & Culture learning areas Acknowledgments The Handprint resource books have been compiled by Rob O’Donoghue and Helen Fox of the Rhodes University Environmental Education and Sustainability Unit. Lawrence Sisitka was responsible for coordination and review, and Kim Ward for editorial review and production for curriculum and Eco-School use. Development funding was provided by CAPE. Cover illustrations are by Tammy Griffin. Knowledge and activity support materials have been adapted from various sources including the Internet, and web addresses have been provided for readers to access any copyright materials directly. Available from Share-Net P O Box 394, Howick, 3290, South Africa Tel (033) 3303931 [email protected] January 2009 ISBN 978-1-919991-05-4 Any part of this resource book may be reproduced copyright free, provided that if the materials are produced in booklet or published form, there is acknowledgment of Share-Net. 1 RESOURCE BOOKS The Handprint Resource Books have been designed for creative educators who are looking for practical ideas to work with in the learning areas of the National Curriculum. The focus is on sustainability practices that can be taken up within the perspective that each learning area brings to environment and sustainability concerns. The resource books are intended to provide teachers with authentic start-up materials for change-orientated learning. The aim is to work towards re-imagining more sustainable livelihood practices in a warming world. Each start-up story was developed as a reading- to-learn account of environmental learning and change.
    [Show full text]
  • Antioxidant and Antibacterial Properties of Endogenous Phenolic Compounds from Commercial Mustard Products
    Antioxidant and antibacterial properties of endogenous phenolic compounds from commercial mustard products By Ronak Fahmi A thesis submitted to the Faculty of Graduate Studies of The University of Manitoba In partial fulfillment of the requirements of the degree of MASTER OF SCIENCE Department of Human Nutritional Sciences University of Manitoba Winnipeg, Canada Copyright © 2016 by Ronak Fahmi Abstract This study investigated the antioxidant and antimicrobial properties of endogenous phenolic compounds in Oriental (Brassica junceae) and yellow (Sinapis alba) mustard seeds. Phenolics in selected Canadian mustard products (seeds/ powder/ flour) were extracted using Accelerated Solvent Extraction (ASE) and their corresponding sinapate profiles were established through HPLC-DAD analysis. The antioxidant capacity of each extract was assessed by DPPH assay and correlated with the total phenolic content (TPC) measured using the Folin–Ciocalteau method. Sinapine was the major phenolic compound in all the samples analysed, with negligible amounts of sinapic acid. The sinapine content, expressed as sinapic acid equivalents (SAE), ranged from 5.36 × 103 ± 0.66 to 14.44 ± 0.43 × 103 µg SAE/g dry weight of the samples, with the highest in the yellow mustard seed extract and lowest in Oriental mustard powder. The level decreased in the following order: yellow mustard seed > Oriental mustard seed > yellow mustard bran > Oriental mustard bran > yellow mustard powder > Oriental mustard powder. Extracts from yellow mustard seeds had the highest TPC (17.61× 103 ± 1.01 µg SAE/g), while Oriental mustard powder showed the lowest TPC with 4.14 × 103 ± 0.92 µg SAE/g. The DPPH radical scavenging activity of mustard methanolic extracts ranged between 36% and 69%, with the following order for both varieties: ground mustard seed > mustard bran > mustard powder.
    [Show full text]
  • Effect of Various Levels of Humic Acid and Organic Fertilizer on the Growth
    7 Current Science International, 3(1): 7-14, 2014 ISSN: 2077-4435 Effect of Various Levels of Organic Fertilizer and Humic Acid on the Growth and Roots Quality of Turnip Plants (Brassica rapa). Aisha, H. Ali, M.R. Shafeek, Mahmoud, R. Asmaa and M. El- Desuki Vegetable Research Department National Research Center Cairo, Egypt. ABSTRACT Two field experiments were carried out during the two seasons of 2011 and 2012 at the experimental station of National Research Centre, Beheira Governorate (North of Egypt) to investigate the effect of organic compost manure fertilizer at rates of (0, 10 and 20 m3/fed.) as well as humic acid at rate of (2, 4 and 6 L/fed.) for influence plant growth, roots physical and chemical quality of turnip plants c.v. Balady. The important obtained results were as following: 1- Adding organic compost manure (produced from recycling the agriculture residues) at high rates (20 m3/fed.) had a significant effect on growth characters, i.e. plant length, number of leaves/plant, fresh and dry weight/plant as well as root fresh and dry weight and its components (root length and diameter). Also, gave the highest percentage of protein, N, P, K and Fe ppm as well as total carbohydrate percentage. 2- By increasing rate of humic acid increased growth characters, root yield characters and increment the percentage of protein, N, P, K, carbohydrate and Fe contents of turnip root tissues. 3- The highest values of the growth characters, roots characters and the percentage of protein, N, P, K, carbohydrate and Fe content ppm in turnip root tissues were associated with that plants received higher compost level (20 m3/fed.) with higher level of humic acid (6 L/fed.).
    [Show full text]
  • Oil of Mustard and Ally Isothiocyanate (AITC)
    BIOPESTICIDES REGISTRATION ACTION DOCUMENT Oil of Mustard and Ally Isothiocyanate (AITC) PC Code: 004901 U.S. Environmental Protection Agency Office of Pesticide Programs Biopesticides and Pollution Prevention Division (last updated September 26, 2013) Oil of Mustard and Allyl Isothiocyanate (AITC) PC Code 004901 Biopesticides Registration Action Document Table of Contents I. EXECUTIVE SUMMARY .................................................................................................. 5 II. ACTIVE INGREDIENT OVERVIEW .............................................................................. 7 III. REGULATORY BACKGROUND...................................................................................... 7 A. Application for Pesticide Registration ............................................................................... 7 B. Food Clearances/Tolerances ............................................................................................... 8 IV. RISK ASSESSMENT ........................................................................................................... 8 A. Product Analysis Assessment (40 CFR § 158.2030) .......................................................... 8 B. Human Health Assessment.................................................................................................. 8 1. Tier I Toxicology ........................................................................................................................................... 8 2. Tier II and Tier III Toxicity Studies .........................................................................................................
    [Show full text]
  • Improving the Solubility of Yellow Mustard Precipitated Protein Isolate in Acidic Aqueous Solutions
    IMPROVING THE SOLUBILITY OF YELLOW MUSTARD PRECIPITATED PROTEIN ISOLATE IN ACIDIC AQUEOUS SOLUTIONS BY L. KARINA LORENZO A thesis submitted in conformity with the requirements for the degree of Master of Applied Science (M.A.Sc.) Graduate Department of Chemical Engineering and Applied Chemistry University of Toronto © Copyright by Laura Karina Lorenzo (2008) Improving the Solubility of Yellow Mustard Precipitated Protein Isolates in Acidic Aqueous Solutions M.A.Sc. Thesis 2008 Laura Karina Lorenzo Graduate Department of Chemical Engineering and Applied Chemistry University of Toronto ABSTRACT The thesis objective was to investigate methods for improving the solubility of yellow mustard precipitated protein isolate (RTech Laboratories, USA) to allow for its use in protein enhanced acidic beverages along with soluble protein isolate in the pH range of 2 to 4.5. Four treatments were tested: hydrolysis with Alcalase®; cross-linking with transglutaminase; salting in with sodium chloride, sodium tripolyphosphate, and sodium hexametaphosphate; and protective colloid formation with pectin. The effectiveness of each was determined by its ability to improve nitrogen solubility (Nx6.25, AOCS-Ba11-65). The most effective treatments were hydrolysis and pectin stabilization. Pectin (1.5 w/v%) improved solubility from 6% to 29% at pH 4. Alcalase increased solubility from 20% to 70% at pH 3 after 2 h of hydrolysis (0.5AU/5g PPI, pH 8.5, 50-55oC) and eliminated the protein’s isoelectric point in the acidic pH range. Investigating the combined use of both treatments to further increase PPI solubility is recommended. ii ACKNOWLEDGEMENTS First and foremost, I would like to thank Professor Diosady, my supervising professor, for his invaluable guidance and support throughout the project.
    [Show full text]
  • Repellency of Mustard (Brassica Juncea) and Arugula (Eruca Sativa) Plants, and Plant Oils Against the Sweetpotato Whitefly, Bemisia Tabaci (Hemiptera: Aleyrodidae)
    Subtropical Agriculture and Environments 67:28-34.2016 Repellency of mustard (Brassica juncea) and arugula (Eruca sativa) plants, and plant oils against the sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) Jesusa Crisostomo Legaspi1*, Neil Miller1, Danielle Wolaver2, Lambert Kanga2, Muhammad Haseeb2, and Jose Cola Zanuncio3 1United States Department of Agriculture - Agricultural Research Service – Center for Medical, Agricultural and Veterinary Entomology 6383 Mahan Drive, Tallahassee FL 32308 2Center for Biological Control, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32307 3Departamento de Entomologia, Universidade Federal de Vicosa, 36570-900, Vicosa, Minais Gerais State, Brazil *Corresponding author e-mail: [email protected] ABSTRACT The sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is an economic complex of at least 36 cryptic species, comprising a highly polyphagous and serious pest of vegetable, fiber and ornamental crops. Sustainable alternative measures such as cultural controls can be effective in integrated pest management of Bemisia, but have received relatively little research effort. “Push – pull” strategies are a form of cultural control based on behavioral manipulation of insect pests and their natural enemies. Pests are repelled from a protected re- source (“push” component) and simultaneously attracted to a trap crop (“pull” component) where they are subse- quently removed, preferably through biological control or other appropriate means. In this study, we conducted laboratory studies using an olfactometer or odor-detecting equipment to determine the effect of volatiles from whole plants and plant oils to repel the sweetpotato whitefly. In addition to volatiles, we tested responses to colors known to attract whitefly adults. Finally, we monitored whitefly behavior using a video recorder and behavioral analysis software in response to repellent oils.
    [Show full text]
  • PROTEIN, MUCILAGE and BIOACTIVES Research & Commercialization
    MUSTARD: PROTEIN, MUCILAGE AND BIOACTIVES Research & Commercialization Final report for The Saskatchewan Mustard Development Commission December 2016 C.A. Patterson, PhD, P.Ag Mustard Components: Research & Commercialization FINAL REPORT 2 CONTENTS Executive Summary ............................................................................................ 6 1.0 Project Objective ........................................................................................... 9 2.0 Project Components ..................................................................................... 9 3.0 Project Methodology .................................................................................. 10 4.0 Results ......................................................................................................... 11 4.1 Mustard Overview ..................................................................................... 11 4.1.1 Mustard Composition .......................................................................... 12 4.1.2 Commercial Mustard Ingredients ........................................................ 18 4.1.3 Regulatory Status of Mustard Ingredients ........................................... 24 4.1.4 Allergenicity of Mustard....................................................................... 25 4.1.5 Mustard Components.......................................................................... 26 4.2 Protein ....................................................................................................... 27 4.2.1 Protein
    [Show full text]
  • Mustard Brassica Spp
    1 Did You Know? Mustard Brassica spp. • Mustard can be grown for edible greens or for the seeds which are used whole, crushed or powdered in sauces, condiments, salad dressings. • The Brassicaceae (formerly Cruciferae) family includes mustard as well as broccoli, cauliflower, kale, Brussel sprouts and cabbage. • There are several species that are all considered mustard: B. juncea – brown and Indian mustard; B. nigra – black mustard, the spiciest or most pungent in flavor; Sinapis alba – yellow mustard, the most mild flavor. • Since black mustard has to be hand harvested, it is not grown commercially. • Favorite mustards like Dijon, yellow, spicy brown, and even the hot mustard found in Chinese restaurants, all come from B. juncea. • The French are the largest consumers of mustard with an average of 1.5 lbs./person/year. • The use of mustard as a flavoring and medicine dates back to 3000 BCE and is mentioned in Greek and Roman writings of the time. • Hippocrates as well as other ancient physicians used mustard medicinally. • Herbal, published in 1597 by herbalist John Gerard, recommends mustard to aid digestion, warm the stomach and stimulate the appetite. • Over time, medicinal uses have included treating circulation, heart and lung problems, fevers, flu, rheumatism and toothaches. A plaster made to cover the chest to facilitate breathing was very common. • The Romans made possibly the first mustard by combining fermented grape juice with mustard seeds, oil and honey to form a spreadable paste. • Cultures around the world use mustard as both prepared spreads and in seed form in cuisines of their regions. • It is the enzyme myrosin that is released from the mustard seed when bruised or crushed and mixed with liquid that gives mustard its heat.
    [Show full text]
  • AESA Based IPM – Ginger Important Natural Enemies of Ginger Insect Pests
    AESA BASED IPM Package AESA based IPM – Ginger Important Natural Enemies of Ginger Insect Pests Parasitoids Xanthopimpla quadridens Trichogramma spp. Bracon spp. Mysoma sp Ceranisus menes Apanteles sp Predators Lacewing Ladybird beetle Spider Predatory thrips Praying mantis Hover fl y The AESA based IPM - Ginger, was compiled by the NIPHM working group under the Chairmanship of Dr. Satyagopal Korlapati, IAS, DG, NIPHM, and guidance of Shri. Utpal Kumar Singh, IAS, JS (PP). The package was developed taking into account the advice of experts listed below on various occasions before fi nalization. NIPHM Working Group: Chairman : Dr. Satyagopal Korlapati, IAS, Director General Vice-Chairmen : Dr. S. N. Sushil, Plant Protection Advisor : Dr. P. Jeyakumar, Director (PHM) Core Members 1. Er. G. Shankar, Joint Director (PHE), Pesticide Application Techniques Expertise. 2. Dr. O.P. Sharma, Joint Director (A & AM), Agronomy Expertise. 3. Dr. Satish Kumar Sain, Assistant Director (PHM), Pathology Expertise. 4. Dr. Dhana Raj Boina, Assistant Director (PHM), Entomology Expertise. Other Members: 1. Dr. N. Srinivasa Rao, Assistant Director (RPM), Rodent Pest Management Expertise. 2. Dr. B.S. Sunanda, Assistant Scientifi c Offi cer (PHM), Nematology Expertise. Contributions by DPPQ&S Experts: 1. Shri. Ram Asre, Additional Plant Protection Advisor (IPM), 2. Dr. K.S. Kapoor, Deputy Director (Entomology), 3. Dr. Sanjay Arya, Deputy Director (Plant Pathology), 4. Dr. Subhash Kumar, Deputy Director (Weed Science) 5. Dr. C.S. Patni, Plant Protection Offi cer (Plant Pathology) Contributions by NCIPM Expert: 1. Dr. C. Chattopadhyay, Director Contributions by External Experts: 1. T.K. Jacob, Principal Scientist, IISR, Kozhikode, Kerala 2. Prof. R.G.
    [Show full text]
  • Bulk Drug Substances Nominated for Use in Compounding Under Section 503B of the Federal Food, Drug, and Cosmetic Act
    Updated June 07, 2021 Bulk Drug Substances Nominated for Use in Compounding Under Section 503B of the Federal Food, Drug, and Cosmetic Act Three categories of bulk drug substances: • Category 1: Bulk Drug Substances Under Evaluation • Category 2: Bulk Drug Substances that Raise Significant Safety Risks • Category 3: Bulk Drug Substances Nominated Without Adequate Support Updates to Categories of Substances Nominated for the 503B Bulk Drug Substances List1 • Add the following entry to category 2 due to serious safety concerns of mutagenicity, cytotoxicity, and possible carcinogenicity when quinacrine hydrochloride is used for intrauterine administration for non- surgical female sterilization: 2,3 o Quinacrine Hydrochloride for intrauterine administration • Revision to category 1 for clarity: o Modify the entry for “Quinacrine Hydrochloride” to “Quinacrine Hydrochloride (except for intrauterine administration).” • Revision to category 1 to correct a substance name error: o Correct the error in the substance name “DHEA (dehydroepiandosterone)” to “DHEA (dehydroepiandrosterone).” 1 For the purposes of the substance names in the categories, hydrated forms of the substance are included in the scope of the substance name. 2 Quinacrine HCl was previously reviewed in 2016 as part of FDA’s consideration of this bulk drug substance for inclusion on the 503A Bulks List. As part of this review, the Division of Bone, Reproductive and Urologic Products (DBRUP), now the Division of Urology, Obstetrics and Gynecology (DUOG), evaluated the nomination of quinacrine for intrauterine administration for non-surgical female sterilization and recommended that quinacrine should not be included on the 503A Bulks List for this use. This recommendation was based on the lack of information on efficacy comparable to other available methods of female sterilization and serious safety concerns of mutagenicity, cytotoxicity and possible carcinogenicity in use of quinacrine for this indication and route of administration.
    [Show full text]
  • Garlic Mustard (Alliaria Petiolata) and European Buckthorn (Rhamnus Cathartica)
    Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control PROCEEDINGS: SYMPOSIUM ON THE BIOLOGY, ECOLOGY, AND MANAGEMENT OF GARLIC MUSTARD (ALLIARIA PETIOLATA) AND EUROPEAN BUCKTHORN (RHAMNUS CATHARTICA) LUKE C. SKINNER, EDITOR FHTET-2005-09 September 2005 U.S. Department Forest FHTET Minnesota Department of Agriculture Service of Natural Resources he Forest Health Technology Enterprise Team (FHTET) was created in 1995 Tby the Deputy Chief for State and Private Forestry, USDA Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ Cover photo. Clockwise from upper left: C. alliariae, Oberea pedemeontana, patch of Alliaria Petiolata (garlic mustard), closeup of Alliaria Petiolata, closeup of Rhamnus cathar- tica (buckthorn), Rhamnus cathartica under leafless canopy, C. scrobicollis. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410 or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. The use of trade, firm, or corporation names in this publication is for information only and does not constitute an endorsement by the U.S.
    [Show full text]
  • Growing Herbs Can Be
    Growing Your Own Herbs Your name or web address could go here Table of Contents Growing Your Own Herbs ....................................................................... 1 Getting Started With Herb Growing ........................................................ 3 Growing Basil - The King of Herbs ........................................................... 7 Growing Chives ....................................................................................... 9 Growing Dill - The Most Important Culinary Herb ................................. 11 Growing Marjoram - The Herb of Happiness ........................................ 13 Growing Mint - The Herb of Hospitality ................................................ 15 Growing Mustard - The Greatest Among The Herbs ............................. 17 Growing Rosemary - Herb of Remembrance and Friendship ................ 20 Growing Thyme - Herb of Courage ........................................................ 22 Herb Gardening Resources ................................................................... 24 Growing Your Own Herbs If you’re not the type of person that wants to spend their time managing an elaborate fruit or vegetable garden, you might consider planting and maintaining an herb garden. While the product might not seem as significant, you’ll still enjoy the constant availability of fresh, delicious herbs to flavor your meals with. First you’ll want to choose the herbs that you’ll plant. You might have a hard time doing this because of the huge scope of herbs available. But
    [Show full text]