Performance Testing on Vector Vs. Raster Map Tiles—Comparative Study on Load Metrics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Osmand - This Article Describes How to Use Key Feature
HowToArticles - osmand - This article describes how to use key feature... http://code.google.com/p/osmand/wiki/HowToArticles#First_steps [email protected] | My favorites ▼ | Profile | Sign out osmand Navigation & routing based on Open Street Maps for Android devices Project Home Downloads Wiki Issues Source Search for ‹‹ HowToArticles HowTo Articles This article describes how to use key features How To First steps Featured How To Understand vector en, ru Updated and raster maps How To Download data How To Find on map Introduction How To Filter POI This articles helps you to understand how to use the application, and gives you idea's about how the functionality could be used. How To Customize map view How To How To Arrange layers and overlays How To Manage favorite How To First steps places How To Navigate to point First you can think about which features are most usable and suitable for you. You can use Osmand online and offline for How To Use routing displaying a lot of online maps, pre-downloaded very compact so-called OpenStreetMap "vector" map-files. You can search and How To Use voice routing find adresses, places of interest (POI) and favorites, you can find routes to navigate with car, bike and by foot, you can record, How To Limit internet replay and follow selfcreated or downloaded GPX tracks by foot and bike. You can find Public Transport stops, lines and even usage shortest public transport routes!. You can use very expanded filter options to show and find POI's. You can share your position with friends by mail or SMS text-messages. -
Mobile Application Development Mapbox - a Commercial Mapping Service Using Openstreetmap
Mobile Application Development Mapbox - a commercial mapping service using OpenStreetMap Waterford Institute of Technology October 19, 2016 John Fitzgerald Waterford Institute of Technology, Mobile Application Development Mapbox - a commercial mapping service using OpenStreetMap 1/16 OpenStreetMap An open source project • OpenStreetMap Foundation • A non-profit organisation • Founded in 2004 by Steve Coast • Over 2 million registered contributors • Primary output OpenStreetMap data Waterford Institute of Technology, Mobile Application Development Mapbox - a commercial mapping service using OpenStreetMap 2/16 OpenStreetMap An open source project • Various data collection methods: • On-site data collection using: • paper & pencil • computer • preprinted map • cameras • Aerial photography Waterford Institute of Technology, Mobile Application Development Mapbox - a commercial mapping service using OpenStreetMap 3/16 MapBox Competitor to Google Maps • Provides commercial mapping services. • OpenStreetMap a data source for many of these. • Large provider of custom online maps for websites. • Clients include Foursquare, Financial Times, Uber. • But also NASA and some proprietary sources. • Startup 2010 • Series B round funding 2015 $52 million • Contrast Google 2015 profit $16 billion Waterford Institute of Technology, Mobile Application Development Mapbox - a commercial mapping service using OpenStreetMap 4/16 MapBox Software Development Kits (SDKs) • Web apps • Android • iOS • JavaScript (browser & node) • Python Waterford Institute of Technology, -
A Comparison of Feature Density for Large Scale Online Maps
DOI: 10.14714/CP97.1707 PEER-REVIEWED ARTICLE A Comparison of Feature Density for Large Scale Online Maps Michael P. Peterson (he/him) University of Nebraska at Omaha [email protected] Large-scale maps, such as those provided by Google, Bing, and Mapbox, among others, provide users an important source of information for local environments. Comparing maps from these services helps to evaluate both the quality of the underlying spatial data and the process of rendering the data into a map. The feature and label density of three different mapping services was evaluated by making pairwise comparisons of large-scale maps for a series of random areas across three continents. For North America, it was found that maps from Google had consistently higher feature and label den- sity than those from Bing and Mapbox. Google Maps also held an advantage in Europe, while maps from Bing were the most detailed in sub-Saharan Africa. Maps from Mapbox, which relies exclusively on data from OpenStreetMap, had the lowest feature and label density for all three areas. KEYWORDS: Web Mapping Services; Multi-Scale Pannable (MSP) maps; OpenStreetMap; Application Programming Interface (API) INTRODUCTION One of the primary benefits of using online map Since the introduction of the technique in 2005 by services like those available from Google, Bing, and Google, all major online map providers have adopted the OpenStreetMap, is that zooming-in allows access to same underlying technology. Vector data is projected and large-scale maps. Maps at these large scales are not avail- divided into vector tiles at multiple scales. The tile bound- able to most (if any) individuals from any other source. -
A Review of Openstreetmap Data Peter Mooney* and Marco Minghini† *Department of Computer Science, Maynooth University, Maynooth, Co
CHAPTER 3 A Review of OpenStreetMap Data Peter Mooney* and Marco Minghini† *Department of Computer Science, Maynooth University, Maynooth, Co. Kildare, Ireland, [email protected] †Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy Abstract While there is now a considerable variety of sources of Volunteered Geo- graphic Information (VGI) available, discussion of this domain is often exem- plified by and focused around OpenStreetMap (OSM). In a little over a decade OSM has become the leading example of VGI on the Internet. OSM is not just a crowdsourced spatial database of VGI; rather, it has grown to become a vast ecosystem of data, software systems and applications, tools, and Web-based information stores such as wikis. An increasing number of developers, indus- try actors, researchers and other end users are making use of OSM in their applications. OSM has been shown to compare favourably with other sources of spatial data in terms of data quality. In addition to this, a very large OSM community updates data within OSM on a regular basis. This chapter provides an introduction to and review of OSM and the ecosystem which has grown to support the mission of creating a free, editable map of the whole world. The chapter is especially meant for readers who have no or little knowledge about the range, maturity and complexity of the tools, services, applications and organisations working with OSM data. We provide examples of tools and services to access, edit, visualise and make quality assessments of OSM data. We also provide a number of examples of applications, such as some of those How to cite this book chapter: Mooney, P and Minghini, M. -
Navegação Turn-By-Turn Em Android Relatório De Estágio Para A
INSTITUTO POLITÉCNICO DE COIMBRA INSTITUTO SUPERIOR DE ENGENHARIA DE COIMBRA Navegação Turn-by-Turn em Android Relatório de estágio para a obtenção do grau de Mestre em Informática e Sistemas Autor Luís Miguel dos Santos Henriques Orientação Professor Doutor João Durães Professor Doutor Bruno Cabral Mestrado em Engenharia Informática e Sistemas Navegação Turn-by-Turn em Android Relatório de estágio apresentado para a obtenção do grau de Mestre em Informática e Sistemas Especialização em Desenvolvimento de Software Autor Luís Miguel dos Santos Henriques Orientador Professor Doutor João António Pereira Almeida Durães Professor do Departamento de Engenharia Informática e de Sistemas Instituto Superior de Engenharia de Coimbra Supervisor Professor Doutor Bruno Miguel Brás Cabral Sentilant Coimbra, Fevereiro, 2019 Agradecimentos Aos meus pais por todo o apoio que me deram, Ao meu irmão pela inspiração, À minha namorada por todo o amor e paciência, Ao meu primo, por me fazer acreditar que nunca é tarde, Aos meus professores por me darem esta segunda oportunidade, A todos vocês devo o novo rumo da minha vida. Obrigado. i ii Abstract This report describes the work done during the internship of the Master's degree in Computer Science and Systems, Specialization in Software Development, from the Polytechnic of Coimbra - ISEC. This internship, which began in October 17 of 2017 and ended in July 18 of 2018, took place in the company Sentilant, and had as its main goal the development of a turn-by- turn navigation module for a logistics management application named Drivian Tasks. During the internship activities, a turn-by-turn navigation module was developed from scratch, while matching the specifications indicated by the project managers in the host entity. -
Das Handbuch Zu Marble
Das Handbuch zu Marble Torsten Rahn Dennis Nienhüser Deutsche Übersetzung: Stephan Johach Das Handbuch zu Marble 2 Inhaltsverzeichnis 1 Einleitung 6 2 Marble Schnelleinstieg: Navigation7 3 Das Auswählen verschiedener Kartenansichten für Marble9 4 Orte suchen mit Marble 11 5 Routenplanung mit Marble 13 5.1 Eine neue Route erstellen . 13 5.2 Routenprofile . 14 5.3 Routen anpassen . 16 5.4 Routen laden, speichern und exportieren . 17 6 Entfernungsmessung mit Marble 19 7 Kartenregionen herunterladen 20 8 Aufnahme eines Films mit Marble 23 8.1 Aufnahme eines Films mit Marble . 23 8.1.1 Problembeseitigung . 24 9 Befehlsreferenz 25 9.1 Menüs und Kurzbefehle . 25 9.1.1 Das Menü Datei . 25 9.1.2 Das Menü Bearbeiten . 26 9.1.3 Das Menü Ansicht . 26 9.1.4 Das Menü Einstellungen . 27 9.1.5 Das Menü Hilfe . 28 10 Einrichtung von Marble 29 10.1 Einrichtung der Ansicht . 29 10.2 Einrichtung der Navigation . 30 10.3 Einrichtung von Zwischenspeicher & Proxy . 31 10.4 Einrichtung von Datum & Zeit . 32 10.5 Einrichtung des Abgleichs . 32 10.6 Einrichtungsdialog „Routenplaner“ . 34 10.7 Einrichtung der Module . 34 Das Handbuch zu Marble 11 Fragen und Antworten 38 12 Danksagungen und Lizenz 39 4 Zusammenfassung Marble ist ein geografischer Atlas und ein virtueller Globus, mit dem Sie ganz leicht Or- te auf Ihrem Planeten erkunden können. Sie können Marble dazu benutzen einen Adressen zu finden, auf einfache Art Karten zu erstellen, Entfernungen zu messen und Informationen über bestimmte Orte abzufragen, über die Sie gerade etwas in den Nachrichten gehört oder im Internet gelesen haben. -
OSM Datenformate Für (Consumer-)Anwendungen
OSM Datenformate für (Consumer-)Anwendungen Der Weg zu verlustfreien Vektor-Tiles FOSSGIS 2017 – Passau – 23.3.2017 - Dr. Arndt Brenschede - Was für Anwendungen? ● Rendering Karten-Darstellung ● Routing Weg-Berechnung ● Guiding Weg-Führung ● Geocoding Adress-Suche ● reverse Geocoding Adress-Bestimmung ● POI-Search Orte von Interesse … Travelling salesman, Erreichbarkeits-Analyse, Geo-Caching, Map-Matching, Transit-Routing, Indoor-Routing, Verkehrs-Simulation, maxspeed-warning, hazard-warning, Standort-Suche für Pokemons/Windkraft-Anlagen/Drohnen- Notlandeplätze/E-Auto-Ladesäulen... Was für (Consumer-) Software ? s d l e h Mapnik d Basecamp n <Garmin> a OSRM H - S QMapShack P Valhalla G Oruxmaps c:geo Route Converter Nominatim Locus Map s Cruiser (Overpass) p OsmAnd p A Maps.me ( Mapsforge- - e Cruiser Tileserver ) n MapFactor o h Navit (BRouter/Local) p t r Maps 3D Pro a Magic Earth m Naviki Desktop S Komoot Anwendungen Backend / Server Was für (Consumer-) Software ? s d l e h Mapnik d Garmin Basecamp n <Garmin> a OSRM H “.IMG“ - S QMapShack P Valhalla Mkgmap G Oruxmaps c:geo Route Converter Nominatim Locus Map s Cruiser (Overpass) p OsmAnd p A Maps.me ( Mapsforge- - e Cruiser Tileserver ) n MapFactor o h Navit (BRouter/Local) p t r Maps 3D Pro a Magic Earth m Naviki Desktop S Komoot Anwendungen Backend / Server Was für (Consumer-) Software ? s d l e h Mapnik d Basecamp n <Garmin> a OSRM H - S QMapShack P Valhalla G Oruxmaps Route Converter Nominatim c:geo Maps- Locus Map s Forge Cruiser (Overpass) p Cruiser p A OsmAnd „.MAP“ ( Mapsforge- -
Project „Multilingual Maps“ Design Documentation
Project „Multilingual Maps“ Design Documentation Copyright 2012 by Jochen Topf <[email protected]> and Tim Alder < kolossos@ toolserver.org > This document is available under a Creative Commons Attribution ShareAlike License (CC-BY-SA). http://creativecommons.org/licenses/by-sa/3.0/ Table of Contents 1 Introduction.............................................................................................................................................................2 2 Background and Design Choices........................................................................................................................2 2.1 Scaling..............................................................................................................................................................2 2.2 Optimizing for the Common Case.............................................................................................................2 2.3 Pre-rendered Tiles.........................................................................................................................................2 2.4 Delivering Base and Overlay Tiles Together or Separately..................................................................3 2.5 Choosing a Language....................................................................................................................................3 2.6 Rendering Labels on Demand.....................................................................................................................4 2.7 Language Decision -
The State of Open Source GIS
The State of Open Source GIS Prepared By: Paul Ramsey, Director Refractions Research Inc. Suite 300 – 1207 Douglas Street Victoria, BC, V8W-2E7 [email protected] Phone: (250) 383-3022 Fax: (250) 383-2140 Last Revised: September 15, 2007 TABLE OF CONTENTS 1 SUMMARY ...................................................................................................4 1.1 OPEN SOURCE ........................................................................................... 4 1.2 OPEN SOURCE GIS.................................................................................... 6 2 IMPLEMENTATION LANGUAGES ........................................................7 2.1 SURVEY OF ‘C’ PROJECTS ......................................................................... 8 2.1.1 Shared Libraries ............................................................................... 9 2.1.1.1 GDAL/OGR ...................................................................................9 2.1.1.2 Proj4 .............................................................................................11 2.1.1.3 GEOS ...........................................................................................13 2.1.1.4 Mapnik .........................................................................................14 2.1.1.5 FDO..............................................................................................15 2.1.2 Applications .................................................................................... 16 2.1.2.1 MapGuide Open Source...............................................................16 -
Location Platform Index: Mapping and Navigation
Location Platform Index: Mapping and Navigation Key vendor rankings and market trends: June 2019 update Publication Date: 05 Aug 2019 | Product code: CES006-000085 Eden Zoller Location Platform Index: Mapping and Navigation Summary In brief Ovum's Location Platform Index provides an ongoing assessment and subsequent ranking of the major vendors in the location platform market, with particular reference to the mapping and navigation space. The index evaluates each vendor based on two main criteria: the completeness of its platform and the platform's market reach. It considers the core capabilities of the location platform along with the information that the platform opens up to developers and the wider location community. The index provides an overview of the market and assesses the strengths and weaknesses of the leading players. It also highlights the key trends in the mapping space that vendors must keep up with if they want to stay ahead of the game. Ovum view . There are fresh opportunities for location data and services in the consumer domain. The deepening artificial intelligence (AI) capabilities of smartphones are enabling more immersive applications and experiences that can be further enhanced by location capabilities, such as the use of location to enrich augmented reality (AR) shopping applications or enhance contextual gaming. At the same time, AI assistants will draw more deeply on location data, not just on smartphones but also via AI assistants integrated with other connected platforms, including vehicles. Ovum predicts that the global installed base of AI assistants across all device types will grow from 2.39 billion in 2018 to 8.73 billion by the end of 2024. -
GIBS API for Developers
GIBS API for Developers Overview Imagery Layers & Endpoints Layer Naming "Best Available" Layers Projections & Resolution WGS 84 / Lat-lon / Geographic (EPSG:4326) Web Mercator (EPSG:3857) NSIDC Sea Ice Polar Stereographic North (EPSG:3413) Antarctic Polar Stereographic (EPSG:3031) Service Endpoints Imagery API/Services OGC Web Map Tile Service (WMTS) Service Endpoints and GetCapabilities Time Dimension Sample Execution Example Clients Generic XYZ Tile Access OGC Web Map Service (WMS) Service Endpoints and GetCapabilities Time Dimension Sample Execution Geographic Information System (GIS) Client Usage Tiled Web Map Service (TWMS) Service Endpoints Sample Execution Vector Visualization Products Overview Access Vector Metadata Vector Styling Script-level Access via GDAL Bulk Downloading Overview The Global Imagery Browse Services (GIBS) are designed to deliver global, full-resolution satellite imagery to users in a highly responsive manner, enabling interactive exploration of the Earth. To achieve that interactivity, GIBS first ingests imagery from a given NASA data provider on a continuous basis, creates a global mosaic of that imagery, then chops the mosaic into an image tile pyramid (see figure below). By pre-generating these tiles, it relieves the servers of image rescaling and cropping duties, greatly reducing computational overhead and enabling a highly responsive system. This also means that the primary method of imagery retrieval for clients is tile-based. For more background on how tiled web maps work, see the MapBox Developers Guide. An image tile pyramid (from OGC WMTS 1.0.0 specification) While the requests made to GIBS are for individual tiles, users generally work at a higher level and configure a map library, GIS client, or script to determine which tiles to retrieve. -
Curriculum Development and Pedagogy for Teaching Web Mapping
Curriculum Development and Pedagogy for Teaching Web Mapping By Carl M. Lemke Oliver Sack A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Geography) At the UNIVERSITY OF WISCONSIN–MADISON 2018 Date of final oral examination: 7/27/2018 The dissertation is approved by the following members of the Final Oral Committee: Robert E. Roth, Associate Professor, Geography Kristopher N. Olds, Professor, Geography Ian A. Muehlenhaus, Associate Faculty, Geography Leema K. Berland, Associate Professor, Curriculum and Instruction Creative Commons Attribution License Carl M. Lemke Oliver Sack 2018 i Table of Contents Acknowledgements iii List of Figures iv List of Tables v I. Introduction: Teaching Cartography in the 21st Century Abstract 1 1.1 Overview 1 1.2 Changes in Cartographic Practice 3 1.3 Changes in Higher Education 5 1.4 Challenges to GIScience Education 8 1.5 Research Questions and Dissertation Outline 8 II. Background Review Abstract 13 2.1 Web Mapping Definitions and History 13 2.2 Principles of Web Map Design 19 2.3 Approaches to GIScience Education 28 2.4 Why Learning Web Mapping is Unique 34 2.5 GIScience and Online Learning 39 III. Current State of Web Mapping Education: An Interview Study with Educators Abstract 43 3.1 Motivation 43 3.2 Interview and Qualitative Analysis Methods 45 3.3 Qualitative Analysis Results 48 3.3.1 Vision 48 3.3.2 Scope 49 3.3.3 Topic 51 3.3.4 Tool 53 3.3.5 Motivation 56 3.3.6 Pedagogy 58 3.3.7 Challenge 61 3.4 Discussion: Common Practices and Challenges 63 3.5 Conclusion 67 IV.