Environmental Benefits of the Project

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Benefits of the Project Section 8 Environmental Benefits of the Project General Statement of the Project’s Environmental Benefits Discussion of How the Project is Consistent with the Energy Highway Blueprint Clean Energy Goals Environmental Benefits of the Project General Statement Connect New York will utilize a combination of primarily existing public and some small areas of private right-of-ways, which have been previously disturbed and will significantly minimize, if not entirely eliminate, impacts to visual, historic, archaeological and other important environmental resources. By proposing efficient, buried transmission lines, Connect New York will also address many of the concerns associated with aerial transmission lines and towers, such as their visual impacts and aesthetics, electromagnetic radiation effects, and impacts on property value. Connect New York will, at full buildout, also allow for the transmission of energy from wind farms and other clean upstate generating facilities that produce less greenhouse gas emissions than the traditional generating technologies used at downstate facilities. By utilizing the New York State Thruway corridor for 42 of the 53 miles between tie in points at New Scotland and Hurley, and the existing water-crossing structures in the corridor, impacts to creeks, streams, rivers and wetlands will be avoided. Using the Thruway corridor will make it unnecessary to establish a new route through naturally vegetated areas. In this manner, the project will not conflict with historical and archeological resources, will not disturb wildlife habitat, and will not require construction or operational activity in areas used by species sensitive to (or not acclimated to) human activity. The tie-in at the south end of the Thruway segment will follow New York State Route 299 to reach the Hurley substation. The tie in at the north end of the Thruway segment will connect to the New Scotland substation via an existing power transmission line corridor. These design choices further minimize the potential for impacts to historical, archeological, sensitive species and habitat resources. The most frequent objection to transmission projects is the visual impact caused by towers and overhead lines. This is a particularly critical issue because the project is Connect New York Contingency Procurement of Generation and Transmission RFP #Q13-5441LW located in the historic and scenic Hudson River Valley. In addition to the direct visual impact, there is often concern for potential socio-economic impacts (impacts to property values), and environmental justice concerns. The Connect New York project completely eliminates visual issues by selecting buried HVDC cable technology. Using the New York State Thruway corridor as the primary route, there is no risk of a disproportional impact to economically disadvantaged communities. Using buried cable technology, the segments at the north and south ends of the project that are off the Thruway right-of-way cannot have a disproportional visual or socio-economic impact on economically disadvantaged communities. Besides avoiding these potential impacts, the project benefits from creating less controversy and less local opposition, making the environmental review and application process smoother and faster than can be expected for projects utilizing traditional transmission technology or routes that follow or cross geographical features with obvious environmental and ecological value, such as rivers and wetlands. This is a critical consideration for a project that must meet the aggressive schedule that is specified in the scope of work. By comparison to overhead wire and marine cable, buried cable is green technology. The construction methods used to install HVDC cable also have significant environmental advantages compared to methods of installation for overhead transmission or marine cable projects. Buried cable technology places less demand on natural resources than other technologies. Buried cable projects do not require mill steel for towers, or the large quantity of concrete needed to erect transmission towers. This translates directly to less impact related to raw material extraction and processing, as well as eliminating the considerable greenhouse gas emissions associated with cement manufacturing. There is also vehicle traffic and wear on primary and secondary roads resulting from transporting tower structural materials and concrete to the individual tower construction sites, and the need to blaze temporary construction roads through previously undisturbed areas to reach these sites. Installing marine cable has several environmental consequences that can be avoided by a buried cable in a land route. Marine cable permitting requires intensive habitat Connect New York Contingency Procurement of Generation and Transmission RFP #Q13-5441LW investigation, coastal zone consistency assessment and the involvement of more state and federal agencies for the review and approval process. The installation of marine cable may require localized or continuous riverbed trenching, with consequent impacts to habitat. In locations with historic sediment contamination, marine cable trenching re- mobilizes contaminants creating temporary (at minimum) water quality impacts. Where contaminated sediments have been capped in place, trenching may have long term impacts on water quality as a result of disturbing the capping material, and exposing the capped sediments. The Connect New York project does not propose using any marine cables for the route New Scotland to Hurley, and thus the permitting phase will be expedited because the impact on habitats and coastal zones are minimized or null. Utilizing buried HVDC cable in the Thruway right of way ensures minimal impact to historic and archeological resources. Such resources within the right of way, as well as in lands adjacent to the Thruway have been extensively studied and documented as a result of the requirements of the New York State SEQR Act, which requires assessment of these resources as part of any proposed improvement activity. For this reason, the potential for accidental damage to previously undocumented resources in the right of way are extremely remote. On the other hand, water bodies that would be disturbed by marine cable construction, such as Lake Champlain and the Hudson River, are an often overlooked source of historic and archeological resources. Lake Champlain is home to more than 300 shipwrecks. There are extremely significant shipwrecks left over from major naval battles of the French and Indian War, the American Revolution, and the War of 1812. New discoveries of previously unknown vessels occur frequently. Seventeen previously unknown wreck sites were discovered in 2003 alone. Beside the potential for accidental damage to undiscovered resources during construction, the need to conduct adequate pre-construction research and surveys has the potential to cause considerable delays in the permitting process of such proposed projects, and will be a source of considerable public interest and concern. Furthermore, the current state of knowledge about EMFs emitted by submerged power cables is too variable and inconclusive to make an informed assessment of the effects on aquatic organisms. This will be an additional Connect New York Contingency Procurement of Generation and Transmission RFP #Q13-5441LW source of public concern and longer environmental review process for marine cable proposals (which this is not one). Most underground AC lines carrying 230 kV or more have used fluids to dissipate the heat produced by the transmission cables, raising concerns about possible leaks and damage to aquifers. In contrast, most DC cables have used non-draining paper for insulation. Voltage Source Converter (VSC-) HVDC technology is also compatible with Extruded DC Cables, for DC power transmission, which are much cheaper than Mass Impregnated DC Cables, the ones only acceptable for the line commutated converter (LCC-) HVDC technology. On the decommissioning end of the project lifecycle, buried cable technology again has quantifiable environmental advantages over competing technologies. Assuming the requirement to return all affected lands to original conditions, decommissioning towers used in overhead wire infrastructure generates scrap metal, and waste concrete. Demolition of the concrete tower piers and footers is a very intrusive process, with consequent noise and dust impacts. In the event that concrete and reinforcement cannot be recycled, it creates a burden on available landfill space. In the case of marine cable, extraction causes the same disturbance of marine habitat and water quality that the installation process causes. The DC magnetic field from the proposed circuits is too weak to produce any environmental or health effect and would not cause any health-based exposure limit to be exceeded. The DC magnetic field from the proposed circuits will be less than the earth’s ambient magnetic field (530 mG), will perturb the ambient field for only a short distance from the conductors, and will be less than published guidance criteria by several orders of magnitude. Connect New York Contingency Procurement of Generation and Transmission RFP #Q13-5441LW Discussion of How the Project is Consistent with the Energy Highway Blueprint and Clean Energy Goals Governor Andrew M. Cuomo’s New York Energy Highway Blueprint identifies transmission and distribution of power as a key item of concern. More specifically, the Blueprint sites the need to reduce bottlenecks
Recommended publications
  • Visualizing Hydropower Across the Himalayas: Mapping in a Time of Regulatory Decline
    HIMALAYA, the Journal of the Association for Nepal and Himalayan Studies Volume 34 Number 2 Article 9 December 2014 Visualizing Hydropower Across the Himalayas: Mapping in a time of Regulatory Decline Kelly D. Alley Auburn University, [email protected] Ryan Hile University of Utah Chandana Mitra Auburn University Follow this and additional works at: https://digitalcommons.macalester.edu/himalaya Recommended Citation Alley, Kelly D.; Hile, Ryan; and Mitra, Chandana. 2014. Visualizing Hydropower Across the Himalayas: Mapping in a time of Regulatory Decline. HIMALAYA 34(2). Available at: https://digitalcommons.macalester.edu/himalaya/vol34/iss2/9 This work is licensed under a Creative Commons Attribution 3.0 License. This Research Article is brought to you for free and open access by the DigitalCommons@Macalester College at DigitalCommons@Macalester College. It has been accepted for inclusion in HIMALAYA, the Journal of the Association for Nepal and Himalayan Studies by an authorized administrator of DigitalCommons@Macalester College. For more information, please contact [email protected]. Visualizing Hydropower Across the Himalayas: Mapping in a time of Regulatory Decline Acknowledgements Earlier drafts of this paper were presented at the BAPA-BEN International Conference on Water Resources in Dhaka, Bangladesh in 2013 and for the AAA panel on Developing the Himalaya in 2012. The authors appreciate the comments and support provided by members who attended these sessions. Our mapping project has been supported by the College of Liberal Arts and the Center for Forest Sustainability at Auburn University. This research article is available in HIMALAYA, the Journal of the Association for Nepal and Himalayan Studies: https://digitalcommons.macalester.edu/himalaya/vol34/iss2/9 Visualizing Hydropower across the Himalayas: Mapping in a time of Regulatory Decline Kelly D.
    [Show full text]
  • Three Gorges Dam Hydroelectric Power Plant
    Three Gorges Dam Hydroelectric Power Plant The Three Gorges Dam Project (TGP) is the world's largest hydropower complex project located in one of the three gorges of the Yangtze River: the Xilingxia Gorge in Hubei province, China. The gorge controls approximately one million square kilometres of drainage area and averages a runoff of 451 billion cubic metres annually. China Three Gorges Corporation (CTGPC) acts as the legal entity for TGP and is responsible for the construction, operation and financing of the project. Construction on the Three Gorges Dam was completed in 2008. The dam stands 185m high and 2,309m wide, making it the world's largest hydro plant, well ahead of Brazil's 12,600MW Itaipu installation. A total of 32 main power generators are planned to operate off the dam, of which 12 sets on the right bank and 14 sets on the left were installed in 2006 and 2008, respectively. They were operational in October 2008 and generated a total of 18,300MW. Another six generators are being installed underground and are expected to become fully operational by the end of 2011. These six were added to the project in 2002. The first three became operational in June 2011. The third generator unit (Unit 30) completed a 72 hour test run in July 2011. The first underground unit (Unit 32) began operations in May 2011 and the second (Unit 31) commenced commercial operations in June 2011. Once the additional generators are all installed, the plant will produce 22,500MW of electricity. Three Gorges project The Three Gorges Dam project involves harnessing the Yangtze River, Asia's longest stretch of water, to generate prodigious amounts of electricity.
    [Show full text]
  • Three Gorges Dam in Hubei, China: a Cost and Benefit Analysis
    Economic Analysis of Public Policy Professor Yoshitsugu Kanemoto Graduate School of Public Policy, University of Tokyo Final Report Three Gorges Dam in Hubei, China: A Cost and Benefit Analysis Felipe Francisco De Souza Graduate School of Engineering, University of Tokyo Baozhi Gu, Kenji Kurotobi Graduate School of Public Policy, University of Tokyo Yuri Kim Graduate School of Frontier Sciences, University of Tokyo August 2013 Executive Summary Situated on a canyon known as the Three Gorges in Hubei, China, Yangtze River’s Three Gorges Dam is the world’s largest power station in terms of installed capacity (22,500 MW). The project was initiated by the Chinese government in 1994, with the support of different international cooperation agencies, for three main reasons. First of all, it would generate hydroelectricity to meet China’s rapidly increasing demand. Second, the Three Gorges Dam would protect millions of people living along the river from potential floods. And finally, it would transform a 600- kilometre stretch of the fast-flowing river into a smooth navigable waterway for vessels and provide business opportunities to western landlocked provinces. The Chinese government regards this project as a historic engineering, social and economic success, with the design of sophisticated large turbines, and a move toward limiting greenhouse gas emissions. However, the dam has been a controversial topic, the reason why a cost and benefit analysis was developed to understand all possible variables related to this gigantic project and its complicated development process. For the evaluation of major benefit components, special care was taken to understand flood control (and dam’s capacity to control 100 years events); electricity generation (and the reduction of CO2 emissions); and the enhanced shipping capacity (allowing the transit of large quantities of cargos).
    [Show full text]
  • Geographical Overview of the Three Gorges Dam and Reservoir, China—Geologic Hazards and Environmental Impacts
    Geographical Overview of the Three Gorges Dam and Reservoir, China—Geologic Hazards and Environmental Impacts Open-File Report 2008–1241 U.S. Department of the Interior U.S. Geological Survey Geographical Overview of the Three Gorges Dam and Reservoir, China— Geologic Hazards and Environmental Impacts By Lynn M. Highland Open-File Report 2008–1241 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia: 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Highland, L.M., 2008, Geographical overview of the Three Gorges dam and reservoir, China—Geologic hazards and environmental impacts: U.S. Geological Survey Open-File Report 2008–1241, 79 p. http://pubs.usgs.gov/of/2008/1241/ iii Contents Slide 1...............................................................................................................................................................1
    [Show full text]
  • Stability Assessment of the Three-Gorges Dam Foundation, China, Using Physical and Numerical Modeling—Part I
    ARTICLE IN PRESS International Journal of Rock Mechanics & Mining Sciences 40 (2003) 609–631 Stability assessment of the Three-Gorges Dam foundation, China, using physical and numerical modeling—Part I: physical model tests Jian Liua,b,*, Xia-Ting Fenga, Xiu-Li Dingb, Jie Zhangb, Deng-Ming Yueb a Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Xiaohongshan, Wuhan, Hubei 430071, China b Yangtze River Scientific Research Institute, Wuhan 430019, China Accepted 31 March 2003 Abstract Foundation stability is one of the most important factors influencing the safety of a concrete dam and has been one of the key technical problems in the design of the Three-Gorges Project. The major difficulties lie in two facts. The first one is that the dam foundation consists of rock blocks, with joints and so-called ‘rock bridges’ and the gently dipping joints play a critical role in the foundation stability against sliding. The second one is that, even in the regions where the gently dipping fractures are most developed, there are no through-going sliding paths in the rock mass due to the existence of the rock bridges; so the dam could slide only if some of the rock bridges fail, so as to create at least one through-going sliding path. To date, due to unavoidable shortcomings in physical and numerical modeling techniques, there is not a single satisfactory method to solve the problem completely. For this reason, the integration of multiple methods was adopted in this study and proved to be an effective and reliable approach. This Part I paper describes work based on the results of geological investigations and mechanical tests, relating to the geological and geomechanical models of the Three-Gorges Dam, and then a systematic study procedure was developed to carry out the stability assessment project.
    [Show full text]
  • Is the Three-Gorges Dam Sustainable? LO: to Investigate How Human Activity Is Affecting the Longest River in Asia
    Is the Three-Gorges dam sustainable? LO: To investigate how human activity is affecting the longest river in Asia The Yangtze is the longest river in Asia, and the third- longest in the world. It flows for 6,418 kilometres (3,988 mi) from the glaciers on the Tibetan Plateau before emptying into the East China Sea at Shanghai Starter: What connects these images? The beginning of a river is called the source. In this case the Yangtze forms due to being fed by glaciers (huge masses rivers of ice) high up in the mountains of Tibet. October 1, 1949 – People’s Republic of China established with Mao Zedong as its first President. 1950-1955: Mao favors pro-natalistic population policy. Combined with falling death rates, it causes a large increase in population. 1958 - Mao Zedong launches the five plan dubbed "The Great Leap Forward" which collectivizes farming and new labour intensive industries are started. The plan is an economic disaster and is abandoned after only two years. 1959-1961: "Great Leap Forward" triggers largest famine in human history with an estimated 25-35 million deaths. 1970's - first attempts at state family planning programmes. These had some success and average family size fell to three children By the late 1970's, the government had adopted the slogan 'later, longer, fewer' meaning later marriages, longer gaps between children and fewer Aschildren. the river travels throughout1979-1980: Introduction of China's China strict "One-Child" it family planning program at in several provinces and in 1980 it was adopted at national level.
    [Show full text]
  • On China's Rivers
    102 A The “Last Report” On China’s Rivers Executive Summary By Bo Li, Songqiao Yao, Yin Yu and Qiaoyu Guo English Translation released in March 2014 This report is issued jointly by the following initiating and supporting organizations: Initiating organizations: Friends of Nature Institute of Public & Environmental Affairs Green Watershed SHAN SHUI Chengdu Urban Rivers Association Supported by: Nature University Xiamen Green Cross Association Huaihe River Eco-Environmental Science Research Center Green Zhejiang Saunders’ Gull Conservation Society of Panjin City Green Panjin Eco Canton EnviroFriends Institute of Environmental Science and Technology Dalian Environmental Protection Volunteers Association Green Stone Environmental Action Network Greenovation Hub Wild China Film English translation support from: China Environment Forum, Woodrow Wilson Center 1 1 First Bend of the Yangtze River FOREWORD In January 2013, the third year of China’s Twelfth • Reduce coal consumption as a percentage of prima- Five-Year Plan, the State Council released its 12th ry energy to below 65% by 2017; and, Five-Year Plan for Energy Development1, which • Construct 160 GW of hydropower capacity and to included targets that aim to shift China’s energy mix raise nationwide hydropower capacity to 290 GW. to one that pollutes less yet still fuels the country’s growing energy needs. Specifically, by 2015 the Plan If the Plan’s hydropower targets are to be met, by proposes to: 2015, nationwide conventional hydropower installed capacity will reach 48% of the technically exploitable • Increase the proportion of non-fossil fuels in overall hydropower potential, and 72% of the economically primary energy use to 11.4 percent; recoverable potential.
    [Show full text]
  • China - Sustainable Energy Sector
    China - Sustainable Energy Sector Summarized Fiche Date 24 October 2011 China - "Sustainable Energy Sector" by Embassy of the Kingdom of the Netherlands in Beijing, Consulate General in Shanghai, Guangzhou & Hong Kong, NBSO in Nanjing, Wuhan, Tianjin, Qingdao, Dalian & Jinan and NABSO Kunming - 24 October 2011 Colophon Contact Bij Ambassade Beijing : Nga Ho Lam, Trade Assistant T +86 10 8532 0201 [email protected] www.hollandinchina.org Liangmahe Nanlu no. 4 | Chaoyang District | 100600 Beijing China Bij NL EVD Internationaal : Kamal Afarmach, marktadviseur China T +31 088 602 80 00 T +31 070 778 88 89 [email protected] www.agentschapnl.nl/evdinternationaal NL EVD Internationaal Juliana van Stolberglaan 148 | 2595 CL Den Haag P.O. Box 20105 | 2500 EC Den Haag Author(s) Focal point: Embassy of the Kingdom of the Netherlands in Beijing Other participating offices: Consulate General in Shanghai, Guangzhou & Hong Kong, NBSO in Nanjing, Wuhan, Tianjin, Dalian & Jinan and NABSO Kunming Pagina 3 van 38 China - "Sustainable Energy Sector" by Embassy of the Kingdom of the Netherlands in Beijing, Consulate General in Shanghai, Guangzhou & Hong Kong, NBSO in Nanjing, Wuhan, Tianjin, Qingdao, Dalian & Jinan and NABSO Kunming - 24 October 2011 Index Colophon 3 Index 5 1 Summary of general developments and opportunities for the Dutch energy sector 6 2 Investment and development plans of Chinese local governments in the energy sector 8 3 Investment and development plans of Chinese companies in the energy sector 9 3.1 Renewable energy
    [Show full text]
  • On the Cumulative Dam Impact in the Upper Changjiang River
    Catena 184 (2020) 104250 Contents lists available at ScienceDirect Catena journal homepage: www.elsevier.com/locate/catena On the cumulative dam impact in the upper Changjiang River: Streamflow T and sediment load changes ⁎ Chao Guoa, Zhongwu Jina, Leicheng Guob, , Jinyou Lua, Shi Renc, Yinjun Zhoua a Changjiang River Scientific Research Institute of Changjiang Water Resources Commission, Wuhan 430010, Hubei, China b State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China c China Three Gorges Corporation, Beijing 100038, China ARTICLE INFO ABSTRACT Keywords: Climate change and anthropogenic activities such as dam construction alter basin-scale hydrological regime of a River discharge river. The upper Changjiang River (uCR) stands out as one of the most heavily dammed rivers in the world after Sediment load the construction of the Three Gorges Dam (TGD) and other large dams in its mainstem. Quantification of the Dam cumulative dam impact is prerequisite for better river management. In this work, we provide a rigorous ap- Changjiang River praisal of the changes in streamflow, sediment load, and sediment composition at multiple time scales throughout the uCR based on data in 1950–2017. We observed that a decreasing trend in annual streamflow has emerged since 2015 at Yichang, the outlet of the uCR basin, although the changes were statistically insignificant for the first 65 years. The annual sediment load has decreased progressively and substantially, e.g., by97%in 2010s compared to 1950s at Yichang. The Three Gorges Dam and the new large dams in the upstream mainstem accelerated the sediment load reduction in 2003 and 2014, respectively.
    [Show full text]
  • How Beijing Accounts for the Cost of the Three Gorges Dam
    How Beijing Accounts for the Cost of the Three Gorges Dam By Tang Ying Sound of Hope Radio Network China's Three Gorges Dam in central China's Hubei province on July 22, 2009. (AFP/AFP/Getty Images) Built as a symbol of China's modernization and touted by the Chinese regime as a social and economic success, the Three Gorges hydroelectric river dam spans the Yangtze River in China’s central Hubei Province. The Three Gorges Dam is the largest and most controversial hydroelectric project in history. Debate has surrounded the project for decades, beginning at the proposal phase in the 1980s and continuing throughout subsequent construction. The project has been plagued by corruption, escalating costs, technological problems, human rights violations, and resettlement difficulties. The dam has caused flooding to numerous archaeological and cultural sites, the displacement of about 1.24 million people, and significant ecological changes, including an increased risk of landslides. During the vetting phase of the project, two-thirds of the delegates voted in favor, and the Three Gorges Dam was officially approved by China's People's Congress in 1992. The price of the dam has skyrocketed from the approved 57 billion yuan (US$8.35 billion) to 180 billion yuan (over US$26 billion), by the end of 2008. Officials now claim they will need another 100 billion yuan (US$14.6 billion) to deal with the problems created by the dam. Among the problems is the current water shortage in China. “There's been a lot less rain, a lot more drought, and the potential for increased disease,” says George Davis, a tropical medicine specialist at the George Washington University Medical Center who has worked in the Yangtze River Basin and nearby provinces for 24 years.
    [Show full text]
  • Impact of Three Gorges Dam on the Upstream of Yangtze River and Its Tributaries
    Impact of Three Gorges Dam on the Upstream of Yangtze River and its Tributaries Data source The construction of the dam started in December 1994. Even though it was opened in 2003, the construc- tion and addition of turbines and ship lift continued until December 2015. to understand the change brought by the construction, satellite images of the region before 1994 and after 2015 were required. While searching for satellite images for the analysis, first preference was given to a clear cloudless image that shows a significant portion of the Yangtze River upstream of the Dam. The geographic area where the dam is located is observed to have sub-tropical monsoonal climate. Because of this reason, most of the im- ages found were fully or partially covered by clouds. A collection of images was assessed in USGS Earth Ex- plorer and in EarthData to find the appropriate images for the project. Another criterion that dictated the data search was the time of the year. To match the atmospheric condition between the two comparing im- ages, both were chosen from the same time of the year. The images are products of U.S. Geological Survey, created and shared for educational purposes. Landsat Fig. 2: A portion images were chosen as the source of the dataset because of its vast collection of available data. Additional- of the main river ly, Landsat missions goes as far back as 1972, producing multispectral data with resolution appropriate enough for the scope of this project. The two images required for the analysis were more than two decades and its tributaries.
    [Show full text]
  • Brahmaputra Conflict
    India China Water Disputes: Brahmaputra Conflict March 12, 2021 India’s neighbour, China is planning to harness the lower reaches of the Brahmaputra river, commonly known as Yarlung Tsangpo in China. Number of projects listed under China’s new five-year plan are going to be built very close to the border of the two nations. This has raised more questions on China’s intention behind building water projects so close to national boundaries. In news: China’s new Five-Year Plan outlines push for key strategic projects Placing it in syllabus: Foreign Affairs Dimensions What does the plan aim to do? Geographical Aspects (Given the Map As well) Importance of the River to India Importance of the River to China What is the conflict about? Agreements Signed and problems with the agreement Impact of the plan and India’s options Content: What does the plan aim to do? China formally approved the outline of its 14th Five-Year Plan (2021-2025), which highlights a number of key strategic projects to be pursued as a priority. The major projects of concern for India include: the first dam in Tibet on the lower reaches of the Yarlung Zangbo or Brahmaputra In this Project, China could build up to 60 gigawatts (GW) of generation capacity on the river which would make it the world’s biggest hydropower project, overtaking China’s 22.5 GW Three Gorges Dam. a Sichuan-Tibet railway line near the India border, and a push for self-sufficiency in emerging industries such as Artificial Intelligence (AI). Other Important Facts: China’s new five-year plan calls for a move toward less dependence on the outside world, both for advanced technology and as a source of final demand.
    [Show full text]