Some Factors Effecting Algal Consumption in Subarctic Ephemeroptera, Plecoptera and Simuliidae J.W
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TB142: Mayflies of Maine: an Annotated Faunal List
The University of Maine DigitalCommons@UMaine Technical Bulletins Maine Agricultural and Forest Experiment Station 4-1-1991 TB142: Mayflies of aine:M An Annotated Faunal List Steven K. Burian K. Elizabeth Gibbs Follow this and additional works at: https://digitalcommons.library.umaine.edu/aes_techbulletin Part of the Entomology Commons Recommended Citation Burian, S.K., and K.E. Gibbs. 1991. Mayflies of Maine: An annotated faunal list. Maine Agricultural Experiment Station Technical Bulletin 142. This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Technical Bulletins by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. ISSN 0734-9556 Mayflies of Maine: An Annotated Faunal List Steven K. Burian and K. Elizabeth Gibbs Technical Bulletin 142 April 1991 MAINE AGRICULTURAL EXPERIMENT STATION Mayflies of Maine: An Annotated Faunal List Steven K. Burian Assistant Professor Department of Biology, Southern Connecticut State University New Haven, CT 06515 and K. Elizabeth Gibbs Associate Professor Department of Entomology University of Maine Orono, Maine 04469 ACKNOWLEDGEMENTS Financial support for this project was provided by the State of Maine Departments of Environmental Protection, and Inland Fisheries and Wildlife; a University of Maine New England, Atlantic Provinces, and Quebec Fellow ship to S. K. Burian; and the Maine Agricultural Experiment Station. Dr. William L. Peters and Jan Peters, Florida A & M University, pro vided support and advice throughout the project and we especially appreci ated the opportunity for S.K. Burian to work in their laboratory and stay in their home in Tallahassee, Florida. -
Development of an Aquatic Toxicity Index for Macroinvertebrates
DEVELOPMENT OF AN AQUATIC TOXICITY INDEX FOR MACROINVERTEBRATES By Lucky Nhlanhla Mnisi (Student Number: 972672) Supervisor: Dr Gavin Snow A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the Faculty of Science. School of Animal, Plant and Environmental Sciences of the University of the Witwatersrand DECLARATION I declare that this thesis is my own, unaided work. It is being submitted for the degree of Doctor of Philosophy in School of Animal Plant and Environmental Sciences, Faculty of Science of the University of the Witwatersrand, Johannesburg, South Africa. It has not been submitted before for any degree or examination in any other university. Signed:……………… ……………………………. Date:……18 May 2018…………………………………………. i ABSTRACT Rapid biomonitoring protocols employing riverine macroinvertebrates in South Africa utilise the South African Scoring System version 5 (SASS5). The SASS5 was developed as part of the then River Health Programme (RHP) [now River Eco-status Monitoring Programme (REMP)]. The SASS5 index is a cost-effective procedure (utilising limited sampling equipment) that enables speedy evaluation of a riverine ecosystem’s health using macroinvertebrates as biological indicators of water quality and ecosystem health. As a result, the SASS5 (including earlier versions) has been widely accepted by water quality practitioners and is increasingly incorporated into Ecological Reserve determinations. However, the SASS is widely criticised for being a ‘red flag’ indicator of water quality and ecosystem health because it has the ability to show only whether a river is polluted (including the extent of pollution) or not, but cannot differentiate between pollutant types (whether chemical or physical). To trace the pollutants responsible for changes in water quality, practitioners are therefore required to conduct chemical-based water quality assessments. -
An All-Taxa Biodiversity Inventory of the Huron Mountain Club
AN ALL-TAXA BIODIVERSITY INVENTORY OF THE HURON MOUNTAIN CLUB Version: August 2016 Cite as: Woods, K.D. (Compiler). 2016. An all-taxa biodiversity inventory of the Huron Mountain Club. Version August 2016. Occasional papers of the Huron Mountain Wildlife Foundation, No. 5. [http://www.hmwf.org/species_list.php] Introduction and general compilation by: Kerry D. Woods Natural Sciences Bennington College Bennington VT 05201 Kingdom Fungi compiled by: Dana L. Richter School of Forest Resources and Environmental Science Michigan Technological University Houghton, MI 49931 DEDICATION This project is dedicated to Dr. William R. Manierre, who is responsible, directly and indirectly, for documenting a large proportion of the taxa listed here. Table of Contents INTRODUCTION 5 SOURCES 7 DOMAIN BACTERIA 11 KINGDOM MONERA 11 DOMAIN EUCARYA 13 KINGDOM EUGLENOZOA 13 KINGDOM RHODOPHYTA 13 KINGDOM DINOFLAGELLATA 14 KINGDOM XANTHOPHYTA 15 KINGDOM CHRYSOPHYTA 15 KINGDOM CHROMISTA 16 KINGDOM VIRIDAEPLANTAE 17 Phylum CHLOROPHYTA 18 Phylum BRYOPHYTA 20 Phylum MARCHANTIOPHYTA 27 Phylum ANTHOCEROTOPHYTA 29 Phylum LYCOPODIOPHYTA 30 Phylum EQUISETOPHYTA 31 Phylum POLYPODIOPHYTA 31 Phylum PINOPHYTA 32 Phylum MAGNOLIOPHYTA 32 Class Magnoliopsida 32 Class Liliopsida 44 KINGDOM FUNGI 50 Phylum DEUTEROMYCOTA 50 Phylum CHYTRIDIOMYCOTA 51 Phylum ZYGOMYCOTA 52 Phylum ASCOMYCOTA 52 Phylum BASIDIOMYCOTA 53 LICHENS 68 KINGDOM ANIMALIA 75 Phylum ANNELIDA 76 Phylum MOLLUSCA 77 Phylum ARTHROPODA 79 Class Insecta 80 Order Ephemeroptera 81 Order Odonata 83 Order Orthoptera 85 Order Coleoptera 88 Order Hymenoptera 96 Class Arachnida 110 Phylum CHORDATA 111 Class Actinopterygii 112 Class Amphibia 114 Class Reptilia 115 Class Aves 115 Class Mammalia 121 INTRODUCTION No complete species inventory exists for any area. -
Eight New Provincial Species Records of Mayflies (Ephemeroptera)
EIGHT NEW PROVINCIAL SPECIES RECORDS OF MAYFLIES (EPHEMEROPTERA) FROM ONE ARCTIC WATERSHED RIVER IN BRITISH COLUMBIA Dezene P.W. Huber1*, Claire M. Shrimpton1, and Daniel J. Erasmus2* 1Ecosystem Science and Management Program, and 2Biochemistry and Molecular Biology University of Northern British Columbia, 3333 University Way, Prince George, British Columbia, Canada, V2N 4Z9 *Corresponding authors: [email protected] and [email protected] Key words: Ephemeroptera, Mayflies, British Columbia, Acerpenna pygmaea, Baetis phoebus, Baetis vernus, Iswaeon anoka, Procloeon pennulatum, Leucrocuta hebe, Tricorythodes mosegus, Siphlonurus alternatus, Page 1 of 22 PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26461v1 | CC BY 4.0 Open Access | rec: 24 Jan 2018, publ: 24 Jan 2018 ABSTRACT We repeatedly sampled eight sites on the Crooked River in British Columbia’s Arctic watershed for adult and nymph mayflies (Ephemeroptera) over the course of two years. Using taxonomic keys and DNA-barcoding we report eight new species records for the province. These are five Baetidae (Acerpenna pygmaea, Baetis phoebus, Baetis vernus, Iswaeon anoka, and Procloeon pennulatum), one Heptageniidae (Leucrocuta hebe), one Leptohyphidae (Tricorythodes mosegus), and one Siphlonuridae (Siphlonurus alternatus). Three of these – Acerpenna, Iswaeon, and Leucrocuta – are also new genus records for the province. In total we detected 40 species in eight families as indicated by clustering into BINs (Barcode Index Numbers), by morphological keys, and by matches in the Barcode of Life Database. One of those species, Ameletus vernalis, is of conservation concern. Our analysis indicated that a number of other specimens may represent new species or genus records for BC. In addition this unique and anthropogenically impacted river may contain cryptic species of Baetis tricaudatus (Baetidae), Leptophlebia nebulosa (Leptophlebiidae), and Paraleptophlebia debilis (Leptophlebiidae). -
Invertebrates
Pennsylvania’s Comprehensive Wildlife Conservation Strategy Invertebrates Version 1.1 Prepared by John E. Rawlins Carnegie Museum of Natural History Section of Invertebrate Zoology January 12, 2007 Cover photographs (top to bottom): Speyeria cybele, great spangled fritillary (Lepidoptera: Nymphalidae) (Rank: S5G5) Alaus oculatus., eyed elater (Coleoptera: Elateridae)(Rank: S5G5) Calosoma scrutator, fiery caterpillar hunter (Coleoptera: Carabidae) (Rank: S5G5) Brachionycha borealis, boreal sprawler moth (Lepidoptera: Noctuidae), last instar larva (Rank: SHG4) Metarranthis sp. near duaria, early metarranthis moth (Lepidoptera: Geometridae) (Rank: S3G4) Psaphida thaxteriana (Lepidoptera: Noctuidae) (Rank: S4G4) Pennsylvania’s Comprehensive Wildlife Conservation Strategy Invertebrates Version 1.1 Prepared by John E. Rawlins Carnegie Museum of Natural History Section of Invertebrate Zoology January 12, 2007 This report was filed with the Pennsylvania Game Commission on October 31, 2006 as a product of a State Wildlife Grant (SWG) entitled: Rawlins, J.E. 2004-2006. Pennsylvania Invertebrates of Special Concern: Viability, Status, and Recommendations for a Statewide Comprehensive Wildlife Conservation Plan in Pennsylvania. In collaboration with the Western Pennsylvania Conservancy (C.W. Bier) and The Nature Conservancy (A. Davis). A Proposal to the State Wildlife Grants Program, Pennsylvania Game Commission, Harrisburg, Pennsylvania. Text portions of this report are an adaptation of an appendix to a statewide conservation strategy prepared as part of federal requirements for the Pennsylvania State Wildlife Grants Program, specifically: Rawlins, J.E. 2005. Pennsylvania Comprehensive Wildlife Conservation Strategy (CWCS)-Priority Invertebrates. Appendix 5 (iii + 227 pp) in Williams, L., et al. (eds.). Pennsylvania Comprehensive Wildlife Conservation Strategy. Pennsylvania Game Commission and Pennsylvania Fish and Boat Commission. Version 1.0 (October 1, 2005). -
The Mayflies
THE MAYFLIES OF SASKATCHEWAN A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment ofthe Requirements for the Degree ofMaster ofScience in the Department ofBiology University of Saskatchewan Saskatoon By Jeffrey Michael Webb December 2002 © Copyright Jeffrey Michael Webb, 2002. All rights reserved. PERMISSION TO USE In presenting this thesis in partial fulfilment ofthe requirements for a Postgraduate degree from the University ofSaskatchewan, I agree that the Libraries of the University may make it freely available for inspection. I further agree that permission for copying ofthis thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head ofthe Department or the Dean ofthe College in which my thesis work was done. It is understood that any copying, publication, or use ofthis thesis or parts thereoffor financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University ofSaskatchewan in any scholarly use which may be made ofany material in my thesis. Requests for permission to copy or to make other use ofmaterial in this thesis in whole or part should be addressed to: Head ofthe Department ofBiology University ofSaskatchewan Saskatoon, Saskatchewan sm 5E2 ABSTRACT One hundred-seven species belonging to 54 genera and 18 families of Ephemeroptera are reported from Saskatchewan.. An additional two species, Callibaetis skokianus Needham and Procloeon rivulare (Traver), are reported in the literature but their presence in Saskatchewan cannot be confrrmed. -
Biology of the Mayfly Leptophlebia Cupida (Say) (Ephemeroptera:Leptophlebiidae)
Biology of the mayfly Leptophlebia cupida (Say) (Ephemeroptera:Leptophlebiidae) HUGHF. CLIFFORD,HAL HAMILTON,AND BRIANA. KILLINS Department of Zoology, University ofAlberta, Edmonton, Alta., Canada T6G 2E9 Received October 30, 1978 CLIFFORD,H. F., H. HAMILTON,and B. A. KILLINS.1979. Biology of the mayfly Leptophlebia cupida (Say) (Ephemeroptera:Leptophlebiidae). Can. J. Zool. 57: 1026-1045. Leptophlebia cupida (Say) is a widely distributed and extensively reported mayfly species of North America. In the Bigoray River, a brown-water stream of Alberta, Canada, L. cupida is a univoltine species. The rate of progressing through the life cycle, i.e. predicted instar intervals, was found to be better correlated with the amount of cumulative degree days (water temperature) that the nymphs receive than with the cumulative calendar days of the life cycle. Leptophlebia subimagoes had a higher total potential fecundity per unit body size than any of the other Bigoray River mayflies. Nymphs are fine particle detritivores, ingesting about 96% detritus and 4% diatoms. Average particle size ingested was 38pm. In the laboratory at 2WC, there were 34 nymphal instars; but there is probably no fixed number of nymphal instars, the 34th beingjust one of several instars in which the nymphs, given the proper environmental cues, might transform. The first nine instars are figured. Using mainly laboratory data, we investigated the relative contribution that small individuals (< 1.5 mm) make to cohort production. This theoretical exercise indicated that the error which occurs in cohort production estimates by not adequately sampling the small individuals could be less than 10%. CLIFFORD,H. F., H. HAMILTONet B. -
Aquatic Insects: Biology
Glime, J. M. 2017. Aquatic insects: Biology. Chapt. 11-1. In: Glime, J. M. Bryophyte Ecology. Volume 2. Bryological Interaction. 11-1-1 Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 19 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 11-1 AQUATIC INSECTS: BIOLOGY TABLE OF CONTENTS Aquatic Insects .................................................................................................................................................. 11-1-2 Life Cycle Stages .............................................................................................................................................. 11-1-3 Collembola ................................................................................................................................................. 11-1-3 Hemimetabolous Insects ............................................................................................................................ 11-1-4 Nymphs ............................................................................................................................................... 11-1-4 Naiads ................................................................................................................................................. 11-1-4 Holometabolous Insects ............................................................................................................................. 11-1-4 Adaptations to Aquatic Bryophyte Life -
An All-Taxa Biodiversity Inventory of the Huron Mountain Club
AN ALL-TAXA BIODIVERSITY INVENTORY OF THE HURON MOUNTAIN CLUB Vers io n: February 2020 Cite as: Woods, K.D. (Compiler). 2020. An all-taxa biodiversity inventory of the Huron Mountain Club. Version February 2020. Occasional papers of the Huron Mountain Wildlife Foundation, No. 5. [http://www.hmwf.org/species_list.php] Introduction and general compilation by: Kerry D. Woods Natural Sciences Bennington College Bennington VT 05201 Kingdom Fungi compiled by: Dana L. Richter School of Forest Resources and Environmental Science Michigan Technological University Houghton, MI 49931 DEDICATION This project is dedicated to Dr. William R. Manierre, who is responsible, directly and indirectly, for documenting a large proportion of the taxa listed here. INTRODUCTION No complete species inventory exists for any area. Particularly charismatic groups – birds, large mammals, butterflies – are thoroughly documented for many areas (including the Huron Mountains), but even these groups present some surprises when larger or more remote areas are examined closely, and range changes lead to additions and subtractions. Other higher-level taxa are generally much more poorly documented; even approximate inventories exist for only a few, typically restricted locales. The most diverse taxa (most notably, in terrestrial ecosystems, insects) and many of the most ecologically important groups (decay fungi, soil invertebrates) are, with few exceptions, embarrassingly poorly documented. The notion of an ‘all-taxon biodiversity inventory’ (or ATBI) – a complete listing of species, of all taxonomic groups for a defined locale – is of relatively recent vintage, originating with ecologist Daniel Janzen’s initiative to fully document the biota of Costa Rica’s Guanacaste National Park. Miller (2005) offers a brief a history of ATBI efforts, and notes that only three significant regional efforts appear to be ongoing. -
Ethylene Glycol
Canadian Environmental Protection Act, 1999 PRIORITY SUBSTANCES LIST STATE OF THE SCIENCE REPORT for ETHYLENE GLYCOL Environment Canada Health Canada December 2000 TABLE OF CONTENTS SYNOPSIS.......................................................................................................................................1 1.0 INTRODUCTION ....................................................................................................................3 2.0 SUMMARY OF CRITICAL INFORMATION ....................................................................6 2.1 IDENTITY AND PHYSICAL/CHEMICAL PROPERTIES......................................................................6 2.2 ENTRY CHARACTERIZATION ....................................................................................................6 2.2.1 Production, importation and uses...................................................................................6 2.2.2 Sources and releases .......................................................................................................7 2.2.2.1 Natural sources..........................................................................................................7 2.2.2.2 Anthropogenic sources..............................................................................................8 2.2.2.2.1 Industrial point sources........................................................................................8 2.2.2.2.2 Other sources ...................................................................................................10 -
Life History of the Northern Mayfly Baetis Bundyae in Rankin Inlet, Nunavut, Canada, with Updates to the List of Mayflies of Nunavut
628 Life history of the northern mayfly Baetis bundyae in Rankin Inlet, Nunavut, Canada, with updates to the list of mayflies of Nunavut Donna J. Giberson1 Department of Biology, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island, Canada C1A 4P3 Steven K. Burian Department of Biology, Southern Connecticut State University, 501 Crescent Street, New Haven, Connecticut 06515, United States of America Michael Shouldice Nunavut Arctic College, Kivalliq Campus, P.O. Box 002, Rankin Inlet, Nunavut, Canada X0C 0G0 Abstract—Mayflies (Ephemeroptera) were collected from 35 sites (streams and tundra ponds) across southern Nunavut in 2002–2005. Nine mayfly species were previously re- ported for Nunavut: Acentrella feropagus Alba-Tercedor and McCafferty, Acerpenna pygmaea (Hagen), Baetis bundyae Lehmkuhl, B. flavistriga McDunnough, B. foemina McDunnough, Diphetor hageni (Eaton) (Baetidae), Ephemerella aurivillii (Bengtsson) (Ephemerellidae), Leptophlebia nebulosa (Walker) (Leptophlebiidae), and Metretopus bo- realis (Eaton) (Metrotopidae). We add 7 species to this list, bringing the total to 16: Ameletus inopinatus Eaton (Ameletidae), Acentrella lapponica Bengtsson, Baetis hudsonicus Ide, B. tricaudatus Dodds, Heptagenia solitaria McDunnough (Heptageniidae), Rhithrogena jejuna Eaton (Heptageniidae), and Parameletus chelifer Bengtsson (Siphlonuridae). Based on numbers collected, the dominant mayfly family was Baetidae. Baetis bundyae was the most common mayfly collected, particularly in coastal areas, where larvae were found in permanent and temporary streams and in small or shallow tundra ponds. Larvae hatched 2–3 weeks after ice-out and developed rapidly in 2.5–4 weeks, emerging as adults by early August. All populations containing larvae that were large enough to sex showed female-biased sex ratios, suggesting parthenogenesis. -
The Mayflies, Or Ephemeroptera, of Illinois
STATE OF ILLINOIS WILLIAM G. STRATTON, Governor DEPARTMENT OF REGISTRATION AND EDUCATION VERA M. BINKS, Director NATURAL HISTORY SURVEY DIVISION HARLOW B. MILLS, Chief Volume 26 BULLETIN Article 1 The Mayflies, or Ephemeroptera, of Illinois B. D. BURKS Printed by Authority of the State of Illinois URBANA, ILLINOIS May 1953 STATE OF ILLINOIS WILLIAM G. STRATTON, Governor DEPARTMENT OF REGISTRATION AND EDUCATION VERA M. BINKS, Director BOARD OF NATURAL RESOURCES AND CONSERVATION VERA M. BINKS, Chairman A. E. EMERSON, Ph.D., Biology WALTER H. NEWHOUSE, Ph.D., Geology L. H. TIFFANY, Ph.D., Forestry ROBERT H. ANDERSON, B.S.C.E., ROGER ADAMS, Ph.D., D.Sc., Chemistry Engineering GEORGE D. STODDARD, Ph.D., Litt.D., L.H.D., LL.D., President of the University of Illinois DELYTE W. MORRIS, Ph.D., President of Southern Illinois University NATURAL HISTORY SURVEY DIVISION Urbana, Illinois SCIENTIFIC AND TECHNICAL STAFF HARLOW B. MILLS, Ph.D., Chief BESSIE B. EAST, M.S., Assistant to the Chief Section of Economic Entomology Section of Applied Botany and Plant Pathology GEORGE C. DECKER, Ph.D., Entomologist and Head LEO R. TEHON, Ph.D., Botanist and Head J. H. BIGGER, M.S., Entomologist J. CEDRIC CARTER, Ph.D., Plant Pathologist L. L. ENGLISH, Ph.D., Entomologist J. L. FORSBERG, M.S., Associate Plant Pathologist S. C. CHANDLER, B.S., Associate Entomologist PAUL F. HOFFMAN, JR., Ph.D., Associate Plant WILLIS N. BRUCE, Ph.D., Associate Entomologist Pathologist NORMAN C. GANNON, Ph.D., Associate Entomologist G. H. BOEWE, M.S., Assistant Plant Pathologist JOHN M. WRIGHT, Ph.D., Assistant Entomologist RICHARD J.