Bird Sightings Associated with Hurricane David John O
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Iucn Red Data List Information on Species Listed On, and Covered by Cms Appendices
UNEP/CMS/ScC-SC4/Doc.8/Rev.1/Annex 1 ANNEX 1 IUCN RED DATA LIST INFORMATION ON SPECIES LISTED ON, AND COVERED BY CMS APPENDICES Content General Information ................................................................................................................................................................................................................................ 2 Species in Appendix I ............................................................................................................................................................................................................................... 3 Mammalia ............................................................................................................................................................................................................................................ 4 Aves ...................................................................................................................................................................................................................................................... 7 Reptilia ............................................................................................................................................................................................................................................... 12 Pisces ................................................................................................................................................................................................................................................. -
Hurricane & Tropical Storm
5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard. -
Florida Hurricanes and Tropical Storms
FLORIDA HURRICANES AND TROPICAL STORMS 1871-1995: An Historical Survey Fred Doehring, Iver W. Duedall, and John M. Williams '+wcCopy~~ I~BN 0-912747-08-0 Florida SeaGrant College is supported by award of the Office of Sea Grant, NationalOceanic and Atmospheric Administration, U.S. Department of Commerce,grant number NA 36RG-0070, under provisions of the NationalSea Grant College and Programs Act of 1966. This information is published by the Sea Grant Extension Program which functionsas a coinponentof the Florida Cooperative Extension Service, John T. Woeste, Dean, in conducting Cooperative Extensionwork in Agriculture, Home Economics, and Marine Sciences,State of Florida, U.S. Departmentof Agriculture, U.S. Departmentof Commerce, and Boards of County Commissioners, cooperating.Printed and distributed in furtherance af the Actsof Congressof May 8 andJune 14, 1914.The Florida Sea Grant Collegeis an Equal Opportunity-AffirmativeAction employer authorizedto provide research, educational information and other servicesonly to individuals and institutions that function without regardto race,color, sex, age,handicap or nationalorigin. Coverphoto: Hank Brandli & Rob Downey LOANCOPY ONLY Florida Hurricanes and Tropical Storms 1871-1995: An Historical survey Fred Doehring, Iver W. Duedall, and John M. Williams Division of Marine and Environmental Systems, Florida Institute of Technology Melbourne, FL 32901 Technical Paper - 71 June 1994 $5.00 Copies may be obtained from: Florida Sea Grant College Program University of Florida Building 803 P.O. Box 110409 Gainesville, FL 32611-0409 904-392-2801 II Our friend andcolleague, Fred Doehringpictured below, died on January 5, 1993, before this manuscript was completed. Until his death, Fred had spent the last 18 months painstakingly researchingdata for this book. -
Storm Modification Although Experts in the Meteorological Field Aren’T Enthusiastic About These Ideas Due to the Inconclusive Results from Project Stormfury
Solving Today’s Hurricane Problem Through Modification Submitted by: Greg Machos Webmaster/Owner www.hurricaneville.com Submitted to: Dr. Stephan Nelson Director of Atmospheric Science National Science Foundation Room 775 4201 Wilson Boulevard Arlington, VA 22230 April 27, 2001 Final Proposal for Business and Professional Writing If found, please return to: Mark Waren Department of English Murray Hall, Room 032 College Avenue Campus, Rutgers University i ABSTRACT This proposal is for a research study that will attempt to combine the best elements of both the federal government and private industry projects on hurricane intensification and modification. There will be a difference in the way a hurricane will be attacked. Rather than trying to attack it through seeding its inner core, this proposal will try to use wind shear at the upper levels to destroy the storm’s vertical structure. Past research has shown that work in this area of study has had positive impacts on hurricane forecasting that ultimately saved lives. Furthermore, technology has improved significantly over the last twenty years and with the tremendous strides made in weather forecasting over the past century, now may be a great time to revisit this kind of research again. Coastal communities in the eastern half of the United States as well as many underdeveloped countries in the Caribbean and Central America are more vulnerable than ever to a major hurricane like Hurricane Andrew in 1992 or Hurricane Mitch in 1998. Hurricane Andrew caused approximately $27 billion dollars in damage after making landfall in South Florida while Hurricane Mitch left an estimated 11,000 people dead from heavy rains over a period of several days. -
Noio Or Black Noddy Anous Minutus
Seabirds Noio or Black Noddy Anous minutus SPECIES STATUS: State recognized as Indigenous NatureServe Heritage Rank G5 - Secure North American Waterbird Conservation Plan – Photo: USFWS Moderate concern Regional Seabird Conservation Plan - USFWS 2005 SPECIES INFORMATION: The noio or black noddy is a medium-sized, abundant, and gregarious tern (Family: Laridae) with a pantropical distribution. Seven noio (black noddy) subspecies are generally recognized, and two are resident in Hawai‘i: A. s. melanogenys (MHI) and A. s. marcusi (NWHI). Individuals have slender wings, a wedge-shaped tail, and black bill which is slightly decurved. Adult males and females are sooty black with a white cap and have reddish brown legs and feet; bill droops slightly. Flight is swift with rapid wing beats and usually direct and low over the ocean; this species almost never soars high. Often forages in large, mixed species flocks associated with schools of large predatory fishes which drive prey species to the surface. Noio (black noddy) generally forage in nearshore waters and feeds mainly by dipping the surface from the wing or by making shallow dives. Opportunistic, in Hawai‘i, noio (black noddy) primarily takes juvenile goatfish, lizardfish, herring, flyingfish, and gobies. Nests in large, dense colonies that include non-breeding juvenile birds. Established pairs return to the same nest site year after year. Breeding is highly variable and egg laying occurs year-round. Both parents incubate single egg, and brood and feed chick. Birds first breed at two to three years of age, and the oldest known individual was 25 years old. DISTRIBUTION: Noio (black noddy) breed throughout the Hawaiian Archipelago, including all islands of NWHI and the coastal cliffs and offshore islets of MHI. -
Assessing Natural and Mechanical Dune Performance in a Post-Hurricane Environment
Journal of Marine Science and Engineering Article Assessing Natural and Mechanical Dune Performance in a Post-Hurricane Environment Jean T. Ellis * and Mayra A. Román-Rivera Department of Geography, University of South Carolina, Columbia, SC 29208, USA; [email protected] * Correspondence: [email protected] Received: 1 April 2019; Accepted: 29 April 2019; Published: 2 May 2019 Abstract: The purpose of this study is to document the geomorphic evolution of a mechanical dune over approximately one year following its installation and compare it to the recovery of a natural dune following the impact of Hurricane Matthew (2016). During the study period, the dunes’ integrity was tested by wave and wind events, including king tides, and a second hurricane (Irma, 2017), at the end of the study period. Prior to the impact of the second hurricane, the volumetric increase of the mechanical and natural dune was 32% and 75%, respectively, suggesting that scraping alone is not the optimal protection method. If scraping is employed, we advocate that the dune should be augmented by planting. Ideally, the storm-impacted dune should naturally recover. Post-storm vegetation regrowth was lower around the mechanical dune, which encouraged aeolian transport and dune deflation. Hurricane Irma, an extreme forcing event, substantially impacted the dunes. The natural dune was scarped and the mechanical dune was overtopped; the system was essentially left homogeneous following the hurricane. The results from this study question the current practice of sand scraping along the South Carolina coast, which occurs post-storm, emplacement along the former primary dune line, and does not include the planting of vegetation. -
A Classification Scheme for Landfalling Tropical Cyclones
A CLASSIFICATION SCHEME FOR LANDFALLING TROPICAL CYCLONES BASED ON PRECIPITATION VARIABLES DERIVED FROM GIS AND GROUND RADAR ANALYSIS by IAN J. COMSTOCK JASON C. SENKBEIL, COMMITTEE CHAIR DAVID M. BROMMER JOE WEBER P. GRADY DIXON A THESIS Submitted in partial fulfillment of the requirements for the degree Master of Science in the Department of Geography in the graduate school of The University of Alabama TUSCALOOSA, ALABAMA 2011 Copyright Ian J. Comstock 2011 ALL RIGHTS RESERVED ABSTRACT Landfalling tropical cyclones present a multitude of hazards that threaten life and property to coastal and inland communities. These hazards are most commonly categorized by the Saffir-Simpson Hurricane Potential Disaster Scale. Currently, there is not a system or scale that categorizes tropical cyclones by precipitation and flooding, which is the primary cause of fatalities and property damage from landfalling tropical cyclones. This research compiles ground based radar data (Nexrad Level-III) in the U.S. and analyzes tropical cyclone precipitation data in a GIS platform. Twenty-six landfalling tropical cyclones from 1995 to 2008 are included in this research where they were classified using Cluster Analysis. Precipitation and storm variables used in classification include: rain shield area, convective precipitation area, rain shield decay, and storm forward speed. Results indicate six distinct groups of tropical cyclones based on these variables. ii ACKNOWLEDGEMENTS I would like to thank the faculty members I have been working with over the last year and a half on this project. I was able to present different aspects of this thesis at various conferences and for this I would like to thank Jason Senkbeil for keeping me ambitious and for his patience through the many hours spent deliberating over the enormous amounts of data generated from this research. -
Proposal for Inclusion of the Black Noddy Subspecies Worcesteri
CMS Distribution: General CONVENTION ON MIGRATORY UNEP/CMS/COP12/Doc.25.1.12 15 June 2017 SPECIES Original: English 12th MEETING OF THE CONFERENCE OF THE PARTIES Manila, Philippines, 23 - 28 October 2017 Agenda Item 25.1 PROPOSAL FOR THE INCLUSION OF THE BLACK NODDY (Anous minutus) SUBSPECIES worcesteri ON APPENDIX II OF THE CONVENTION Summary: The Government of the Philippines has submitted the attached proposal* for the inclusion of the Black Noddy (Anous minutus) subspecies worcesteri on Appendix II of CMS. *The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CMS Secretariat (or the United Nations Environment Programme) concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. The responsibility for the contents of the document rests exclusively with its author. UNEP/CMS/COP12/Doc.25.1.12 PROPOSAL FOR THE INCLUSION OF THE BLACK NODDY (Anous minutus) SUBSPECIES worcesteri ON APPENDIX II OF THE CONVENTION ON THE CONSERVATION OF MIGRATORY SPECIES OFWILD ANIMALS A. PROPOSAL This proposal is for the inclusion of Black Noddy (Anous minutus) subspecies worcesteri in Appendix II. The species is classified as Endangered on account of a very small population which breeds within a tiny area of occupancy on just two islets, and is projected to decline by more than 70 per cent over the next 10 to 15 years. B. PROPONENT: Government of the Republic of the Philippines C. SUPPORTING STATEMENT 1. Taxonomy 1.1 Class: Aves 1.2 Order: Charadriiformes 1.3 Family: Laridae 1.4 Genus, species or subspecies, including author and year: Anous minutus worcesteri (McGregor, 1911) 1.5 Scientific synonyms: No known synonyms 1.6 Common name(s), in all applicable languages used by the Convention: English - Black Noddy French - Noddi noir Spanish - Tiñosa menuda 2. -
The Effects of Hurricanes on Birds, with Special Reference to Caribbean Islands
Bird Conservation International (1993) 3:319-349 The effects of hurricanes on birds, with special reference to Caribbean islands JAMES W. WILEY and JOSEPH M. WUNDERLE, JR. Summary Cyclonic storms, variously called typhoons, cyclones, or hurricanes (henceforth, hurricanes), are common in many parts of the world, where their frequent occurrence can have both direct and indirect effects on bird populations. Direct effects of hurricanes include mortality from exposure to hurricane winds, rains, and storm surges, and geo- graphic displacement of individuals by storm winds. Indirect effects become apparent in the storm's aftermath and include loss of food supplies or foraging substrates; loss of nests and nest or roost sites; increased vulnerability to predation; microclimate changes; and increased conflict with humans. The short-term response of bird populations to hurricane damage, before changes in plant succession, includes shifts in diet, foraging sites or habitats, and reproductive changes. Bird populations may show long-term responses to changes in plant succession as second-growth vegetation increases in storm- damaged old-growth forests. The greatest stress of a hurricane to most upland terrestrial bird populations occurs after its passage rather than during its impact. The most important effect of a hurricane is the destruction of vegetation, which secondarily affects wildlife in the storm's after- math. The most vulnerable terrestrial wildlife populations have a diet of nectar, fruit, or seeds; nest, roost, or forage on large old trees; require a closed forest canopy; have special microclimate requirements and/or live in a habitat in which vegetation has a slow recovery rate. Small populations with these traits are at greatest risk to hurricane-induced extinction, particularly if they exist in small isolated habitat fragments. -
Evacuation Routes
winds resulted in thousands of downed branches, limbs, and trees across our region leading to months of clean-up. Along with hurricane force winds, torrential rain hit our area. Hunter Army Air Field in Savannah mea- sured 17.48” of rain during the storm. The highest storm surge anywhere in the United States during Hurricane Matthew was at Fort Pulaski. Storm surge levels measured 7.7 feet above normal tide levels. After sliding along the coast of southeast Georgia, Matthew made landfall on October 8 near THIS SEASON’S McClellanville, South Carolina as a Category 1 Hurricane with winds of 86 mph. Hurricane Matthew OUTLOOK was the first hurricane since Hurricane Hazel in 1954 to make landfall in the United States north of Florida WITH JEREMY NELSON during the month of October. A message from the The last storm to make landfall in the greater WJCL 22 StormTracker Savannah area was Hurricane David in 1979. Anyone living in the area knows the impact that storm Chief Meteorologist produced…from downed trees to power outages that in some cases lasted two weeks. Another Atlantic hurricane season is upon us! The memories of Hurricane Matthew are fresh in the The best way to protect yourself, your family, and minds of many as we enter hurricane season. Last property before the next storm threatens is to take year served as a reminder that we are not immune simple steps now. This Hurricane Guide is designed to tropical storms and hurricanes in southeast to assist you as you develop your plan, learn your Georgia and the Lowcountry despite a lull in activity evacuation route, and prepare your disaster kit. -
Sidebar 4.1: Hurricane Irma: Rewriting the Record Books—P
SIDEBAR 4.1: HURRICANE IRMA: REWRITING THE RECORD BOOKS—P. J. KLOTZBACH Hurricane Irma generated the highest ACE values (Bell which provides six-hourly estimates of historical Atlantic et al. 2000) of any Atlantic hurricane during the extremely tropical cyclone wind speeds, pressures, and locations active 2017 season. Irma developed from a tropical wave since 1851 (Landsea and Franklin 2013). in the eastern Atlantic, reaching tropical storm status on Irma began to set records as it approached the north- %YKYWX3ZIVXLIRI\XWIZIVEPHE]W-VQEMRXIRWM½IH IVR0II[EVH-WPERHW-XMRXIRWM½IHMRXSEOX QWď) into a major hurricane in an environment of anomalously category 5 hurricane late on 5 September, making it the weak vertical wind shear and anomalously high SSTs. strongest Atlantic hurricane outside of the Gulf of Mexico On 5 September, Irma reached category 5 intensity and Caribbean on record. Irma also shattered the old as it bore down on the northern Leeward Islands. Over record for strongest hurricane to impact the northern the next several days, Irma devastated many islands in Leeward Islands (defined as 15°–19°N, 65°–60°W), the eastern and central Caribbean, then went on to make breaking the old record of 140 kt (72 m sď) set by the landfall in Cuba before making two landfalls in Florida. It Lake Okeechobee Hurricane of 1928 and Hurricane David ½REPP][IEOIRIHXSEXVSTMGEPHITVIWWMSRIEVP]SR7IT- (1979). Irma brought devastation to Barbuda (Fig. SB4.1), tember near the Georgia/Alabama border. In this sidebar, Anguilla, and portions of the U.S. and British Virgin Islands several of Hurricane Irma’s most notable meteorological and then passed north of Puerto Rico. -
Observations of Pelagic Seabirds Wintering at Sea in the Southeastern Caribbean William L
Pp. 104-110 in Studies in Trinidad and Tobago Ornithology Honouring Richard ffrench (F. E. Hayes and S. A. Temple, Eds.). Dept. Life Sci., Univ. West Indies, St. Augustine, Occ. Pap. 11, 2000 OBSERVATIONS OF PELAGIC SEABIRDS WINTERING AT SEA IN THE SOUTHEASTERN CARIBBEAN WILLIAM L. MURPHY, 8265 Glengarry Court, Indianapolis, IN 46236, USA ABSTRACT.-I report observations, including several the educational cruise ship Yorktown Clipper between significant distributional records, of 16 species of Curaçao and the Orinoco River, traversing seabirds wintering at sea in the southeastern Caribbean approximately 2,000 km per trip (Table 1). Because during cruises from Bonaire to the Orinoco River (5-13 the focus was on visiting islands as well as on cruising, January 1996, 3-12 March 1997, and 23 December many of the longer passages were traversed at night. 1997 - 1 January 1998). A few scattered shearwaters While at sea during the day, fellow birders and I (Calonectris diomedea and Puffinus lherminieri) were maintained a sea watch, recording sightings of bird seen. Storm-Petrels (Oceanites oceanicus and species and their numbers. Oceanodroma leucorhoa), particularly the latter species, were often seen toward the east. Most The observers were all experienced birders with tropicbirds (Phaethon aethereus) and gulls (Larus binoculars, some of which were image-stabilised. The atricilla) were near Tobago. Boobies were common; number of observers at any given time ranged from Sula leucogaster outnumbered S. sula by about 4:1 and one to 15, averaging about five. Observations were S. dactylatra was scarce. Frigatebirds (Fregata made from various points on three decks ranging from magnificens) were strictly coastal.