U.S. Geological Survey Bulletin 2072 AVAILABILITY of BOOKS and MAPS of the U.S

Total Page:16

File Type:pdf, Size:1020Kb

U.S. Geological Survey Bulletin 2072 AVAILABILITY of BOOKS and MAPS of the U.S u.s. Geological Survey Bulletin 2072 AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the current­ year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Survey publications released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books and Maps Professional Papers, Bulletins, Water-Supply Papers, Tech­ Books and maps of the U.S. Geological Survey are available niques of Water-Resources Investigations, Circulars, publications over the counter at the following U.S. Geological Survey offices, of general interest (such as leaflets, pamphlets, booklets), single all of which are authorized agents of the Superintendent of Docu­ copies of Earthquakes & Volcanoes, Preliminary Determination of ments. Epicenters, and some miscellaneous reports, including some of the foregoing series that have gone out of print at the Superin­ • ANCHORAGE, Alaska-4230 University Dr., Rm. 101 tendent of Documents, are obtainable by mail from • LAKEWOOD, Colorado-Federal Center, Bldg. 810 U.S. Geological Survey, Information Services Box 25286, Federal Center • MENLO PARK, California-Bldg. 3, Rm. 3128, 345 Mid­ Denver, CO 80225 dlefield Rd. Subscriptions to periodicals (Earthquakes & Volcanoes and • RESTON, Virginia-National Center, Rm. lC402, 12201 Preliminary Determination of Epicenters) can be obtained ONLY Sunrise Valley Dr. from the • SALT LAKE CITY, Utah-Federal Bldg., Rm. 8105, 125 Superintendent of Documents South State St. Government Printing Office Washington, DC 20402 • SPOKANE, Washington-U.S. Post Office Bldg., Rm. 135, W. 904 Riverside Ave. (Check or money order must be payable to Superintendent of Documents.) • WASHINGTON, D.C.-Main Interior Bldg., Rm. 2650, 18th and C Sts., NW. Maps Maps Only For maps, address mail orders to Maps may be purchased over the counter at the U.S. Geologi­ U.S. Geological Survey, Map Distribution cal Survey offices: Box 25286, Bldg. 810, Federal Center Denver, CO 80225 • FAIRBANKS, Alaska-New Federal Building, 101 Twelfth Ave. Residents of Alaska may order maps from U.S. Geological Survey, Earth Science Information Center • ROLLA, Missouri-1400 Independence Rd. 1011\velfth Ave., Box 12 Fairbanks, AK 99701 • STENNIS SPACE CENTER, Mississippi-Bldg. 3101 VOLCANOES OF THE WESTERN WRANGELL MOUNTAIN, ALASKA-WRANGELL-ST. ELIAS NATIONAL PARK AND PRESERVE Frontispiece. Mount Wrangell from near Tonsina (about no, and a prominent steam plume rises from one of the 20 mi south of Copper Center), probably during summer summit craters. Mount Zanetti, a large cinder cone on 1902. Dark ash, apparently from phreatic eruptions, the north flank of Mount Wrangell, is at left. Photograph blankets the ice- and snow-covered surface of the volca- by We. Mendenhall, U.S. Geological Survey. Guide to the Volcanoes of the Western Wrangell Mountains, Alaska-Wrangell-St. Elias National Park and Preserve By Donald H. Richter, Danny S. Rosenkrans, and Margaret J. Steigerwald U.S. GEOLOGICAL SURVEY BULLETIN 2072 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1995 I ·1 I I u.s. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary u.s. GEOLOGICAL SURVEY Gordon P. Eaton, Director For sale by U.S. Geological Survey, Information Services Box 25286, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Text and illustrations edited by George A. Havach Graphics prepared by Michele Coveau Book design and layout by Linnea Larsen Library of Congress Cataloging-in-Publication Data Richter, Donald H. Guide to the volcanoes of the western Wrangell Mountains, Alaska: Wrangell-St. Elias National Park and Preserve I by Donald H. Richter, Danny S. Rosenkrans, and Margaret J. Steigelwald p. em. - (U.S. Geological Survey bulletin; 2072) Includes bibliographical references. Supt. of Docs. no.: I 19.3:2072 1. Volcanoes-Alaska-Wrangell Mountains. I. Rosenkrans, Danny S. II. Steigerwald, Margaret J. III. Title. IV. Series. QE75.B9 no. 2072 [QE524] 557.3 s-dc20 94-32571 [551.2'1 '097983] CIP Cover. The massive, ice-covered face of Mount Sanford. View westward across West Glacier. Photograph by D. Rosenkrans, 1984. CONTENTS Introduction 1 Early history and geologic exploration....................................................................... I A national park in the Wrangells 3 Geologic background 3 Volcanoes and plate tectonics 3 The Wrangell volcanoes ,................................................... 7 How did they form? 7 How old are they?............................................................................................... 8 How tall are they?.............................................................................................. 10 How do they compare with other mountains?..................................................... 10 Descriptions ofindividual volcanoes 10 Mount Wrangell 10 Mount Drum............................................................................................. 13 Mount Sanford 16 Capital Mountain...................................................................................... 18 Tanada Peak. 20 Mount Jarvis............................................................................................. 21 Skookum Creek Volcano.......................................................................... 22 Mount Blackburn 24 Boomerang Volcano................................................................................. 25 Mount Gordon.......................................................................................... 25 White River Ash.......................................................................................................... 27 Mud volcanoes 29 Acknowledgments 29 Selected references..... 30 FIGURES 1. South-central Alaska and part of the Yukon Territory, Canada, showing early exploration routes of Allen in 1885 and Schwatka and Hayes in 1891 and route of the Cordova-Kennicott Railroad that was used from 1911 to 1938 2 2. South-central Alaska and part of the Yukon Territory, Canada, showing Wrangell volcanic field and some major geologic features......................................................................................................................................... 4 3. Western North America, showing present position of Wrangellia composite terrane and its probable position 250 million years ago, before it moved northward as part of an ancient Pacific plate........ 5 4. Major crustal plates of the world 5 5. Diagrammatic cross section through the Earth's crust and upper mantle, showing plate-tectonic features discussed in text.................................................................................................................................................... 6 6. Diagrammatic north-south cross sections through south-central Alaska and the northern Pacific Ocean, showing development of Wrangell volcanic field through subduction of the Pacific plate................................ 7 7. Wrangell Mountains and part of the St. Elias Mountains.................................................................................... 8 8. Diagrammatic cross section model illustrating development of a Wrangell volcano 9 9. Known periods of eruptive activity for radiometrically dated western Wrangell volcanoes.............................. 10 10. Comparative profiles of some Pacific-rim volcanoes........................................................................................... 11 11. Topographic and generalized geologic map of Mount Wrangell......................................................................... 12 12. Mount Wrangell from Willow Lake at mile 87 on the Richardson Highway..................................................... 12 V VI CONTENTS 13. Topographic and generalized geologic map of Mount Drum 14 14. Mount Drum from mile 1 on the Tok Cutoff of the Glenn Highway................................................................. 14 15. Mount Drum at sunset from Willow Lake at mile 87 on the Richardson Highway........................................... 15 16. Generalized geologic cross section through Mount Drum 16 17. Approximate extent of volcanic avalanche and mudflow deposits probably generated by late cataclysmic eruptions of Mount Drum..................................................................................................................................... 16 18. Topographic and generalized geologic map of Mount Sanford........................................................................... 17 19. Mount Sanford from the Gulkana Airport on the Richardson Highway............................................................. 18 20. Topographic and generalized geologic map of Capital Mountain......................................................................
Recommended publications
  • Extending the Late Holocene White River Ash Distribution, Northwestern Canada STEPHEN D
    ARCTIC VOL. 54, NO. 2 (JUNE 2001) P. 157– 161 Extending the Late Holocene White River Ash Distribution, Northwestern Canada STEPHEN D. ROBINSON1 (Received 30 May 2000; accepted in revised form 25 September 2000) ABSTRACT. Peatlands are a particularly good medium for trapping and preserving tephra, as their surfaces are wet and well vegetated. The extent of tephra-depositing events can often be greatly expanded through the observation of ash in peatlands. This paper uses the presence of the White River tephra layer (1200 B.P.) in peatlands to extend the known distribution of this late Holocene tephra into the Mackenzie Valley, northwestern Canada. The ash has been noted almost to the western shore of Great Slave Lake, over 1300 km from the source in southeastern Alaska. This new distribution covers approximately 540000 km2 with a tephra volume of 27 km3. The short time span and constrained timing of volcanic ash deposition, combined with unique physical and chemical parameters, make tephra layers ideal for use as chronostratigraphic markers. Key words: chronostratigraphy, Mackenzie Valley, peatlands, White River ash RÉSUMÉ. Les tourbières constituent un milieu particulièrement approprié au piégeage et à la conservation de téphra, en raison de l’humidité et de l’abondance de végétation qui règnent en surface. L’observation des cendres contenues dans les tourbières permet souvent d’élargir notablement les limites spatiales connues des épisodes de dépôts de téphra. Cet article recourt à la présence de la couche de téphra de la rivière White (1200 BP) dans les tourbières pour agrandir la distribution connue de ce téphra datant de l’Holocène supérieur dans la vallée du Mackenzie, située dans le Nord-Ouest canadien.
    [Show full text]
  • Crary-Henderson Collection, B1962.001
    REFERENCE CODE: AkAMH REPOSITORY NAME: Anchorage Museum at Rasmuson Center Bob and Evangeline Atwood Alaska Resource Center 625 C Street Anchorage, AK99501 Phone: 907-929-9235 Fax: 907-929-9233 Email: [email protected] Guide prepared by: Mary Langdon, Volunteer, and Sara Piasecki, Archivist TITLE: Crary-Henderson Collection COLLECTION NUMBER: B1962.001, B1962.001A OVERVIEW OF THE COLLECTION Dates: circa 1885-1930 Extent: 19.25 linear feet Language and Scripts: The collection is in English. Name of creator(s): Will Crary; Nan Henderson; Phinney S. Hunt; Miles Bros.; Lyman; George C. Cantwell; Johnson; L. G. Robertson; Lillie N. Gordon; John E. Worden; W. A. Henderson; H. Schultz; Merl LaVoy; Guy F. Cameron; Eric A. Hegg Administrative/Biographical History: The Crary and Henderson Families lived and worked in the Valdez area during the boom times of the early 1900s. William Halbrook Crary was a prospector and newspaper man born in the 1870s (may be 1873 or 1876). William and his brother Carl N. Crary came to Valdez in 1898. Will was a member of the prospecting party of the Arctic Mining Company; Carl was the captain of the association. The Company staked the “California Placer Claim” on Slate Creek and worked outside of Valdez on the claim. Slate Creek is a tributary of the Chitina River, in the Chistochina District of the Copper River Basin. Will Crary was the first townsite trustee for Valdez. Carl later worked in the pharmaceutical field in Valdez and was also the postmaster. Will married schoolteacher Nan Fitch in Valdez in 1906. Carl died of cancer in 1927 in Portland, Oregon.
    [Show full text]
  • Marine Tephrochronology of the Mt
    Quaternary Research 73 (2010) 277–292 Contents lists available at ScienceDirect Quaternary Research journal homepage: www.elsevier.com/locate/yqres Marine tephrochronology of the Mt. Edgecumbe Volcanic Field, Southeast Alaska, USA Jason A. Addison a,b,⁎, James E. Beget a,b, Thomas A. Ager c, Bruce P. Finney d a Alaska Quaternary Center and Department of Geology and Geophysics, University of Alaska Fairbanks, 900 Yukon Drive, PO Box 755780, Fairbanks, AK 99775-5780, USA b Alaska Quaternary Center, PO Box 755940, University of Alaska Fairbanks, Fairbanks, AK 99775-5940, USA c U.S. Geological Survey, Mail Stop 980, Box 25045, Denver Federal Center, Denver, CO 80225, USA d Department of Biological Sciences, Idaho State University, Pocatello, ID 83209-8007, USA article info abstract Article history: The Mt. Edgecumbe Volcanic Field (MEVF), located on Kruzof Island near Sitka Sound in southeast Alaska, Received 30 March 2009 experienced a large multiple-stage eruption during the last glacial maximum (LGM)–Holocene transition Available online 11 December 2009 that generated a regionally extensive series of compositionally similar rhyolite tephra horizons and a single well-dated dacite (MEd) tephra. Marine sediment cores collected from adjacent basins to the MEVF contain Keywords: both tephra-fall and pyroclastic flow deposits that consist primarily of rhyolitic tephra and a minor dacitic Tephra tephra unit. The recovered dacite tephra correlates with the MEd tephra, whereas many of the rhyolitic Alaska North Pacific Ocean tephras correlate with published MEVF rhyolites. Correlations were based on age constraints and major Cryptotephra oxide compositions of glass shards. In addition to LGM–Holocene macroscopic tephra units, four marine Mt.
    [Show full text]
  • North American Notes
    268 NORTH AMERICAN NOTES NORTH AMERICAN NOTES BY KENNETH A. HENDERSON HE year I 967 marked the Centennial celebration of the purchase of Alaska from Russia by the United States and the Centenary of the Articles of Confederation which formed the Canadian provinces into the Dominion of Canada. Thus both Alaska and Canada were in a mood to celebrate, and a part of this celebration was expressed · in an extremely active climbing season both in Alaska and the Yukon, where some of the highest mountains on the continent are located. While much of the officially sponsored mountaineering activity was concentrated in the border mountains between Alaska and the Yukon, there was intense activity all over Alaska as well. More information is now available on the first winter ascent of Mount McKinley mentioned in A.J. 72. 329. The team of eight was inter­ national in scope, a Frenchman, Swiss, German, Japanese, and New Zealander, the rest Americans. The successful group of three reached the summit on February 28 in typical Alaskan weather, -62° F. and winds of 35-40 knots. On their return they were stormbound at Denali Pass camp, I7,3oo ft. for seven days. For the forty days they were on the mountain temperatures averaged -35° to -40° F. (A.A.J. I6. 2I.) One of the most important attacks on McKinley in the summer of I967 was probably the three-pronged assault on the South face by the three parties under the general direction of Boyd Everett (A.A.J. I6. IO). The fourteen men flew in to the South east fork of the Kahiltna glacier on June 22 and split into three groups for the climbs.
    [Show full text]
  • Resedimentation of the Late Holocene White River Tephra, Yukon Territory and Alaska
    Resedimentation of the late Holocene White River tephra, Yukon Territory and Alaska K.D. West1 and J.A. Donaldson2 Carleton University3 West, K.D. and Donaldson, J.A. 2002. Resedimentation of the late Holocene White River tephra, Yukon Territory and Alaska. In: Yukon Exploration and Geology 2002, D.S. Emond, L.H. Weston and L.L. Lewis (eds.), Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, p. 239-247. ABSTRACT The Wrangell region of eastern Alaska represents a zone of extensive volcanism marked by intermittent pyroclastic activity during the late Holocene. The most recent and widely dispersed pyroclastic deposit in this area is the White River tephra, a distinct tephra-fall deposit covering 540 000 km2 in Alaska, Yukon, and the Northwest Territories. This deposit is the product of two Plinian eruptions from Mount Churchill, preserved in two distinct lobes, created ca. 1887 years B.P. (northern lobe) and 1147 years B.P. (eastern lobe). The tephra consists of distal primary air-fall deposits and proximal, locally resedimented volcaniclastic deposits. Distinctive layers such as the White River tephra provide important chronostratigraphic control and can be used to interpret the cultural and environmental impact of ancient large magnitude eruptions. The resedimentation of White River tephra has resulted in large-scale terraces, which fl ank the margins of Klutlan Glacier. Preliminary analysis of resedimented deposits demonstrates that the volcanic stratigraphy within individual terraces is complex and unique. RÉSUMÉ Au cours de l’Holocène tardif, des matériaux pyroclastiques ont été projetés lors d’importantes et nombreuses éruptions volcaniques, dans la région de Wrangell de l’est de l’Alaska.
    [Show full text]
  • P1616 Text-Only PDF File
    A Geologic Guide to Wrangell–Saint Elias National Park and Preserve, Alaska A Tectonic Collage of Northbound Terranes By Gary R. Winkler1 With contributions by Edward M. MacKevett, Jr.,2 George Plafker,3 Donald H. Richter,4 Danny S. Rosenkrans,5 and Henry R. Schmoll1 Introduction region—his explorations of Malaspina Glacier and Mt. St. Elias—characterized the vast mountains and glaciers whose realms he invaded with a sense of astonishment. His descrip­ Wrangell–Saint Elias National Park and Preserve (fig. tions are filled with superlatives. In the ensuing 100+ years, 6), the largest unit in the U.S. National Park System, earth scientists have learned much more about the geologic encompasses nearly 13.2 million acres of geological won­ evolution of the parklands, but the possibility of astonishment derments. Furthermore, its geologic makeup is shared with still is with us as we unravel the results of continuing tectonic contiguous Tetlin National Wildlife Refuge in Alaska, Kluane processes along the south-central Alaska continental margin. National Park and Game Sanctuary in the Yukon Territory, the Russell’s superlatives are justified: Wrangell–Saint Elias Alsek-Tatshenshini Provincial Park in British Columbia, the is, indeed, an awesome collage of geologic terranes. Most Cordova district of Chugach National Forest and the Yakutat wonderful has been the continuing discovery that the disparate district of Tongass National Forest, and Glacier Bay National terranes are, like us, invaders of a sort with unique trajectories Park and Preserve at the north end of Alaska’s panhan­ and timelines marking their northward journeys to arrive in dle—shared landscapes of awesome dimensions and classic today’s parklands.
    [Show full text]
  • Glenn Highway Tok Cutoff (GJ-125 to GJ-0) to Milepost a 160
    Map GLENN HIGHWAY • TOK CUTOFF Glenn Highway To Chicken and Eagle © The MILEPOST To Delta Junction (see TAYLOR HIGHWAY section) Key to mileage boxes ver (see ALASKA HIGHWAY section) Tanana Ri miles/kilometres G miles/kilometres Tanacross 5 from: la A L c A Swb T-Tok V-Valdez ia S K 2 Tok Map Location G-Glennallen ted A ® GJ-Gakona Junction A re A-Anchorage a R 2 A 1 Tetlin Junction J-Junction N HJ-Haines Junction Mount Kimball G T-0 a To Haines DJ-Delta Junction in 10,300 ft./3,139m E ch r w GJ-125/201km Junction Chisto cie G la A-328/528km (see ALASKA Principal Route Logged Key to Advertiser er HIGHWAY Services T iv DJ-108/174km C -Camping ok R section) Paved Unpaved R HJ-296/476km D -Dump Station iv ok Other Roads Logged d -Diesel er T G -Gas (reg., unld.) Tetlin I -Ice Lake Other Roads Scenic Byway L -Lodging M -Meals T Refer to Log for Visitor Facilities P -Propane Tok Cutoff ok Cu L R -Car Repair (major) na i Scale Sla R Mineral Lakes t iv t r -Car Repair (minor) e l 0 10 Miles r e S -Store (grocery) 0 10 Kilometres T -Telephone (pay) . t Cr t Bartell off (GJ-125 r Mentasta Lake e r e t T r. o v iv C i R Mentasta Lake S t ation k R Mentasta Summit n T-65/105km 2,434 ft./742m M a . i r E N d J-0 t C T A n e S I .
    [Show full text]
  • R. L. Smith, H. R. Shaw, R. G. Luedke, and S. L. Russell U. S. Geological
    COMPREHENSIVE TABLES GIVING PHYSICAL DATA AND THERMAL ENERGY ESTIMATES FOR YOUNG IGNEOUS SYSTEMS OF THE UNITED STATES by R. L. Smith, H. R. Shaw, R. G. Luedke, and S. L. Russell U. S. Geological Survey OPEN-FILE REPORT 78-925 This report is preliminary and has not been edited or reviewed for conformity with Geological Survey Standards and nomenclature INTRODUCTION This report presents two tables. The first is a compre­ hensive table of 157 young igneous systems in the western United States, giving locations, physical data, and thermal en­ ergy estimates, where apropriate, for each system. The second table is a list of basaltic fields probably less than 10,000 years old in the western United States. These tables are up­ dated and reformatted from Smith and Shaw's article "Igneous- related geothermal systems" in Assessment of geothermal re­ sources of the United States 1975 (USGS Circular 726, White and Williams, eds., 1975). This Open-File Report is a compan­ ion to Smith and Shaw's article "Igneous-related geothermal systems" in Assessment of geothermal resources in the United States 1978 (USGS Circular 790, Muffler, ed., 1979). The ar­ ticle in Circular 790 contains an abridged table showing only those igneous systems for which thermal estimates were made. The article also gives an extensive discussion of hydrothermal cooling effects and an explanation of the model upon which the thermal energy estimates are based. Thermal energy is calculated for those systems listed in table 1 that are thought to contribute significant thermal en­ ergy to the upper crust. As discussed by Smith and Shaw (1975), silicic volcanic systems are believed to be associated nearly always with high-level (<10 km) magma chambers.
    [Show full text]
  • Defining and Sizing-Up Mountains
    Defining and Sizing-up Mountains By Steven Fry What are the ten highest mountains in the world? ridge-level, before it is considered an individual Is Mount Everest larger than Mount McKinley? Does mountain. Mount Rainier rise higher above its base than In 1981, following 12 years of academic, profes- Everest? Unbelievably, these questions have never sional and recreational mountain study, I decided to been answered with any certainty, for the simple rea- make a serious attempt to establish a workable defi- son that mountains have remained essentially nition for mountains. I studied thousands of moun- undefined. tains and hills before I arrived at the conclusion There are some who may say defining mountains presented in this article. My research mainly focused is irnposstbte. However, the word "impossible" on Washington's Cascade Range, but I also studied should be used with great caution, especially within other sections of the Cascade Range, the Rockies, the climbing community. Furthermore, classifica- Sierra Nevada, Appalachians, Himalayas, Andes, tion systems are ubiquitous for such things as trees, Alps, British Isles, Alaska Range and numerous animals, rocks and clouds-and although not other geographic localities. perfect - these systems do help people better de- Mountain Definitions scribe and eventually understand the world around A mountain can be defined based upon the follow- us. ing three geographic parameters: A. Local Relief; B. Various geographers and geologists have stated Elevation; and C. Prominence. These three that a mountain must have: 1. 1,000 or 2,000 feet parameters are utilized in the mountain definitions of local relief; 2. Relatively steep slopes; and 3.
    [Show full text]
  • Table 4. Hawaiian Newspaper Sources
    OCS Study BOEM 2017-022 A ‘Ikena I Kai (Seaward Viewsheds): Inventory of Terrestrial Properties for Assessment of Marine Viewsheds on the Main Eight Hawaiian Islands U.S. Department of the Interior Bureau of Ocean Energy Management Pacific OCS Region August 18, 2017 Cover image: Viewshed among the Hawaiian Islands. (Trisha Kehaulani Watson © 2014 All rights reserved) OCS Study BOEM 2017-022 Nā ‘Ikena I Kai (Seaward Viewsheds): Inventory of Terrestrial Properties for Assessment of Marine Viewsheds on the Eight Main Hawaiian Islands Authors T. Watson K. Ho‘omanawanui R. Thurman B. Thao K. Boyne Prepared under BOEM Interagency Agreement M13PG00018 By Honua Consulting 4348 Wai‘alae Avenue #254 Honolulu, Hawai‘i 96816 U.S. Department of the Interior Bureau of Ocean Energy Management Pacific OCS Region August 18, 2016 DISCLAIMER This study was funded, in part, by the US Department of the Interior, Bureau of Ocean Energy Management, Environmental Studies Program, Washington, DC, through Interagency Agreement Number M13PG00018 with the US Department of Commerce, National Oceanic and Atmospheric Administration, Office of National Marine Sanctuaries. This report has been technically reviewed by the ONMS and the Bureau of Ocean Energy Management (BOEM) and has been approved for publication. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the US Government, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. REPORT AVAILABILITY To download a PDF file of this report, go to the US Department of the Interior, Bureau of Ocean Energy Management, Environmental Studies Program Information System website and search on OCS Study BOEM 2017-022.
    [Show full text]
  • The Keltaeni
    National Park Service U.S. Department of the Interior Park News + The Offcial Guide of Wrangell-St. Elias National Park and Preserve The K’ełt’aeni Volume 2019 OTHER PAGES YOU MIGHT LIKE: 3 Park Visitor 5 North District/ 8 South District/ Centers Nabesna Area Kennecott Area Activities & Itineraries 2 Bear Safety 4 The park has several visitor contact stations Picturesque scenery and mountain An adventure awaits the traveler who where you can get park information and viewing awaits the traveler who ventures ventures down the McCarthy Road to Nabesna Road Guide 6-7 down the Nabesna Road. Information historic McCarthy and the Kennecott Mill orientation from park rangers, as well as about the area and a road guide helps Town. Information about the area and a McCarthy Road Guide 10-11 view exhibits and the park flm. a traveler discover the mysteries of road guide helps a traveler discover the Nabesna. secrets of McCarthy-Kennecott. Information and Services 12 New Interpretive Exhibits at the Kennecott New Waysides at the Wrangell-St. Elias Mines National Historic Landmark Visitor Center in Copper Center The immersive exhibits include The interpretive waysides are personal stories of the workers located at the park entrance, and the families that lived in along the bluff trail and on Kennecott during the mining the Boreal Forest trail. The operation years from 1911 to outside panels describe the 1938. The displays include many scenic views of the Wrangell artifacts from the site that are on Mountains, the historic Valdez loan from local people or from Trail, an archeological site, the the park’s collection.
    [Show full text]
  • Wrangell-St. Elias Alaska
    Wrangell - St. Elias National Park Service National Park and National Preserve U.S. Department of the Interior Wrangell-St. Elias Alaska The wildness of Wrangell-St. Elias National Park The Alaska National Interest Lands Conservation vest harbor seals, which feed on fish and In late summer, black and brown bears, drawn and Preserve is uncompromising, its geography Act (ANILCA) of 1980 allows the subsistence marine invertebrates. These species and many by ripening soapberries, frequent the forests awe-inspiring. Mount Wrangell, namesake of harvest of wildlife within the park, and preserve more are key foods in the subsistence diet of and gravel bars. Human history here is ancient one of the park's four mountain ranges, is an and sport hunting only in the preserve. Hunters the Ahtna and Upper Tanana Athabaskans, and relatively sparse, and has left a light imprint active volcano. Hundreds of glaciers and ice find Dall's sheep, the park's most numerous Eyak, and Tlingit peoples. Local, non-Native on the immense landscape. Even where people fields form in the high peaks, then melt into riv­ large mammal, on mountain slopes where they people also share in the bounty. continue to hunt, fish, and trap, most animal, ers and streams that drain to the Gulf of Alaska browse sedges, grasses, and forbs. Sockeye, Chi­ fish, and plant populations are healthy and self­ and the Bering Sea. Ice is a bridge that connects nook, and Coho salmon spawn in area lakes and Long, dark winters and brief, lush summers lend regulati ng. For the species who call Wrangell­ the park's geographically isolated areas.
    [Show full text]