Triangulated Categories Part III

Total Page:16

File Type:pdf, Size:1020Kb

Triangulated Categories Part III Triangulated Categories Part III Daniel Murfet October 5, 2006 The aim of this note is to prove the Brown Representability theorem. This was originally proved by Neeman [Nee01] but our presentation follows recent simplifications due to Krause [Kra02]. For most of this note the only required background is our Triangulated Categories Part I notes. Contents 1 Brown Representability 1 1.1 Dual Notions ....................................... 9 2 Compactly Generated Triangulated Categories 10 3 Portly Considerations 12 4 Representability for Linear Categories 14 1 Brown Representability First we introduce a portly abelian category A(S) for any preadditive category S. This will be a certain full subcategory of the category of all contravariant additive functors S −→ Ab. Modulo the fact that S is not assumed to be small, this is precisely what we call a right module over a ringoid in our Rings With Several Objects (RSO) notes. For background on portly abelian categories, the reader is referred to (AC,Section 2.4). Definition 1. Given a preadditive category A, the objects of the portly abelian category ModA = (Aop, Ab) are called right A-modules. A sequence of right modules M 0 −→ M −→ M 00 is exact in ModA if and only if the following sequence is exact in Ab for every A ∈ A M 0(A) −→ M(A) −→ M 00(A) Similarly kernels, cokernels and images in ModA are computed pointwise. See (AC,Corollary 59) and the proof of (AC,Proposition 44) for details. A morphism φ : M −→ N in ModA is a monomorphism or epimorphism if and only if φA : M(A) −→ N(A) has this property for every A ∈ A. For any object A ∈ A we have the right module HA = Hom(−,A): A −→ Ab defined in the obvious way. Proposition 1 (Yoneda). If A is a preadditive category, then (i) For any object A ∈ A and right A-module T there is a canonical isomorphism of abelian groups HomA(HA,T ) −→ T (A) defined by γ 7→ γA(1). (ii) The functor A 7→ HA defines a full additive embedding A −→ ModA. (iii) The objects {HA}A∈A form a (large) generating family of projectives for ModA. 1 Proof. All three results are proved in the usual way. See (RSO,Lemma 1), (RSO,Lemma 2) and (RSO,Proposition 3). Observe that since the object class of A is not assumed to be small, the family {HA}A∈A is not indexed by a set, so is not a generating family in the usual sense. In particular we cannot take coproducts and conclude that ModA has a generator. Remark 1. Given the Yoneda embedding A −→ ModA it is natural to identify A with its image in ModA. So at least in our intuition, we will tend to confuse A with HA and identify a morphism α : A −→ B with its corresponding natural transformation HA −→ HB. Definition 2. Let S be a preadditive category. We say that a right S-module F is coherent if there exists an exact sequence in ModS of the following form HA −→ HB −→ F −→ 0 (1) That is, F is the cokernel of some morphism of S considered as a morphism of S-modules. Clearly any representable functor is coherent. We denote by A(S) the full replete subcategory of ModS consisting of the coherent modules. At the moment we only know that this is a preadditive portly category. Remark 2. Let S be a preadditive category. Given a morphism ϕ : M −→ N in ModS and presentations HA / HB / M / 0 ϕ HA0 / HB0 / N / 0 there exist by projectivity vertical morphisms making the above diagram commute. Lemma 2. Let S be a preadditive category. If a right S-module F is coherent, then as a covariant functor Sop −→ Ab it preserves products. Proof. Suppose that F has a presentation of the form (1). Given a family of objects {Xi}i∈I in L S and a coproduct i Xi we have a commutative diagram in which the rows are exact L L L Hom( i Xi,A) / Hom( i Xi,B) / F ( i Xi) / 0 Q Q Q i Hom(Xi,A) / i Hom(Xi,B) / i F (Xi) / 0 The first two vertical morphisms are clearly isomorphisms, and therefore so is the third. This shows that F sends coproducts to products, as required. Remark 3. Suppose we have a commutative diagram of abelian groups a A / B (2) c d A0 / B0 b Taking cokernels of the rows, we get a morphism B/A −→ B0/A0. The cokernel of this morphism is the quotient of B0/A0 by the subobject (Im(d) + A0)/A0, so it is isomorphic to the quotient B0/(Im(d) + A0). In other words, it is the cokernel of the morphism B ⊕ A0 −→ B0 induced by the morphisms d, b. Now let S be a preadditive category, and suppose we are given a commutative diagram (2) in S. Mapping this diagram to ModS and taking cokernels of the rows yields a commutative diagram with exact rows HA / HB / M / 0 ϕ HA0 / HB0 / N / 0 2 There is an induced morphism ϕ : M −→ N. Let κ : HB0 −→ H be the cokernel of the morphism HB ⊕ HA0 −→ HB0 induced by the morphisms d, b. Then it is not difficult to check that the induced morphism N −→ H is the cokernel of ϕ in ModS. This observation motivates the proof of the next result. Lemma 3. Let S be an additive category. If ϕ : M −→ N is a morphism in A(S) then any cokernel of ϕ in ModS also belongs to A(S). Proof. In light of Remark 2 and Remark 3 we need only observe that the Yoneda embedding is ∼ additive, so HB ⊕ HA0 = HB⊕A0 and so H belongs to A(S). Definition 3. Let S be a preadditive category. A morphism u : X −→ Y is a weak kernel of v : Y −→ Z if vu = 0 and if any other morphism f : T −→ Y with vf = 0 factors through u (not necessarily uniquely). In other words, the induced sequence HX −→ HY −→ HZ is exact in ModS. If every morphism of S has a weak kernel, then we say that S has weak kernels. Lemma 4. Let S be an additive category with weak kernels. If ϕ : M −→ N is a morphism in A(S) then any kernel of ϕ in ModS also belongs to A(S). Proof. Choose presentations of M, N and construct a commutative diagram inducing ϕ as follows Ha HA / HB / M / 0 Hc Hd ϕ HA0 / HB0 / N / 0 Hb We have a commutative diagram in S a A / B c d A0 / B0 b Taking our cue from Remark 3 we try to construct a square sitting on top of this one, which induces a kernel of ϕ when we apply the Yoneda embedding and take cokernels. Take a weak kernel B00 −→ B ⊕ A0 of the morphism B ⊕ A0 −→ B0, and a weak kernel A00 −→ B00 ⊕ A of the morphism B00 ⊕ A −→ B. In other words, we have two weak kernels 0r1 @sA “d b” B00 / B ⊕ A0 / B0 0m1 @ n A “r a” A00 / B00 ⊕ A / B and a commutative diagram m A00 / B00 −n r A a / B Apply the Yoneda embedding to this diagram, and take a cokernel HB00 −→ K of Hm : HA00 −→ HB00 . We have an induced morphism ψ : K −→ M, which one checks is a pointwise kernel of ϕ : M −→ N. Since K is certainly coherent, the proof is complete. 3 Proposition 5. Let S be an additive category with weak kernels. Then A(S) is a portly abelian category. If S has coproducts then A(S) is cocomplete and the induced Yoneda functor H(−) : S −→ A(S) preserves coproducts. Proof. We know from Lemma 3 and Lemma 4 that A(S) has kernels and cokernels, which can be calculated in ModS. That is, the inclusion A(S) −→ ModS preserves kernels and cokernels. Since the Yoneda functor H(−) : S −→ ModS preserves finite coproducts, it is clear that A(S) is closed under finite products and coproducts in ModS, and is therefore portly abelian. Now suppose that S has coproducts, and that we are given a nonempty family {Fi}i∈I of objects of A(S). Choose presentations Hαi HAi / HBi / Fi / 0 and let H⊕iBi −→ F be the cokernel in ModS of H⊕iαi . We have a commutative diagram for each i ∈ I HAi / HBi / Fi / 0 H⊕iAi / H⊕iBi / F / 0 and therefore an induced morphism ui : Fi −→ F . Given Q ∈ A(S) and morphisms φi : Fi −→ Q it is easy to see that there is a morphism φ : F −→ Q with φui = φi. To prove uniqueness, suppose we have a morphism φ : F −→ Q with Q ∈ A(S) and φui = 0 for every i ∈ I. Lift the morphism φ to a morphism of presentations H⊕iAi // H⊕iBi / F / 0 φ HC / HD / Q / 0 Since φui = 0 for each i, we deduce that for each i ∈ I the composite HBi −→ H⊕iBi −→ HD vanishes on HD −→ Q, and therefore factors through HC −→ HD (using projectivity of HB). It is now not difficult to see that H⊕iBi −→ HD must factor through HC −→ HD, which implies immediately that the composite H⊕iBi −→ F −→ Q is zero. Since the first morphism is an epimorphism, we deduce that φ = 0 as required. This proves that A(S) is cocomplete, and as a L special case of the above construction we find that given a coproduct {ui : Ai −→ i Ai}i∈I in S, the morphisms Hui : HAi −→ H⊕iAi are a coproduct in A(S).
Recommended publications
  • On Universal Properties of Preadditive and Additive Categories
    On universal properties of preadditive and additive categories Karoubi envelope, additive envelope and tensor product Bachelor's Thesis Mathias Ritter February 2016 II Contents 0 Introduction1 0.1 Envelope operations..............................1 0.1.1 The Karoubi envelope.........................1 0.1.2 The additive envelope of preadditive categories............2 0.2 The tensor product of categories........................2 0.2.1 The tensor product of preadditive categories.............2 0.2.2 The tensor product of additive categories...............3 0.3 Counterexamples for compatibility relations.................4 0.3.1 Karoubi envelope and additive envelope...............4 0.3.2 Additive envelope and tensor product.................4 0.3.3 Karoubi envelope and tensor product.................4 0.4 Conventions...................................5 1 Preliminaries 11 1.1 Idempotents................................... 11 1.2 A lemma on equivalences............................ 12 1.3 The tensor product of modules and linear maps............... 12 1.3.1 The tensor product of modules.................... 12 1.3.2 The tensor product of linear maps................... 19 1.4 Preadditive categories over a commutative ring................ 21 2 Envelope operations 27 2.1 The Karoubi envelope............................. 27 2.1.1 Definition and duality......................... 27 2.1.2 The Karoubi envelope respects additivity............... 30 2.1.3 The inclusion functor.......................... 33 III 2.1.4 Idempotent complete categories.................... 34 2.1.5 The Karoubi envelope is idempotent complete............ 38 2.1.6 Functoriality.............................. 40 2.1.7 The image functor........................... 46 2.1.8 Universal property........................... 48 2.1.9 Karoubi envelope for preadditive categories over a commutative ring 55 2.2 The additive envelope of preadditive categories................ 59 2.2.1 Definition and additivity.......................
    [Show full text]
  • Derived Functors and Homological Dimension (Pdf)
    DERIVED FUNCTORS AND HOMOLOGICAL DIMENSION George Torres Math 221 Abstract. This paper overviews the basic notions of abelian categories, exact functors, and chain complexes. It will use these concepts to define derived functors, prove their existence, and demon- strate their relationship to homological dimension. I affirm my awareness of the standards of the Harvard College Honor Code. Date: December 15, 2015. 1 2 DERIVED FUNCTORS AND HOMOLOGICAL DIMENSION 1. Abelian Categories and Homology The concept of an abelian category will be necessary for discussing ideas on homological algebra. Loosely speaking, an abelian cagetory is a type of category that behaves like modules (R-mod) or abelian groups (Ab). We must first define a few types of morphisms that such a category must have. Definition 1.1. A morphism f : X ! Y in a category C is a zero morphism if: • for any A 2 C and any g; h : A ! X, fg = fh • for any B 2 C and any g; h : Y ! B, gf = hf We denote a zero morphism as 0XY (or sometimes just 0 if the context is sufficient). Definition 1.2. A morphism f : X ! Y is a monomorphism if it is left cancellative. That is, for all g; h : Z ! X, we have fg = fh ) g = h. An epimorphism is a morphism if it is right cancellative. The zero morphism is a generalization of the zero map on rings, or the identity homomorphism on groups. Monomorphisms and epimorphisms are generalizations of injective and surjective homomorphisms (though these definitions don't always coincide). It can be shown that a morphism is an isomorphism iff it is epic and monic.
    [Show full text]
  • Limits Commutative Algebra May 11 2020 1. Direct Limits Definition 1
    Limits Commutative Algebra May 11 2020 1. Direct Limits Definition 1: A directed set I is a set with a partial order ≤ such that for every i; j 2 I there is k 2 I such that i ≤ k and j ≤ k. Let R be a ring. A directed system of R-modules indexed by I is a collection of R modules fMi j i 2 Ig with a R module homomorphisms µi;j : Mi ! Mj for each pair i; j 2 I where i ≤ j, such that (i) for any i 2 I, µi;i = IdMi and (ii) for any i ≤ j ≤ k in I, µi;j ◦ µj;k = µi;k. We shall denote a directed system by a tuple (Mi; µi;j). The direct limit of a directed system is defined using a universal property. It exists and is unique up to a unique isomorphism. Theorem 2 (Direct limits). Let fMi j i 2 Ig be a directed system of R modules then there exists an R module M with the following properties: (i) There are R module homomorphisms µi : Mi ! M for each i 2 I, satisfying µi = µj ◦ µi;j whenever i < j. (ii) If there is an R module N such that there are R module homomorphisms νi : Mi ! N for each i and νi = νj ◦µi;j whenever i < j; then there exists a unique R module homomorphism ν : M ! N, such that νi = ν ◦ µi. The module M is unique in the sense that if there is any other R module M 0 satisfying properties (i) and (ii) then there is a unique R module isomorphism µ0 : M ! M 0.
    [Show full text]
  • Abelian Categories
    Abelian Categories Lemma. In an Ab-enriched category with zero object every finite product is coproduct and conversely. π1 Proof. Suppose A × B //A; B is a product. Define ι1 : A ! A × B and π2 ι2 : B ! A × B by π1ι1 = id; π2ι1 = 0; π1ι2 = 0; π2ι2 = id: It follows that ι1π1+ι2π2 = id (both sides are equal upon applying π1 and π2). To show that ι1; ι2 are a coproduct suppose given ' : A ! C; : B ! C. It φ : A × B ! C has the properties φι1 = ' and φι2 = then we must have φ = φid = φ(ι1π1 + ι2π2) = ϕπ1 + π2: Conversely, the formula ϕπ1 + π2 yields the desired map on A × B. An additive category is an Ab-enriched category with a zero object and finite products (or coproducts). In such a category, a kernel of a morphism f : A ! B is an equalizer k in the diagram k f ker(f) / A / B: 0 Dually, a cokernel of f is a coequalizer c in the diagram f c A / B / coker(f): 0 An Abelian category is an additive category such that 1. every map has a kernel and a cokernel, 2. every mono is a kernel, and every epi is a cokernel. In fact, it then follows immediatly that a mono is the kernel of its cokernel, while an epi is the cokernel of its kernel. 1 Proof of last statement. Suppose f : B ! C is epi and the cokernel of some g : A ! B. Write k : ker(f) ! B for the kernel of f. Since f ◦ g = 0 the map g¯ indicated in the diagram exists.
    [Show full text]
  • Groups and Categories
    \chap04" 2009/2/27 i i page 65 i i 4 GROUPS AND CATEGORIES This chapter is devoted to some of the various connections between groups and categories. If you already know the basic group theory covered here, then this will give you some insight into the categorical constructions we have learned so far; and if you do not know it yet, then you will learn it now as an application of category theory. We will focus on three different aspects of the relationship between categories and groups: 1. groups in a category, 2. the category of groups, 3. groups as categories. 4.1 Groups in a category As we have already seen, the notion of a group arises as an abstraction of the automorphisms of an object. In a specific, concrete case, a group G may thus consist of certain arrows g : X ! X for some object X in a category C, G ⊆ HomC(X; X) But the abstract group concept can also be described directly as an object in a category, equipped with a certain structure. This more subtle notion of a \group in a category" also proves to be quite useful. Let C be a category with finite products. The notion of a group in C essentially generalizes the usual notion of a group in Sets. Definition 4.1. A group in C consists of objects and arrows as so: m i G × G - G G 6 u 1 i i i i \chap04" 2009/2/27 i i page 66 66 GROUPSANDCATEGORIES i i satisfying the following conditions: 1.
    [Show full text]
  • Homological Algebra Lecture 1
    Homological Algebra Lecture 1 Richard Crew Richard Crew Homological Algebra Lecture 1 1 / 21 Additive Categories Categories of modules over a ring have many special features that categories in general do not have. For example the Hom sets are actually abelian groups. Products and coproducts are representable, and one can form kernels and cokernels. The notation of an abelian category axiomatizes this structure. This is useful when one wants to perform module-like constructions on categories that are not module categories, but have all the requisite structure. We approach this concept in stages. A preadditive category is one in which one can add morphisms in a way compatible with the category structure. An additive category is a preadditive category in which finite coproducts are representable and have an \identity object." A preabelian category is an additive category in which kernels and cokernels exist, and finally an abelian category is one in which they behave sensibly. Richard Crew Homological Algebra Lecture 1 2 / 21 Definition A preadditive category is a category C for which each Hom set has an abelian group structure satisfying the following conditions: For all morphisms f : X ! X 0, g : Y ! Y 0 in C the maps 0 0 HomC(X ; Y ) ! HomC(X ; Y ); HomC(X ; Y ) ! HomC(X ; Y ) induced by f and g are homomorphisms. The composition maps HomC(Y ; Z) × HomC(X ; Y ) ! HomC(X ; Z)(g; f ) 7! g ◦ f are bilinear. The group law on the Hom sets will always be written additively, so the last condition means that (f + g) ◦ h = (f ◦ h) + (g ◦ h); f ◦ (g + h) = (f ◦ g) + (f ◦ h): Richard Crew Homological Algebra Lecture 1 3 / 21 We denote by 0 the identity of any Hom set, so the bilinearity of composition implies that f ◦ 0 = 0 ◦ f = 0 for any morphism f in C.
    [Show full text]
  • Classifying Categories the Jordan-Hölder and Krull-Schmidt-Remak Theorems for Abelian Categories
    U.U.D.M. Project Report 2018:5 Classifying Categories The Jordan-Hölder and Krull-Schmidt-Remak Theorems for Abelian Categories Daniel Ahlsén Examensarbete i matematik, 30 hp Handledare: Volodymyr Mazorchuk Examinator: Denis Gaidashev Juni 2018 Department of Mathematics Uppsala University Classifying Categories The Jordan-Holder¨ and Krull-Schmidt-Remak theorems for abelian categories Daniel Ahlsen´ Uppsala University June 2018 Abstract The Jordan-Holder¨ and Krull-Schmidt-Remak theorems classify finite groups, either as direct sums of indecomposables or by composition series. This thesis defines abelian categories and extends the aforementioned theorems to this context. 1 Contents 1 Introduction3 2 Preliminaries5 2.1 Basic Category Theory . .5 2.2 Subobjects and Quotients . .9 3 Abelian Categories 13 3.1 Additive Categories . 13 3.2 Abelian Categories . 20 4 Structure Theory of Abelian Categories 32 4.1 Exact Sequences . 32 4.2 The Subobject Lattice . 41 5 Classification Theorems 54 5.1 The Jordan-Holder¨ Theorem . 54 5.2 The Krull-Schmidt-Remak Theorem . 60 2 1 Introduction Category theory was developed by Eilenberg and Mac Lane in the 1942-1945, as a part of their research into algebraic topology. One of their aims was to give an axiomatic account of relationships between collections of mathematical structures. This led to the definition of categories, functors and natural transformations, the concepts that unify all category theory, Categories soon found use in module theory, group theory and many other disciplines. Nowadays, categories are used in most of mathematics, and has even been proposed as an alternative to axiomatic set theory as a foundation of mathematics.[Law66] Due to their general nature, little can be said of an arbitrary category.
    [Show full text]
  • Toposes Are Adhesive
    Toposes are adhesive Stephen Lack1 and Pawe lSoboci´nski2? 1 School of Computing and Mathematics, University of Western Sydney, Australia 2 Computer Laboratory, University of Cambridge, United Kingdom Abstract. Adhesive categories have recently been proposed as a cate- gorical foundation for facets of the theory of graph transformation, and have also been used to study techniques from process algebra for reason- ing about concurrency. Here we continue our study of adhesive categories by showing that toposes are adhesive. The proof relies on exploiting the relationship between adhesive categories, Brown and Janelidze’s work on generalised van Kampen theorems as well as Grothendieck’s theory of descent. Introduction Adhesive categories [11,12] and their generalisations, quasiadhesive categories [11] and adhesive hlr categories [6], have recently begun to be used as a natural and relatively simple general foundation for aspects of the theory of graph transfor- mation, following on from previous work in this direction [5]. By covering several “graph-like” categories, they serve as a useful framework in which to prove struc- tural properties. They have also served as a bridge allowing the introduction of techniques from process algebra to the field of graph transformation [7, 13]. From a categorical point of view, the work follows in the footsteps of dis- tributive and extensive categories [4] in the sense that they study a particular relationship between certain finite limits and finite colimits. Indeed, whereas distributive categories are concerned with the distributivity of products over co- products and extensive categories with the relationship between coproducts and pullbacks, the various flavours of adhesive categories consider the relationship between certain pushouts and pullbacks.
    [Show full text]
  • Appendix: Sites for Topoi
    Appendix: Sites for Topoi A Grothendieck topos was defined in Chapter III to be a category of sheaves on a small site---or a category equivalent to such a sheaf cate­ gory. For a given Grothendieck topos [; there are many sites C for which [; will be equivalent to the category of sheaves on C. There is usually no way of selecting a best or canonical such site. This Appendix will prove a theorem by Giraud, which provides conditions characterizing a Grothendieck topos, without any reference to a particular site. Gi­ raud's theorem depends on certain exactness properties which hold for colimits in any (cocomplete) topos, but not in more general co complete categories. Given these properties, the construction of a site for topos [; will use a generating set of objects and the Hom-tensor adjunction. The final section of this Appendix will apply Giraud's theorem to the comparison of different sites for a Grothendieck topos. 1. Exactness Conditions In this section we consider a category [; which has all finite limits and all small colimits. As always, such colimits may be expressed in terms of coproducts and coequalizers. We first discuss some special properties enjoyed by colimits in a topos. Coproducts. Let E = It, Ea be a coproduct of a family of objects Ea in [;, with the coproduct inclusions ia: Ea -> E. This coproduct is said to be disjoint when every ia is mono and for every 0: =I- (3 the pullback Ea XE E{3 is the initial object in [;. Thus in the category Sets the coproduct, often described as the disjoint union, is disjoint in this sense.
    [Show full text]
  • 7. Quotient Groups III We Know That the Kernel of a Group Homomorphism Is a Normal Subgroup
    7. Quotient groups III We know that the kernel of a group homomorphism is a normal subgroup. In fact the opposite is true, every normal subgroup is the kernel of a homomorphism: Theorem 7.1. If H is a normal subgroup of a group G then the map γ : G −! G=H given by γ(x) = xH; is a homomorphism with kernel H. Proof. Suppose that x and y 2 G. Then γ(xy) = xyH = xHyH = γ(x)γ(y): Therefore γ is a homomorphism. eH = H plays the role of the identity. The kernel is the inverse image of the identity. γ(x) = xH = H if and only if x 2 H. Therefore the kernel of γ is H. If we put all we know together we get: Theorem 7.2 (First isomorphism theorem). Let φ: G −! G0 be a group homomorphism with kernel K. Then φ[G] is a group and µ: G=H −! φ[G] given by µ(gH) = φ(g); is an isomorphism. If γ : G −! G=H is the map γ(g) = gH then φ(g) = µγ(g). The following triangle summarises the last statement: φ G - G0 - γ ? µ G=H Example 7.3. Determine the quotient group Z3 × Z7 Z3 × f0g Note that the quotient of an abelian group is always abelian. So by the fundamental theorem of finitely generated abelian groups the quotient is a product of abelian groups. 1 Consider the projection map onto the second factor Z7: π : Z3 × Z7 −! Z7 given by (a; b) −! b: This map is onto and the kernel is Z3 ×f0g.
    [Show full text]
  • An Introduction to Homological Algebra
    An Introduction to Homological Algebra Aaron Marcus September 21, 2007 1 Introduction While it began as a tool in algebraic topology, the last fifty years have seen homological algebra grow into an indispensable tool for algebraists, topologists, and geometers. 2 Preliminaries Before we can truly begin, we must first introduce some basic concepts. Throughout, R will denote a commutative ring (though very little actually depends on commutativity). For the sake of discussion, one may assume either that R is a field (in which case we will have chain complexes of vector spaces) or that R = Z (in which case we will have chain complexes of abelian groups). 2.1 Chain Complexes Definition 2.1. A chain complex is a collection of {Ci}i∈Z of R-modules and maps {di : Ci → Ci−1} i called differentials such that di−1 ◦ di = 0. Similarly, a cochain complex is a collection of {C }i∈Z of R-modules and maps {di : Ci → Ci+1} such that di+1 ◦ di = 0. di+1 di ... / Ci+1 / Ci / Ci−1 / ... Remark 2.2. The only difference between a chain complex and a cochain complex is whether the maps go up in degree (are of degree 1) or go down in degree (are of degree −1). Every chain complex is canonically i i a cochain complex by setting C = C−i and d = d−i. Remark 2.3. While we have assumed complexes to be infinite in both directions, if a complex begins or ends with an infinite number of zeros, we can suppress these zeros and discuss finite or bounded complexes.
    [Show full text]
  • Weekly Homework 10
    Weekly Homework 10 Instructor: David Carchedi Topos Theory July 12, 2013 July 12, 2013 Problem 1. Epimorphisms and Monomorphisms in a Topos Let E be a topos. (a) Let m : A ! B be a monomorphism in E ; and let φm : B ! Ω be a map to the subobject classifier of E classifying m; and similarly denote by φB the map classifying the maximal subobject of B (i.e. idB). Denote by m0 : E = lim (B Ω) ! B − ⇒ 0 the equalizer diagram for φm and φB: Show that m and m represent the same subobject of B. Deduce that a morphism in a topos is an isomorphism if and only if it is both a monomorphism and an epimorphism. (b) Let f : X ! Y be a map of sets. Denote by X ×Y X ⇒ X the kernel pair of f and by a Y ⇒ Y Y X the cokernel pair of f: Show that the coequalizer of the kernel pair and the equalizer of the cokernel pair both coincide with the the set f (X) : Deduce that for f : X ! Y a map in E ; ! a X ! lim Y Y Y ! Y − ⇒ X and X ! lim (X × X X) ! Y −! Y ⇒ are both factorizations of f by an epimorphism follows by a monomorphism. (c) Show that the factorization of a morphism f in E into an epimorphism followed by a monomorphism is unique up to isomorphism. Deduce that f : X ! Y is an epimor- phism, if and only if the canonical map lim (X × X X) ! Y − Y ⇒ is an isomorphism.
    [Show full text]