7 Homomorphisms and the First Isomorphism Theorem

Total Page:16

File Type:pdf, Size:1020Kb

7 Homomorphisms and the First Isomorphism Theorem 7 Homomorphisms and the First Isomorphism Theorem In each of our examples of factor groups, we not only computed the factor group but identified it as isomorphic to an already well-known group. Each of these examples is a special case of a very important theorem: the first isomorphism theorem. This theorem provides a universal way of defining and identifying factor groups. Moreover, it has versions applied to all manner of algebraic structures, perhaps the most famous being the rank–nullity theorem of linear algebra. In order to discuss this theorem, we need to consider two subgroups related to any group homomorphism. 7.1 Homomorphisms, Kernels and Images Definition 7.1. Let f : G ! L be a homomorphism of multiplicative groups. The kernel and image of f are the sets ker f = fg 2 G : f(g) = eLg Im f = ff(g) : g 2 Gg Note that ker f ⊆ G while Im f ⊆ L. Similar notions The image of a function is simply its range Im f = range f, so this is nothing new. You saw the concept of kernel in linear algebra. For example if A 2 M3×2(R) is a matrix, then we can define the linear map 2 3 LA : R ! R : x 7! Ax In this case, the kernel of LA is precisely the nullspace of A. Similarly, the image of LA is the column- space of A. All we are doing in this section is generalizing an old discussion from linear algebra. Theorem 7.2. Suppose that f : G ! L is a homomorphism. Then 1. f(eG) = eL 2. 8g 2 G, (f(g))−1 = f(g−1) 3. ker f / G 4. Im f ≤ L Proof. 1. Suppose that g 2 G. Then f(g) = f(geG) = f(g)f(eG) =) eL = f(eG) by the left cancellation law. 2. Suppose that g 2 G. Then −1 −1 −1 −1 eL = f(eG) = f(gg ) = f(g)f(g ) =) (f(g)) = f(g ) 3. First suppose that k1, k2 2 ker f. Then f(k1k2) = f(k1)f(k2) = eL =) k1k2 2 ker f 1 and −1 −1 −1 f(k1 ) = (f(k1)) = eL =) k1 2 ker f It follows that ker f is a subgroup of G. To see that ker f is normal, recall, let g 2 G and k 2 ker f, then −1 −1 −1 f(gkg ) = f(g)f(k)f(g) = eL =) gkg 2 ker f This is one of the conditions equaivalent to ker f / G. 4. Let f(g1), f(g2) 2 Im f. Then f(g1)f(g2) = f(g1g2) 2 Im f and −1 −1 (f(g1)) = f(g1 ) 2 Im f Thus Im f is a subgroup of L. Examples 1. Recall that the trace function tr : Mn(R) ! R is a homomorphism of additive groups. These are Abelian groups and so the kernel of tr is automatically normal without needing the above 1 Theorem. The additive group of trace-free matrices is a normal subgroup of (Mn(R), +): ker tr = fA 2 Mn(R) : tr A = 0g / Mn(R) 2. Let f : Z36 ! Z20 be defined by f(n) = 5n (mod 20). The kernel of f is the subgroup ker f = n : 5n ≡ 0 (mod 20)g = f0, 4, 8, 12, 16 / Z36 This is simply the cyclic group C5. ( 1 if s even, 3. The map sgn : Sn ! f1, −1g given by sgn(s) = is a homomorphism of −1 if s odd, groups. Here f1, −1g is a group under multiplication. Since the identity in the target group is 1, we have ker sgn = An, the alternating group of even permutations in Sn. Indeed An / Sn. × 4. det : GLn(R) ! R is a homomorphism and so ker det = SLn(R) is a normal subgroup SLn(R) / GLn(R). Compare this with example 1. All these examples should suggest an idea to you. Not only is every kernel a normal subgroup, the converse is also true: any normal subgroup is the kernel of some homomorphism. This (loosely) is the 1st isomorphism Theorem to which we will come shortly. It may seem counter-intuiutive, but the homomorphism approach actually makes calculations with factor groups easier! As the next lemma shows, there is a very easy correspondence between the cosets of the kernel of a homomorphism, and the elements of the image. 1 This kernel is often written sln(R) (for the special-linear algebra), and is very much related to the special linear group A tr A SLn(R). Indeed the expression det e = e shows that matrix exponentiation is a map exp : sln(R) ! SLn(R). 2 Lemma 7.3. Suppose that f : G ! L is a homomorphism. Then g1 ker f = g2 ker f () f(g1) = f(g2) Proof. For all g1, g2 2 G, we have −1 g1 ker f = g2 ker f () g2 g1 2 ker f −1 () f(g2 g1) = eL −1 () f(g2) f(g1) = eL () f(g1) = f(g2) . The lemma tells us there is a bijective correspondence between the factor group G and the ker f image Im f. In the next theorem, we put this to use to help us determine what can possibly be a homomorphism. Theorem 7.4. Let f : G ! L be a homomorphism. 1. If G is a finite group then Im f is a finite subgroup of L and its order divides that of G. More succinctly: jGj < ¥ =) jIm fj jGj. 2. Similarly, jLj < ¥ =) jIm fj jLj. Note that we are only assuming one of the groups to be finite in each case. Proof. 1. If G is a finite group, then Im f is a finite subgroup of L. Lemma 7.3 tells us that f(g1) = f(g2) () g1 ker f = g2 ker f whence there are precisely as many elements of Im f as there are distinct cosets of ker f in G. But this is the definition of the index: jIm fj = (G : ker f) Given that G is finite, the discussion following Lagrange’s Theorem quickly says that jGj = jIm fj · jker fj =) jIm fj jGj 2. This is immediate from Lagrange’s Theorem: Im f is a subgroup of a finite group L and so the order of Im f divides the order of L. Examples 1. Suppose that jGj = 17 and jLj = 13. How many distinct homomorphisms are there f : G ! L? If f were such a homomorphism, the Theorem says that jIm fj divides both jGj and jLj. But the only such positive integer is 1. Since the image of any homomorphism always contains the identity (f(eG) = eL), it follows that there is only one homomorphism! f must be the function defined by f(g) = eL, 8g 2 G. More generally, if gcd(jGj , jLj) = 1, then the only homomorphism f : G ! L is the trivial function f : g 7! eL. 3 2. How many homomorphisms are there f : Z4 ! S3? Again the Theorem tells us that jIm fj divides 4 = jZ4j and 6 = jS3j: thus jIm fj is either 1 or 2. If jIm fj = 2 then Im f is a subgroup of order 2 of S3. There are exactly 3 of these: fe, mig for each i = 1, 2, 3. Since a homomorphism must map the identity to the identity we therefore have the homomorphisms 001 0 e 1 001 0 e 1 001 0 e 1 B1C Bm1C B1C Bm2C B1C Bm3C f : B C 7! B C , f : B C 7! B C , f : B C 7! B C . 1 @2A @ e A 2 @2A @ e A 3 @2A @ e A 3 m1 3 m2 3 m3 Finally if Im f has one element then f is the trivial homomorphism f(z) = e, 8z 2 Z4. There are therefore 4 distinct homomorphisms. Theorem 7.5. There are exactly d = gcd(m, n) distinct homomorphisms f : Zm ! Zn, defined by n f(x) = k x (mod n) where k = 0, . , d − 1 d There are several ways of proving this: one is in the homework. We use the above discussion on the cardinality of the image. Proof. Suppose f : Zm ! Zn is a homomorphism and d = gcd(m, n). Then jIm fj d. However Im f 2 is a subgroup of Zn which is necessarily cyclic. Recalling the structure of cyclic groups we see that n must be a subgroup of the unique cyclic subgroup of order d in Zn. This is generated by d . The only possible choices for our homomorphisms are therefore3 n f (x) = k x (mod n) k d for each k = 0, 1, 2, . , d − 1. It remains only to check that these are well-defined functions. For this, note that for any j 2 Z we have, n n m n f (x + jm) = k (x + jm) ≡ k x + knj ≡ k x (mod n) (since m 2 Z) k d d d d d = fk(x) Example Suppose that f : Z12 ! Z20 is a homomorphism. Since gcd(12, 20) = 4, the image of f must be a subgroup of C4 = h5i ≤ Z20. There are four choices: f0(x) = 0, f1(x) = 5x, f2(x) = 10x, f3(x) = 15x (mod 20) Reversing the argument, we see that there are also four distinct homomorphisms y : Z20 ! Z12, namely y0(x) = 0, y1(x) = 3x, y2(x) = 6x, y3(x) = 9x (mod 12) 2 Recall that a cyclic group Zn has exactly one subgroup, which is itself cyclic, of each order d which divides n. Therefore if Im f is a subgroup of Zn, then it is cyclic.
Recommended publications
  • Chapter 4. Homomorphisms and Isomorphisms of Groups
    Chapter 4. Homomorphisms and Isomorphisms of Groups 4.1 Note: We recall the following terminology. Let X and Y be sets. When we say that f is a function or a map from X to Y , written f : X ! Y , we mean that for every x 2 X there exists a unique corresponding element y = f(x) 2 Y . The set X is called the domain of f and the range or image of f is the set Image(f) = f(X) = f(x) x 2 X . For a set A ⊆ X, the image of A under f is the set f(A) = f(a) a 2 A and for a set −1 B ⊆ Y , the inverse image of B under f is the set f (B) = x 2 X f(x) 2 B . For a function f : X ! Y , we say f is one-to-one (written 1 : 1) or injective when for every y 2 Y there exists at most one x 2 X such that y = f(x), we say f is onto or surjective when for every y 2 Y there exists at least one x 2 X such that y = f(x), and we say f is invertible or bijective when f is 1:1 and onto, that is for every y 2 Y there exists a unique x 2 X such that y = f(x). When f is invertible, the inverse of f is the function f −1 : Y ! X defined by f −1(y) = x () y = f(x). For f : X ! Y and g : Y ! Z, the composite g ◦ f : X ! Z is given by (g ◦ f)(x) = g(f(x)).
    [Show full text]
  • Group Homomorphisms
    1-17-2018 Group Homomorphisms Here are the operation tables for two groups of order 4: · 1 a a2 + 0 1 2 1 1 a a2 0 0 1 2 a a a2 1 1 1 2 0 a2 a2 1 a 2 2 0 1 There is an obvious sense in which these two groups are “the same”: You can get the second table from the first by replacing 0 with 1, 1 with a, and 2 with a2. When are two groups the same? You might think of saying that two groups are the same if you can get one group’s table from the other by substitution, as above. However, there are problems with this. In the first place, it might be very difficult to check — imagine having to write down a multiplication table for a group of order 256! In the second place, it’s not clear what a “multiplication table” is if a group is infinite. One way to implement a substitution is to use a function. In a sense, a function is a thing which “substitutes” its output for its input. I’ll define what it means for two groups to be “the same” by using certain kinds of functions between groups. These functions are called group homomorphisms; a special kind of homomorphism, called an isomorphism, will be used to define “sameness” for groups. Definition. Let G and H be groups. A homomorphism from G to H is a function f : G → H such that f(x · y)= f(x) · f(y) forall x,y ∈ G.
    [Show full text]
  • The General Linear Group
    18.704 Gabe Cunningham 2/18/05 [email protected] The General Linear Group Definition: Let F be a field. Then the general linear group GLn(F ) is the group of invert- ible n × n matrices with entries in F under matrix multiplication. It is easy to see that GLn(F ) is, in fact, a group: matrix multiplication is associative; the identity element is In, the n × n matrix with 1’s along the main diagonal and 0’s everywhere else; and the matrices are invertible by choice. It’s not immediately clear whether GLn(F ) has infinitely many elements when F does. However, such is the case. Let a ∈ F , a 6= 0. −1 Then a · In is an invertible n × n matrix with inverse a · In. In fact, the set of all such × matrices forms a subgroup of GLn(F ) that is isomorphic to F = F \{0}. It is clear that if F is a finite field, then GLn(F ) has only finitely many elements. An interesting question to ask is how many elements it has. Before addressing that question fully, let’s look at some examples. ∼ × Example 1: Let n = 1. Then GLn(Fq) = Fq , which has q − 1 elements. a b Example 2: Let n = 2; let M = ( c d ). Then for M to be invertible, it is necessary and sufficient that ad 6= bc. If a, b, c, and d are all nonzero, then we can fix a, b, and c arbitrarily, and d can be anything but a−1bc. This gives us (q − 1)3(q − 2) matrices.
    [Show full text]
  • Kernel and Image
    Math 217 Worksheet 1 February: x3.1 Professor Karen E Smith (c)2015 UM Math Dept licensed under a Creative Commons By-NC-SA 4.0 International License. T Definitions: Given a linear transformation V ! W between vector spaces, we have 1. The source or domain of T is V ; 2. The target of T is W ; 3. The image of T is the subset of the target f~y 2 W j ~y = T (~x) for some x 2 Vg: 4. The kernel of T is the subset of the source f~v 2 V such that T (~v) = ~0g. Put differently, the kernel is the pre-image of ~0. Advice to the new mathematicians from an old one: In encountering new definitions and concepts, n m please keep in mind concrete examples you already know|in this case, think about V as R and W as R the first time through. How does the notion of a linear transformation become more concrete in this special case? Think about modeling your future understanding on this case, but be aware that there are other important examples and there are important differences (a linear map is not \a matrix" unless *source and target* are both \coordinate spaces" of column vectors). The goal is to become comfortable with the abstract idea of a vector space which embodies many n features of R but encompasses many other kinds of set-ups. A. For each linear transformation below, determine the source, target, image and kernel. 2 3 x1 3 (a) T : R ! R such that T (4x25) = x1 + x2 + x3.
    [Show full text]
  • Derived Functors and Homological Dimension (Pdf)
    DERIVED FUNCTORS AND HOMOLOGICAL DIMENSION George Torres Math 221 Abstract. This paper overviews the basic notions of abelian categories, exact functors, and chain complexes. It will use these concepts to define derived functors, prove their existence, and demon- strate their relationship to homological dimension. I affirm my awareness of the standards of the Harvard College Honor Code. Date: December 15, 2015. 1 2 DERIVED FUNCTORS AND HOMOLOGICAL DIMENSION 1. Abelian Categories and Homology The concept of an abelian category will be necessary for discussing ideas on homological algebra. Loosely speaking, an abelian cagetory is a type of category that behaves like modules (R-mod) or abelian groups (Ab). We must first define a few types of morphisms that such a category must have. Definition 1.1. A morphism f : X ! Y in a category C is a zero morphism if: • for any A 2 C and any g; h : A ! X, fg = fh • for any B 2 C and any g; h : Y ! B, gf = hf We denote a zero morphism as 0XY (or sometimes just 0 if the context is sufficient). Definition 1.2. A morphism f : X ! Y is a monomorphism if it is left cancellative. That is, for all g; h : Z ! X, we have fg = fh ) g = h. An epimorphism is a morphism if it is right cancellative. The zero morphism is a generalization of the zero map on rings, or the identity homomorphism on groups. Monomorphisms and epimorphisms are generalizations of injective and surjective homomorphisms (though these definitions don't always coincide). It can be shown that a morphism is an isomorphism iff it is epic and monic.
    [Show full text]
  • Math 120 Homework 3 Solutions
    Math 120 Homework 3 Solutions Xiaoyu He, with edits by Prof. Church April 21, 2018 [Note from Prof. Church: solutions to starred problems may not include all details or all portions of the question.] 1.3.1* Let σ be the permutation 1 7! 3; 2 7! 4; 3 7! 5; 4 7! 2; 5 7! 1 and let τ be the permutation 1 7! 5; 2 7! 3; 3 7! 2; 4 7! 4; 5 7! 1. Find the cycle decompositions of each of the following permutations: σ; τ; σ2; στ; τσ; τ 2σ. The cycle decompositions are: σ = (135)(24) τ = (15)(23)(4) σ2 = (153)(2)(4) στ = (1)(2534) τσ = (1243)(5) τ 2σ = (135)(24): 1.3.7* Write out the cycle decomposition of each element of order 2 in S4. Elements of order 2 are also called involutions. There are six formed from a single transposition, (12); (13); (14); (23); (24); (34), and three from pairs of transpositions: (12)(34); (13)(24); (14)(23). 3.1.6* Define ' : R× ! {±1g by letting '(x) be x divided by the absolute value of x. Describe the fibers of ' and prove that ' is a homomorphism. The fibers of ' are '−1(1) = (0; 1) = fall positive realsg and '−1(−1) = (−∞; 0) = fall negative realsg. 3.1.7* Define π : R2 ! R by π((x; y)) = x + y. Prove that π is a surjective homomorphism and describe the kernel and fibers of π geometrically. The map π is surjective because e.g. π((x; 0)) = x. The kernel of π is the line y = −x through the origin.
    [Show full text]
  • Categories, Functors, and Natural Transformations I∗
    Lecture 2: Categories, functors, and natural transformations I∗ Nilay Kumar June 4, 2014 (Meta)categories We begin, for the moment, with rather loose definitions, free from the technicalities of set theory. Definition 1. A metagraph consists of objects a; b; c; : : :, arrows f; g; h; : : :, and two operations, as follows. The first is the domain, which assigns to each arrow f an object a = dom f, and the second is the codomain, which assigns to each arrow f an object b = cod f. This is visually indicated by f : a ! b. Definition 2. A metacategory is a metagraph with two additional operations. The first is the identity, which assigns to each object a an arrow Ida = 1a : a ! a. The second is the composition, which assigns to each pair g; f of arrows with dom g = cod f an arrow g ◦ f called their composition, with g ◦ f : dom f ! cod g. This operation may be pictured as b f g a c g◦f We require further that: composition is associative, k ◦ (g ◦ f) = (k ◦ g) ◦ f; (whenever this composition makese sense) or diagrammatically that the diagram k◦(g◦f)=(k◦g)◦f a d k◦g f k g◦f b g c commutes, and that for all arrows f : a ! b and g : b ! c, we have 1b ◦ f = f and g ◦ 1b = g; or diagrammatically that the diagram f a b f g 1b g b c commutes. ∗This talk follows [1] I.1-4 very closely. 1 Recall that a diagram is commutative when, for each pair of vertices c and c0, any two paths formed from direct edges leading from c to c0 yield, by composition of labels, equal arrows from c to c0.
    [Show full text]
  • Normal Subgroups of the General Linear Groups Over Von Neumann Regular Rings L
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 96, Number 2, February 1986 NORMAL SUBGROUPS OF THE GENERAL LINEAR GROUPS OVER VON NEUMANN REGULAR RINGS L. N. VASERSTEIN1 ABSTRACT. Let A be a von Neumann regular ring or, more generally, let A be an associative ring with 1 whose reduction modulo its Jacobson radical is von Neumann regular. We obtain a complete description of all subgroups of GLn A, n > 3, which are normalized by elementary matrices. 1. Introduction. For any associative ring A with 1 and any natural number n, let GLn A be the group of invertible n by n matrices over A and EnA the subgroup generated by all elementary matrices x1'3, where 1 < i / j < n and x E A. In this paper we describe all subgroups of GLn A normalized by EnA for any von Neumann regular A, provided n > 3. Our description is standard (see Bass [1] and Vaserstein [14, 16]): a subgroup H of GL„ A is normalized by EnA if and only if H is of level B for an ideal B of A, i.e. E„(A, B) C H C Gn(A, B). Here Gn(A, B) is the inverse image of the center of GL„(,4/S) (when n > 2, this center consists of scalar invertible matrices over the center of the ring A/B) under the canonical homomorphism GL„ A —►GLn(A/B) and En(A, B) is the normal subgroup of EnA generated by all elementary matrices in Gn(A, B) (when n > 3, the group En(A, B) is generated by matrices of the form (—y)J'lx1'Jy:i''1 with x € B,y £ A,l < i ^ j < n, see [14]).
    [Show full text]
  • Discrete Topological Transformations for Image Processing Michel Couprie, Gilles Bertrand
    Discrete Topological Transformations for Image Processing Michel Couprie, Gilles Bertrand To cite this version: Michel Couprie, Gilles Bertrand. Discrete Topological Transformations for Image Processing. Brimkov, Valentin E. and Barneva, Reneta P. Digital Geometry Algorithms, 2, Springer, pp.73-107, 2012, Lecture Notes in Computational Vision and Biomechanics, 978-94-007-4174-4. 10.1007/978-94- 007-4174-4_3. hal-00727377 HAL Id: hal-00727377 https://hal-upec-upem.archives-ouvertes.fr/hal-00727377 Submitted on 3 Sep 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Chapter 3 Discrete Topological Transformations for Image Processing Michel Couprie and Gilles Bertrand Abstract Topology-based image processing operators usually aim at trans- forming an image while preserving its topological characteristics. This chap- ter reviews some approaches which lead to efficient and exact algorithms for topological transformations in 2D, 3D and grayscale images. Some transfor- mations which modify topology in a controlled manner are also described. Finally, based on the framework of critical kernels, we show how to design a topologically sound parallel thinning algorithm guided by a priority function. 3.1 Introduction Topology-preserving operators, such as homotopic thinning and skeletoniza- tion, are used in many applications of image analysis to transform an object while leaving unchanged its topological characteristics.
    [Show full text]
  • Irreducible Representations of Finite Monoids
    U.U.D.M. Project Report 2019:11 Irreducible representations of finite monoids Christoffer Hindlycke Examensarbete i matematik, 30 hp Handledare: Volodymyr Mazorchuk Examinator: Denis Gaidashev Mars 2019 Department of Mathematics Uppsala University Irreducible representations of finite monoids Christoffer Hindlycke Contents Introduction 2 Theory 3 Finite monoids and their structure . .3 Introductory notions . .3 Cyclic semigroups . .6 Green’s relations . .7 von Neumann regularity . 10 The theory of an idempotent . 11 The five functors Inde, Coinde, Rese,Te and Ne ..................... 11 Idempotents and simple modules . 14 Irreducible representations of a finite monoid . 17 Monoid algebras . 17 Clifford-Munn-Ponizovski˘ıtheory . 20 Application 24 The symmetric inverse monoid . 24 Calculating the irreducible representations of I3 ........................ 25 Appendix: Prerequisite theory 37 Basic definitions . 37 Finite dimensional algebras . 41 Semisimple modules and algebras . 41 Indecomposable modules . 42 An introduction to idempotents . 42 1 Irreducible representations of finite monoids Christoffer Hindlycke Introduction This paper is a literature study of the 2016 book Representation Theory of Finite Monoids by Benjamin Steinberg [3]. As this book contains too much interesting material for a simple master thesis, we have narrowed our attention to chapters 1, 4 and 5. This thesis is divided into three main parts: Theory, Application and Appendix. Within the Theory chapter, we (as the name might suggest) develop the necessary theory to assist with finding irreducible representations of finite monoids. Finite monoids and their structure gives elementary definitions as regards to finite monoids, and expands on the basic theory of their structure. This part corresponds to chapter 1 in [3]. The theory of an idempotent develops just enough theory regarding idempotents to enable us to state a key result, from which the principal result later follows almost immediately.
    [Show full text]
  • Variational Problems on Flows of Diffeomorphisms for Image Matching
    QUARTERLY OF APPLIED MATHEMATICS VOLUME LVI, NUMBER 3 SEPTEMBER 1998, PAGES 587-600 VARIATIONAL PROBLEMS ON FLOWS OF DIFFEOMORPHISMS FOR IMAGE MATCHING By PAUL DUPUIS (LCDS, Division of Applied Mathematics, Brown University, Providence, RI), ULF GRENANDER (Division of Applied Mathematics, Brown University, Providence, Rl), AND MICHAEL I. MILLER (Dept. of Electrical Engineering, Washington University, St. Louis, MO) Abstract. This paper studies a variational formulation of the image matching prob- lem. We consider a scenario in which a canonical representative image T is to be carried via a smooth change of variable into an image that is intended to provide a good fit to the observed data. The images are all defined on an open bounded set GcR3, The changes of variable are determined as solutions of the nonlinear Eulerian transport equation ==v(rj(s;x),s), r)(t;x)=x, (0.1) with the location 77(0;x) in the canonical image carried to the location x in the deformed image. The variational problem then takes the form arg mm ;||2 + [ |Tor?(0;a;) - D(x)\2dx (0.2) JG where ||v|| is an appropriate norm on the velocity field v(-, •), and the second term at- tempts to enforce fidelity to the data. In this paper we derive conditions under which the variational problem described above is well posed. The key issue is the choice of the norm. Conditions are formulated under which the regularity of v(-, ■) imposed by finiteness of the norm guarantees that the associated flow is supported on a space of diffeomorphisms. The problem (0.2) can Received March 15, 1996.
    [Show full text]
  • The Fundamental Homomorphism Theorem
    Lecture 4.3: The fundamental homomorphism theorem Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4120, Modern Algebra M. Macauley (Clemson) Lecture 4.3: The fundamental homomorphism theorem Math 4120, Modern Algebra 1 / 10 Motivating example (from the previous lecture) Define the homomorphism φ : Q4 ! V4 via φ(i) = v and φ(j) = h. Since Q4 = hi; ji: φ(1) = e ; φ(−1) = φ(i 2) = φ(i)2 = v 2 = e ; φ(k) = φ(ij) = φ(i)φ(j) = vh = r ; φ(−k) = φ(ji) = φ(j)φ(i) = hv = r ; φ(−i) = φ(−1)φ(i) = ev = v ; φ(−j) = φ(−1)φ(j) = eh = h : Let's quotient out by Ker φ = {−1; 1g: 1 i K 1 i iK K iK −1 −i −1 −i Q4 Q4 Q4=K −j −k −j −k jK kK j k jK j k kK Q4 organized by the left cosets of K collapse cosets subgroup K = h−1i are near each other into single nodes Key observation Q4= Ker(φ) =∼ Im(φ). M. Macauley (Clemson) Lecture 4.3: The fundamental homomorphism theorem Math 4120, Modern Algebra 2 / 10 The Fundamental Homomorphism Theorem The following result is one of the central results in group theory. Fundamental homomorphism theorem (FHT) If φ: G ! H is a homomorphism, then Im(φ) =∼ G= Ker(φ). The FHT says that every homomorphism can be decomposed into two steps: (i) quotient out by the kernel, and then (ii) relabel the nodes via φ. G φ Im φ (Ker φ C G) any homomorphism q i quotient remaining isomorphism process (\relabeling") G Ker φ group of cosets M.
    [Show full text]