Changing Gears: the Birth of American Industry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Occasionem Cognosce — Francis Cabot Lowell
From AFIO's The Intelligencer Association of Former Intelligence Officers 7700 Leesburg Pike, Suite 324 Journal of U.S. Intelligence Studies Falls Church, Virginia 22043 Web: www.afio.com * E-mail: [email protected] Volume 26 • Number 2 • Winter-Spring 2021 $15 single copy price The idea to look abroad for both individuals When Intelligence Made a Difference who had specialized knowledge of new technologies and obtaining this knowledge by other means was — 19th Century — explored by Alexander Hamilton. In 1791, he wrote on the topic at length in a section of his Report on Manu- factures, titled “The encouragement of New Inventions and Discoveries at Home and of the Introduction Into the United States of Such as May have Been Made in Other Countries, Particularly Those Which Relate to Machinery.”2 Occasionem Cognosce The Embargo of 1807 Economic conditions worsened for the US during Francis Cabot Lowell the Napoleonic Wars (1803-15) when hostilities between Britain and France restricted the US’s access to trade routes across the Atlantic. In 1804, an author by Joel Wickwire of the Federalist Papers, James Madison, wrote of this to James Monroe claiming Great Britain is searching t the end of the 18th century, the British colo- and seizing all manners of cargo and persons.3 Ten- nies in North America were largely an agrarian sions culminated in the “Chesapeake Affair” when economy. Most critical manufactured goods the USS Chesapeake was shot upon and surrendered to A the British, in clear violation of American sovereignty. were imported from Europe, traded for agricultural products. -
Vertov: Between the Organism and the Machine
Vertov: Between the Organism and the Machine MALCOLM TURVEY In every living being, we find that those things which we call parts are inseparable from the Whole to such an extent, that they can only be conceived in and with the latter; and the parts can neither be the measure of the Whole, nor the Whole be the measure of the parts. — Goethe I The standard reading of the work of Dziga Vertov argues that, due to his affiliation with the Constructivist group of avant-garde artists that emerged in the Soviet Union after the Bolshevik Revolution of 1917, Vertov employed the machine as the model for both his films and the new Soviet society depicted in them. In The Material Ghost, Gilberto Perez writes: [Vertov’s] Man with a Movie Camera [1929] pictures the city as a vast machine seen by the omnipresent seeing machine that is the camera. The structure of Vertov’s films, their aggregate space pieced together in the cutting room out of all the manifold things the mechanical eye can see, suggests the constructions of the engineer so prized in [the] new Soviet society.1 The centrality of the machine to Constructivist theory and practice, as well as to Vertov’s work, is beyond dispute. However, it has obscured the influence of other models on Vertov as he came to make Man with a Movie Camera in the late 1920s, including one that is often thought of as antithetical to the machine, namely, the organism. Most obviously, Man with a Movie Camera is structured according to the daily cycle of a complex living organism such as an animal or human being—sleep, 1. -
Samuel B. Morse, Painter (PDF)
Motto/Logo ( Nicole Greaney) Thesis (Group) Influences and Comparison to Leonardo DaVinci (Joe Fiore) Biography (Traci Gottlieb) Works (Nicole Greaney) Slide Sh ow o f Wor ks /Des igns (Nico le G reaney ) Place (Kristen Alldredge) Itinerary (()Traci Gottlieb) Lesson Plan (Kristen Alldredge) Mock Web Site (Joe Fiore) Web Page for Guidebook (Traci Gottlieb) Conclusion (Group) Without Samuel Finley Breese Morse’s expansive imagination, consequent creatiiivity and perseverance developed through artistry, he would not have been cappgable of making his other contributions to the world, such as Locust Grove and the telegraph. Morse is the American Leonardo because he is an ideal Renaissance Man, with mastery in the dualisms of art and science. •Why an artist? • as a boy, favorite activity was drawing • while attending Yale , drew pictures of classmates/sold them for spending money • setbacks: Self Portrait • art still new in America, not much of a demand • ititimpatient, expect tdittihed instant riches • acquired an enhanced sense of determination • eventually led to his success as an inventor • became ppyrominently known as an artist in the 1820s and 1830s • foundation of the National Academy of Design • offered a position as a professor of painting/sculpture at NYU • an idea caught Morse’s imagination • struggled with invention; never gave up • SUCCESS • purchase of Locust Grove • remembered as an inventor, not an artist.. Self Portrait Landscape Paintings Thomas Cole Portraits Inventions • Natural Talent Samuel Morse • Hudson River School of Art • European Styles Morse as a Renaissance Man Mastery of the “duality of science and art” Inner genius of the painter/inventor Further Comparisons 1808. -
The Industrial Revolution in America
DO NOT EDIT--Changes must be made through “File info” CorrectionKey=TX-A SECTION 1 The Industrial TEKS 5B, 5D, 7A, 11A, 12C, 12D, 13A, Revolution in 13B, 14A, 14B, 27A, 27D, 28B What You Will Learn… America Main Ideas 1. The invention of new machines in Great Britain If YOU were there... led to the beginning of the You live in a small Pennsylvania town in the 1780s. Your father is a Industrial Revolution. 2. The development of new blacksmith, but you earn money for the family, too. You raise sheep machines and processes and spin their wool into yarn. Your sisters knit the yarn into warm brought the Industrial Revolu- tion to the United States. wool gloves and mittens. You sell your products to merchants in the 3. Despite a slow start in manu- city. But now you hear that someone has invented machines that facturing, the United States made rapid improvements can spin thread and make cloth. during the War of 1812. Would you still be able to earn the same amount The Big Idea of money for your family? Why? The Industrial Revolution trans- formed the way goods were produced in the United States. BUILDING BACKOU GR ND In the early 1700s making goods depend- ed on the hard work of humans and animals. It had been that way for Key Terms and People hundreds of years. Then new technology brought a change so radical Industrial Revolution, p. 385 that it is called a revolution. It began in Great Britain and soon spread to textiles, p. -
DRAFT – Subject to NIST Approval 1.5 IMPACTS of AUTOMATION on PRECISION1 M. Alkan Donmez and Johannes A. Soons Manufacturin
DRAFT – Subject to NIST approval 1.5 IMPACTS OF AUTOMATION ON PRECISION1 M. Alkan Donmez and Johannes A. Soons Manufacturing Engineering Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 ABSTRACT Automation has significant impacts on the economy and the development and use of technology. In this section, the impacts of automation on precision, which directly influences science, technology, and the economy, are discussed. As automation enables improved precision, precision also improves automation. Followed by the definition of precision and the factors affecting precision, the relationship between precision and automation is described. This section concludes with specific examples of how automation has improved the precision of manufacturing processes and manufactured products over the last decades. 1.5.1 What is precision Precision is the closeness of agreement between a series of individual measurements, values, or results. For a manufacturing process, precision describes how well the process is capable of producing products with identical properties. The properties of interest can be the dimensions of the product, its shape, surface finish, color, weight, etc. For a device or instrument, precision describes the invariance of its output when operated with the same set of inputs. Measurement precision is defined by the International Vocabulary of Metrology [1] as the "closeness of agreement between indications obtained by replicate measurements on the same or similar objects under specified conditions." In this definition, the "specified conditions" describe whether precision is associated with the repeatability or the reproducibility of the measurement process. Repeatability is the closeness of the agreement between results of successive measurements of the same quantity carried out under the same conditions. -
{Septcmber 1966} A. J. Davis
{septcmber 1966} SA TURN IB lliFLIGHT PHOTOGRAPHIC lNSTRUMENTATION SYSTEM by A. J. Davis t>,L. ttas&ler, Jr. MEASURING BRANCH ASTRIONICS LA.BORATORY GEORGE C. MARSHALL SPACE FLIGHT CENTER Huntsville, Alabama Fon INTERNA L USE ONLY MSFC • Form \094 (Mny 1961) GEORGE C. MARSHALL SPACE FLIGHT CENTER SATURN IB INFLIGHT PHOTOGRAPHIC INSTRUMENTATION SYSTEM By A. J. Davis P. L. Hassler, Jr. Measuring Branch Astrionics Laboratory George C. Marshall Space Flight Center H1mtsville, Alabama ABSTRACT This Internal Note presents the development of the Saturn inflight photo graphic instrumentation program from its original development req_uirement concept to the flight hardware application on Saturn vehicles. A comprehensive description of the inflight photographic instrumentation system is given along with data concerning testing, operation, application, and evaluation of the system after recovery. This Internal Note shows that the system has been successfully developed, that valuable information has been obtained from film retrieved from recovered capsules, and that the system can be used·with a high degree of reliability. NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER INTERNAL NOTE SATURN ID INFLIGHT PHOTOGRAPHIC WSTRUMENTATION SYSTEM by A. J. Davis P. L. Hassler, Jr. ASTRIONICS LABORATORY PROPULSION AND VEHICLE ENGINEERING LABORATORY TABLE Or CONTENTS Fage SECTION I. INTRODUCTION 1 A. Project Hi.story 1 B. Inflight Photographic Instru�entation System 1 SECTION II. CAMERA AND OPTICAL AIDS 6 A. Camera . 6 B. Timer 7 c. Fiberoptic Bundle 9 D. Lenses . 10 E. Film . 11 F. Lighting . 13 G. Support Structure 21 H. Testing 28 SECTION III. CAPSULE EJECTION SYSTEM 36 A. Component Description 36 B. System Operation . 36 C. -
TAH Mill Times Name:______Date
TAH Mill Times Name:__________________________ date Starter Please Read: In 1821, the Boston Associates purchased land and rights to the Pawtucket Canal located north of the city of Boston, Massachusetts. The Associates built several textile mills and enlarged the Canal for water power. The first mills opened in 1823, and for the next 25 years more mills and a network of power canals were built. By 1848, Lowell was the largest industrial center in America! The mills produced 50,000 miles of cotton cloth each year. The Associates needed a large work force for the busy mills. They decided to run their mills using a work force of young women recruited from New England farms. Lowell was known around the world for this innovative solution. Lowell "Mill Girls" were asked to work in the factories for a few years, then return to the farms or marry. Mill girls filled the city of Lowell, living in boardinghouses managed by the corporations. Mill life meant a hard day's work in which girls followed a strict schedule marked by the ringing of bells. Mill girls were expected to follow the company rules for curfew, church attendance and proper behavior. Why were the Boston Associates important? ____________________________________________________________ _________________________________________________________________________________________________ Describe who were the Mill Girls of Lowell?_____________________________________________________________ __________________________________________________________________________________________________ -
Inventions in the Cotton Industry
Inventions in the Cotton Industry Paisley Thread Mill Museum A Family of Threads John Kay: The Flying Shuttle 1733 • For centuries handloom weaving had been carried out by the shuttle with the yarn on being passed slowly and awkwardly from one hand to the other. • In 1733 John Kay patented his flying shuttle which dramatically increased the speed of this process. • Kay placed shuttle boxes at each side of the loom connected by a long board, known as a shuttle race. • With cords, a single weaver, using one hand, could knock the shuttle back and forth across the loom from one shuttle box to the other. • A weaver using Kay's flying shuttle could produce much wider cloth at much faster speeds than before. James Hargreaves: The Spinning Jenny 1764 • In 1764 Hargreaves built what became known as the Spinning- Jenny. • The machine used eight spindles onto which the thread was spun. • By turning a single wheel, the operator could now spin eight threads at once. • Later, improvements were made that enabled the number to be increased to eighty. • However, the thread that the machine produced was coarse and lacked strength. Richard Arkwright: The Water Frame 1771 • Richard Arkwright: The Water Frame 1771 • In 1762 Richard Arkwright met John Kay and Thomas Highs, who were trying to produce a new spinning- machine, to improve on the Spinning-Jenny. • Kay and Highs had run out of money and Arkwright offered to employ John Kay to make the new machine, with other, local craftsman to help. • It was not long before the team produced the Spinning-Frame. -
Visions of Electric Media Electric of Visions
TELEVISUAL CULTURE Roberts Visions of Electric Media Ivy Roberts Visions of Electric Media Television in the Victorian and Machine Ages Visions of Electric Media Televisual Culture Televisual culture encompasses and crosses all aspects of television – past, current and future – from its experiential dimensions to its aesthetic strategies, from its technological developments to its crossmedial extensions. The ‘televisual’ names a condition of transformation that is altering the coordinates through which we understand, theorize, intervene, and challenge contemporary media culture. Shifts in production practices, consumption circuits, technologies of distribution and access, and the aesthetic qualities of televisual texts foreground the dynamic place of television in the contemporary media landscape. They demand that we revisit concepts such as liveness, media event, audiences and broadcasting, but also that we theorize new concepts to meet the rapidly changing conditions of the televisual. The series aims at seriously analyzing both the contemporary specificity of the televisual and the challenges uncovered by new developments in technology and theory in an age in which digitization and convergence are redrawing the boundaries of media. Series editors Sudeep Dasgupta, Joke Hermes, Misha Kavka, Jaap Kooijman, Markus Stauff Visions of Electric Media Television in the Victorian and Machine Ages Ivy Roberts Amsterdam University Press Cover illustration: ‘Professor Goaheadison’s Latest,’ Fun, 3 July 1889, 6. Cover design: Coördesign, Leiden -
The Industrial Revolution - Making Cloth: the Start of the Industrial Revolution
The Industrial Revolution - Making Cloth: The Start of the Industrial Revolution The Industrial Revolution - Making Cloth: The Start of the Industrial Revolution by ReadWorks The Industrial Revolution got its start in the textile industry. Before the Industrial Revolution, making cloth was a very slow process. Cotton from cotton plants is puffy and full of seeds. First, the seeds had to be taken out, by hand. Next, the cotton had to be spun and stretched into thread, by hand. Finally, the thread was woven into cloth, by hand. Every step along the way required the full concentration of one person. Making cloth took a long time. In 1764, the process of turning cotton into cloth began to change. The three main steps stayed the same. But people began to use machines instead of doing everything manually. The machines did each step faster and faster. Some of the machines were huge. They couldn't fit into a person's home. The first factories were built to house machines and the workers needed to run them. Look at the timeline below. It describes the most important textile machines that were invented. Use it to answer the questions that follow. 1764: The spinning jenny was invented by James Hargreaves. This machine made it easier to make thread. 1769: Sir Richard Arkwright invented the water frame. Now weavers could keep up with all the thread that was being made. After the invention of the water frame, one weaver could weave the yarn from four spinners! The water frame was too big for homes. It only fit in factories. -
Michigan's Copper Country" Lets You Experience the Require the Efforts of Many People with Different Excitement of the Discovery and Development of the Backgrounds
Michigan’s Copper Country Ellis W. Courter Contribution to Michigan Geology 92 01 Table of Contents Preface .................................................................................................................. 2 The Keweenaw Peninsula ........................................................................................... 3 The Primitive Miners ................................................................................................. 6 Europeans Come to the Copper Country ....................................................................... 12 The Legend of the Ontonagon Copper Boulder ............................................................... 18 The Copper Rush .................................................................................................... 22 The Pioneer Mining Companies................................................................................... 33 The Portage Lake District ......................................................................................... 44 Civil War Times ...................................................................................................... 51 The Beginning of the Calumet and Hecla ...................................................................... 59 Along the Way to Maturity......................................................................................... 68 Down the South Range ............................................................................................. 80 West of the Ontonagon............................................................................................ -
Literary-Sites.Pdf
Whether you're an armchair traveler or road trip warrior, join us on a journey through America to visit homes, restaurants, bookshops, hotels, schools, museums, memorials and the occasional monument linked to some of our nation's Jewish authors. Along the way you'll gain insight into how these celebrated-and not so celebrated-writers lived and wrote. NEW YORK, NY Built in 1902, the Algonquin Hotel still famous exchanges: for example, Noel friend, Frederik Pohl, writes of how stands in all its Edwardian elegance at Coward’s compliment to Ferber on her Isaac’s father tried to prevent him from 59 West 44th Street. In its restaurant, new suit. “You look almost like a man,” reading pulp fiction sold in the store be beyond the signature oak-paneled lobby, he said, to which Ferber replied, “So do cause it would interfere with his school is a replica of the celebrated Round Table you.” Kevin Fitzpatrick, a Dorothy Parker work, but Isaac convinced him that a pe at which, from 1919 to 1929, a group researcher, leads walking tours devoted riodical such as Amazing Stories was fine, of sharp-tongued 20-somethings came to Round Table members; download the because, although fiction, it was “sci together for food, drink (no alcohol in schedule at dorothyparker.com. Show ence.” Asimov’s Foundation and Robot se the Prohibition years) and repartee. The Algonquin’s management a published ries are said to have inspired Gene Rod- daily gathering purportedly got its start work or one in progress and receive a denberry’s Star Trek.