Education and Planning Workshop RUPTURING of THE
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
In the Southern Gulf of California: the Role of the Southern Baja California Microplate and Its Eastern Boundary Zone
University of South Florida Scholar Commons School of Geosciences Faculty and Staff Publications School of Geosciences 2-2020 Quantifying Rates of “Rifting while Drifting” in the Southern Gulf of California: The role of the Southern Baja California Microplate and its Eastern Boundary Zone Paul J. Umhoefer Northern Arizona University C. Plattner Ludwig-Maximilians Universität Rocco Malservisi University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/geo_facpub Part of the Earth Sciences Commons Scholar Commons Citation Umhoefer, Paul J.; Plattner, C.; and Malservisi, Rocco, "Quantifying Rates of “Rifting while Drifting” in the Southern Gulf of California: The role of the Southern Baja California Microplate and its Eastern Boundary Zone" (2020). School of Geosciences Faculty and Staff Publications. 2226. https://scholarcommons.usf.edu/geo_facpub/2226 This Article is brought to you for free and open access by the School of Geosciences at Scholar Commons. It has been accepted for inclusion in School of Geosciences Faculty and Staff Publications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. RESEARCH Quantifying rates of “rifting while drifting” in the southern Gulf of California: The role of the southern Baja California microplate and its eastern boundary zone Paul J. Umhoefer1,*, C. Plattner2, and R. Malservisi3 1SCHOOL OF EARTH AND SUSTAINABILITY, NORTHERN ARIZONA UNIVERSITY, 624 S. KNOLES DRIVE, ASHURST BUILDING, ROOM A108, FLAGSTAFF, ARIZONA 86011, USA 2DEPARTMENT FÜR UMWELT- UND GEOWISSENSCHAFTEN, LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN, SEKTION GEOLOGIE, LUISENSTRASSE 37, 80333 MÜNCHEN, GERMANY 3SCHOOL OF GEOSCIENCES, UNIVERSITY OF SOUTH FLORIDA, 4202 E. FOWLER AVENUE, NES107, TAMPA, FLORIDA 33620, USA ABSTRACT The southern Baja California (Mexico) microplate has been rapidly moving away from the North America plate since ca. -
Lithospheric Rupture in the Gulf of California – Salton Trough Region
Lithospheric Rupture in the Gulf of California – Salton Trough Region MARGINS-RCL Workshop Ensenada, Mexico, 9-13 January, 2006 ABSTRACTS http://www.rcl-cortez.wustl.edu Contents An Author Index is located in the back Seismic imaging of the transition from continental rifting to seafloor spreading, Woodlark Rift system, Papua New Guinea ………………………………………6 Rift-to-rift Drift Transition in the Gulf of California …………………………………….7 Low-angle normal faults in the northern Gulf of California extensional province: summary and implications for fault mechanics and strain partitioning ………….8 Volcanism along the eastern margin of the Salton Trough: Constraints on the kinematics of initiation of the southern San Andreas transform fault system ………………10 Numerical models of extending and rifting thickened continental crust….……………..11 Gravity Modeling and Crustal Structure of northern eastern Baja California and the western Salton Trough …………………………………………………………..12 Constraining Upper Mantle Flow Using Seismic Anisotropy & Geodynamic Modeling.13 Crustal Structure of the Southern Gulf of California, the East Pacific Rise to the Jalisco Block …………………………………………………………………………….14 Why It Is Hard to Make a Core Complex ………………………………………………15 Exotic vs. Fringing Arc Models For the Growth Of Continents: Evidence From Mesozoic Arc-Related Basins of Baja California and Western Mexico……………………16 An overview of the petrology of oceanic basement in the southern Gulf of California ...17 Seismotectonics and Upper Mantle Deformation at the Southern Basin and Range Province in Sonora, -
USGS Open-File Report 2010-1333 and CGS SR
Prepared in cooperation with the California Geological Survey; University of Oregon; University of Colorado; University of California, San Diego; and Jet Propulsion Laboratory, California Institute of Technology. Triggered Surface Slips in Southern California Associated with the 2010 El Mayor-Cucapah, Baja California, Mexico, Earthquake SALTON SEA Open-File Report 2010-1333 Jointly published as California Geological Survey Special Report 221 U.S. Department of Interior U.S. Geological Survey COVER Landsat satellite image (LE70390372003084EDC00) showing location of surface slip triggered along faults in the greater Salton Trough area. Red bars show the generalized location of 2010 surface slip along faults in the central Salton Trough and many additional faults in the southwestern section of the Salton Trough. Surface slip in the central Salton Trough shown only where verified in the field; slip in the southwestern section of the Salton Trough shown where verified in the field or inferred from UAVSAR images. Triggered Surface Slips in Southern California Associated with the 2010 El Mayor-Cucapah, Baja California, Mexico, Earthquake By Michael J. Rymer, Jerome A. Treiman, Katherine J. Kendrick, James J. Lienkaemper, Ray J. Weldon, Roger Bilham, Meng Wei, Eric J. Fielding, Janis L. Hernandez, Brian P. E. Olson, Pamela J. Irvine, Nichole Knepprath, Robert R. Sickler, Xiaopeng Tong, and Martin E. Siem Prepared in cooperation with the California Geological Survey; University of Oregon; University of Colorado; University of California, San Diego; and Jet Propulsion Laboratory, California Institute of Technology. Open-File Report 2010–1333 Jointly published as California Geological Survey Special Report 221 U.S. Department of Interior U.S. -
Sonny Bono Salton Sea National Wildlife Refuge Complex
Appendix J Cultural Setting - Sonny Bono Salton Sea National Wildlife Refuge Complex Appendix J: Cultural Setting - Sonny Bono Salton Sea National Wildlife Refuge Complex The following sections describe the cultural setting in and around the two refuges that constitute the Sonny Bono Salton Sea National Wildlife Refuge Complex (NWRC) - Sonny Bono Salton Sea NWR and Coachella Valley NWR. The cultural resources associated with these Refuges may include archaeological and historic sites, buildings, structures, and/or objects. Both the Imperial Valley and the Coachella Valley contain rich archaeological records. Some portions of the Sonny Bono Salton Sea NWRC have previously been inventoried for cultural resources, while substantial additional areas have not yet been examined. Seventy-seven prehistoric and historic sites, features, or isolated finds have been documented on or within a 0.5- mile buffer of the Sonny Bono Salton Sea NWR and Coachella Valley NWR. Cultural History The outline of Colorado Desert culture history largely follows a summary by Jerry Schaefer (2006). It is founded on the pioneering work of Malcolm J. Rogers in many parts of the Colorado and Sonoran deserts (Rogers 1939, Rogers 1945, Rogers 1966). Since then, several overviews and syntheses have been prepared, with each succeeding effort drawing on the previous studies and adding new data and interpretations (Crabtree 1981, Schaefer 1994a, Schaefer and Laylander 2007, Wallace 1962, Warren 1984, Wilke 1976). The information presented here was compiled by ASM Affiliates in 2009 for the Service as part of Cultural Resources Review for the Sonny Bono Salton Sea NWRC. Four successive periods, each with distinctive cultural patterns, may be defined for the prehistoric Colorado Desert, extending back in time over a period of at least 12,000 years. -
A New Method for Fault-Scarp Detection
EGU21 Big Data and AI in the Earth Sciences A new Method for Fault-Scarp Detection Using Linear Discriminant Analysis (LDA) in High- Resolution Bathymetry Data from the Alarcón Rise and Pescadero Basin, Gulf of California. Luis Angel Vega-Ramirez [1], Ronald Michael Spelz [2], Juan Contreras [1], David Caress [3], David A. Clague [3] and Jennifer B. Paduan [3]. [1] Centro de Investigación Científica y de Educación Superior de Ensenada, [2] Universidad Autónoma de Baja California, [3] Monterey Bay Aquarium Research Institute. PRESENTED AT: 1 EGU21 Big Data and AI in the Earth Sciences Abstract. The mapping of faults and fractures is a problem of high relevance in Earth Sciences. However, their identification in digital elevation models is a time-consuming task given the fractal nature of the resulting networks. The effort is especially challenging in submarine environments, given their inaccessibility and difficulty of collecting direct observations. Here, we propose a semi-automated method for detecting faults in high-resolution bathymetry data (~1 m horizontal and ~0.2 m vertical) of the Pescadero Basin in the southern Gulf of California, which were collected by MBARI’s D. Allan B autonomous underwater vehicle. This problem is well suited to be explored by machine learning and deep-learning methods. The method learns from a model trained to recognize fault-line scarps based on key morphological attributes in the neighboring Alarcón Rise. We use the product of the mass diffusion coefficient with time, scarp height, and RMSD error as training attributes. The method consists in projecting the attributes from a three-dimensional space to a one- dimensional space in which normal probability density functions are generated to classify faults. -
GEOPHYSICAL STUDY of the SALTON TROUGH of Soutllern CALIFORNIA
GEOPHYSICAL STUDY OF THE SALTON TROUGH OF SOUTllERN CALIFORNIA Thesis by Shawn Biehler In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy California Institute of Technology Pasadena. California 1964 (Su bm i t t ed Ma Y 7, l 964) PLEASE NOTE: Figures are not original copy. 11 These pages tend to "curl • Very small print on several. Filmed in the best possible way. UNIVERSITY MICROFILMS, INC. i i ACKNOWLEDGMENTS The author gratefully acknowledges Frank Press and Clarence R. Allen for their advice and suggestions through out this entire study. Robert L. Kovach kindly made avail able all of this Qravity and seismic data in the Colorado Delta region. G. P. Woo11ard supplied regional gravity maps of southern California and Arizona. Martin F. Kane made available his terrain correction program. c. w. Jenn ings released prel imlnary field maps of the San Bernardino ct11u Ni::eule::> quad1-angles. c. E. Co1-bato supplied information on the gravimeter calibration loop. The oil companies of California supplied helpful infor mation on thelr wells and released somA QAnphysical data. The Standard Oil Company of California supplied a grant-In- a l d for the s e i sm i c f i e l d work • I am i ndebt e d to Drs Luc i en La Coste of La Coste and Romberg for supplying the underwater gravimeter, and to Aerial Control, Inc. and Paclf ic Air Industries for the use of their Tellurometers. A.Ibrahim and L. Teng assisted with the seismic field program. am especially indebted to Elaine E. -
Coachella Valley Water Management Plan 2010 Update
COACHELLA VALLEY WATER MANAGEMENT PLAN 2010 UPDATE Final Report January 2012 Prepared for: Coachella Valley Water District Steve Robbins General Manager-Chief Engineer Patti Reyes Planning and Special Program Manager Prepared by: MWH 618 Michillinda Ave., Suite 200 Arcadia, CA 91007 Water Consult 535 North Garfield Avenue Loveland, CO 80537 Table of Contents Section Name Page Number Executive Summary ................................................................................................................ ES-1 ES-1 The Coachella Valley ...............................................................................................ES-1 ES-2 Water Management in the Coachella Valley ...........................................................ES-3 ES-3 Current Condition of Coachella Valley Groundwater Basin ...................................ES-4 ES-4 The 2002 Water Management Plan..........................................................................ES-5 ES-4.1 Goals and Objectives ......................................................................................ES-5 ES-4.2 Accomplishments Since 2002 .........................................................................ES-6 ES-5 2010 WMP Update ................................................................................................ES-13 ES-5.1 Population and Water Demand .....................................................................ES-13 ES-5.2 Future Water Supply Needs ..........................................................................ES-16 ES-5.3 What -
UNIVERSITY of CALIFORNIA, SAN DIEGO Marine Geophysical Study
UNIVERSITY OF CALIFORNIA, SAN DIEGO Marine Geophysical Study of Cyclic Sedimentation and Shallow Sill Intrusion in the Floor of the Central Gulf of California A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Oceanography by Jared W. Kluesner Committee in Charge: Professor Peter Lonsdale, Chair Professor Paterno Castillo Professor Graham Kent Professor Falko Kuester Professor Michael Tryon Professor Edward Winterer 2011 Copyright Jared Kluesner, 2011 All rights reserved. The Dissertation of Jared W. Kluesner is approved, and it is acceptable in quality and in form for publication on microfilm and electronically: Chair University of California, San Diego 2011 iii To my parents, Tony and Donna Kluesner and my grandfather James Kluesner iv "...Let us go, we said, into the Sea of Cortez, realizing that we become forever a part of it" The Log from the Sea of Cortez John Steinbeck v TABLE OF CONTENTS Signature Page ...................................................................................... iii Dedication.............................................................................................. iv Epigraph ................................................................................................ v Table of Contents .................................................................................. vi List of Figures ........................................................................................ ix Acknowledgments ................................................................................ -
Geological Society of America Bulletin
Downloaded from gsabulletin.gsapubs.org on January 15, 2014 Geological Society of America Bulletin Oceanic magmatism in sedimentary basins of the northern Gulf of California rift Axel K. Schmitt, Arturo Martín, Bodo Weber, Daniel F. Stockli, Haibo Zou and Chuan-Chou Shen Geological Society of America Bulletin 2013;125, no. 11-12;1833-1850 doi: 10.1130/B30787.1 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geological Society of America Bulletin Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Notes © 2013 Geological Society of America Downloaded from gsabulletin.gsapubs.org on January 15, 2014 Oceanic magmatism in sedimentary basins of the northern Gulf of California rift Axel K. -
Telepresence-Enabled Exploration of The
! ! ! ! 2014 WORKSHOP TELEPRESENCE-ENABLED EXPLORATION OF THE !EASTERN PACIFIC OCEAN WHITE PAPER SUBMISSIONS ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! TABLE OF CONTENTS ! ! NORTHERN PACIFIC! Deep Hawaiian Slopes 7 Amy Baco-Taylor (Florida State University) USS Stickleback (SS-415) 9 Alexis Catsambis (Naval History and Heritage Command's Underwater Archaeology Branch) Sunken Battlefield of Midway 10 Alexis Catsambis (Naval History and Heritage Command's Underwater Archaeology Branch) Systematic Mapping of the California Continental Borderland from the Northern Channel Islands to Ensenada, Mexico 11 Jason Chaytor (USGS) Southern California Borderland 16 Marie-Helene Cormier (University of Rhode Island) Expanded Exploration of Approaches to Pearl Harbor and Seabed Impacts Off Oahu, Hawaii 20 James Delgado (NOAA ONMS Maritime Heritage Program) Gulf of the Farallones NMS Shipwrecks and Submerged Prehistoric Landscape 22 James Delgado (NOAA ONMS Maritime Heritage Program) USS Independence 24 James Delgado (NOAA ONMS Maritime Heritage Program) Battle of Midway Survey and Characterization of USS Yorktown 26 James Delgado (NOAA ONMS Maritime Heritage Program) Deep Oases: Seamounts and Food-Falls (Monterey Bay National Marine Sanctuary) 28 Andrew DeVogelaere (Monterey Bay National Marine Sanctuary) Lost Shipping Containers in the Deep: Trash, Time Capsules, Artificial Reefs, or Stepping Stones for Invasive Species? 31 Andrew DeVogelaere (Monterey Bay National Marine Sanctuary) Channel Islands Early Sites and Unmapped Wrecks 33 Lynn Dodd (University of Southern -
Systematic Heat Flow Measurements Across the Wagner Basin, Northern
Earth and Planetary Science Letters 479 (2017) 340–353 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Systematic heat flow measurements across the Wagner Basin, northern Gulf of California ∗ Florian Neumann a, Raquel Negrete-Aranda b, , Robert N. Harris c, Juan Contreras b, John G. Sclater d, Antonio González-Fernández b a Posgrado en Ciencias de la Tierra, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, BC, 22864, Mexico b Departamento de Geología, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, BC, 22864, Mexico c College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA d Geosciences Research Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, 92093-0220, USA a r t i c l e i n f o a b s t r a c t Article history: A primary control on the geodynamics of rifting is the thermal regime. To better understand the Received 1 March 2017 geodynamics of rifting in the northern Gulf of California we systematically measured heat-flow across the Received in revised form 13 September Wagner Basin, a tectonically active basin that lies near the southern terminus of the Cerro Prieto fault. 2017 The heat flow profile is 40 km long, has a nominal measurement spacing of ∼1 km, and is collocated Accepted 14 September 2017 with a seismic reflection profile. Heat flow measurements were made with a 6.5-m violin-bow probe. Available online 6 October 2017 Although heat flow data were collected in shallow water, where there are significant temporal variations Editor: R. -
Imperial County Multi-Jurisdiction Hazard Mitigation Plan Update April
Ju IMPERIAL COUNTY M ULTI-JURISDICTION AZARD ITIGATION H M PLAN UPDATE APRIL 2014 Imperial County Multi-Jurisdictional Hazard Mitigation Plan Update April 2014 Adoption by Local Governing Body: §201.6(c)(5) County of Imperial RESOLUTION OF THE COUTY OF IMPERIAL BOARD OF SUPERVISORS ADOPTING THE IMPERIAL COUNTY MULTI-JURISDICTION HAZARD MITIGATION PLAN UPDATE RESOLUTION NO. __________ WHEREAS, the Disaster Mitigation Act of 2000 requires all jurisdictions to be covered by a Pre- Disaster All Hazards Mitigation Plan to be eligible for Federal Emergency Management Agency pre- and post-disaster mitigation funds; and WHEREAS, the County of Imperial recognizes that no community is immune from natural, technological or domestic security hazards, whether it be earthquake, flood, severe winter weather, drought, heat wave, wildfire or dam failure related; and recognizes the importance of enhancing its ability to withstand hazards as well as the importance of reducing human suffering, property damage, interruption of public services and economic losses caused by those hazards; and WHEREAS, the Federal Emergency Management Agency and California Office of Emergency Services have developed a hazards mitigation program that assists communities in their efforts to become Disaster-Resistant Communities that focus, not just on disaster response and recovery, but also on preparedness and hazard mitigation, which enhances economic sustainability, environmental stability and social well-being; and WHEREAS, Imperial County fully participated in the Federal