A Comprehensive View of Process Engineering Colette Rolland
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rugby - a Process Model for Continuous Software Engineering
INSTITUT FUR¨ INFORMATIK DER TECHNISCHEN UNIVERSITAT¨ MUNCHEN¨ Forschungs- und Lehreinheit I Angewandte Softwaretechnik Rugby - A Process Model for Continuous Software Engineering Stephan Tobias Krusche Vollstandiger¨ Abdruck der von der Fakultat¨ fur¨ Informatik der Technischen Universitat¨ Munchen¨ zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. Helmut Seidl Prufer¨ der Dissertation: 1. Univ.-Prof. Bernd Brugge,¨ Ph.D. 2. Prof. Dr. Jurgen¨ Borstler,¨ Blekinge Institute of Technology, Karlskrona, Schweden Die Dissertation wurde am 28.01.2016 bei der Technischen Universitat¨ Munchen¨ eingereicht und durch die Fakultat¨ fur¨ Informatik am 29.02.2016 angenommen. Abstract Software is developed in increasingly dynamic environments. Organizations need the capability to deal with uncertainty and to react to unexpected changes in require- ments and technologies. Agile methods already improve the flexibility towards changes and with the emergence of continuous delivery, regular feedback loops have become possible. The abilities to maintain high code quality through reviews, to regularly re- lease software, and to collect and prioritize user feedback, are necessary for con- tinuous software engineering. However, there exists no uniform process model that handles the increasing number of reviews, releases and feedback reports. In this dissertation, we describe Rugby, a process model for continuous software en- gineering that is based on a meta model, which treats development activities as parallel workflows and which allows tailoring, customization and extension. Rugby includes a change model and treats changes as events that activate workflows. It integrates re- view management, release management, and feedback management as workflows. As a consequence, Rugby handles the increasing number of reviews, releases and feedback and at the same time decreases their size and effort. -
Metallurgical Engineering
ENSURING THE EXPERTISE TO GROW SOUTH AFRICA Discipline-specific Training Guideline for Candidate Engineers in Metallurgical Engineering R-05-MET-PE Revision No.: 2: 25 July 2019 ENGINEERING COUNCIL OF SOUTH AFRICA Tel: 011 6079500 | Fax: 011 6229295 Email: [email protected] | Website: www.ecsa.co.za ENSURING THE Document No.: Effective Date: Revision No.: 2 R-05-MET-PE 25/07/2019 Subject: Discipline-specific Training Guideline for Candidate Engineers in Metallurgical Engineering Compiler: Approving Officer: Next Review Date: Page 2 of 46 MB Mtshali EL Nxumalo 25/07/2023 TABLE OF CONTENTS DEFINITIONS ............................................................................................................................ 3 BACKGROUND ......................................................................................................................... 5 1. PURPOSE OF THIS DOCUMENT ......................................................................................... 5 2. AUDIENCE............................................................................................................................. 6 3. PERSONS NOT REGISTERED AS CANDIDATES OR NOT BEING TRAINED UNDER COMMITMENT AND UNDERTAKING (C&U) ..................................................... 7 4. ORGANISING FRAMEWORK FOR OCCUPATIONS ............................................................. 7 4.1 Extractive Metallurgical Engineering ..................................................................................... 8 4.2 Mineral Processing Engineering .......................................................................................... -
Advances in Information Systems
Tatyana Yakhno (Ed.) Advances in Information Systems Third International Conference, ADVIS 2004 Izmir, Turkey, October 20-22, 2004 Proceedings 4y Springer Table of Contents Databases and Data Warehouses Temporality in Databases Abdullah Uz Tansel 1 On Uncertainty and Data-Warehouse Design Panagiotis Chountas, Ilias Petrounias, Christos Vasilakis, Andy Tseng, Elia El-Darzi, Krassimir T. Atanassov, Vassilis Kodogiannis , 4 A Data Warehouse Engineering Process Sergio Lujdn-Mora, Juan Trujillo 14 Aggregation and Analysis of Spatial Data by Means of Materialized Aggregation Tree Marcin Gorawski, Rafal Malczok 24 An Object-Oriented Framework for Reconciliation and Extraction in Heterogeneous Data Federations Herman Balsters, Engbert 0. de Brock 34 On Optimising Data Access Via Materialised Methods in Object-Oriented Systems Juliusz Jezierski, Mariusz Masewicz, Robert Wrembel 47 Some Modifications of Bucket-Based Algorithms for Query Rewriting Using Views Qingyuan Bai, Jun Hong, Michael F. McTear 57 Data Mining and Knowledge Discovery A Data Mining Application on Air Temperature Database T. Tugay Bilgin, A. Yilmaz Qamurcu 68 Incremental Association Rule Mining Using Materialized Data Mining Views Mikolaj Morzy, Tadeusz Morzy, Zbyszko Krolikowski 77 Outlier Effects on Databases Ahmet Kaya 88 Finding Maximal Similar Paths Between XML Documents Using Sequential Patterns Jung- Won Lee, Seung-Soo Park 96 X Table of Contents Web Information Systems Development Using Ontologies for Collaborative Information Management: Some Challenges and Ideas Victor Guevara-Masis, Ozgul Unal, Ersin C. Kaletas, Hamideh Afsarmanesh, Louis O. Hertzberger 107 The Construction of Domain Ontology and Its Application to Document Retrieval Soo-Yeon Lim, Mu-Hee Song, Sang-Jo Lee 117 WetDL: A Web Information Extraction Language Benjamin Habegger, Mohamed Quafafou 128 Towards Building Knowledge Centres on the World Wide Web Zsolt T. -
Chemical & Biological Engineering Department History (PDF)
Chemical & Biological Engineering The University of Alabama A Century of Excellence and Quality A Legacy of Leadership 1910 – 2010 By Gary C. April University Research Professor & Head (Emeritus) A Century of Excellence and Quality A Legacy of Leadership 1910-2010 Gary C. April University Research Professor & Head Emeritus Chemical & Biological Engineering The University of Alabama October 2010 ii Dedication The author would like to dedicate this brief history of the Chemical Engineering Department at The University of Alabama to Lynne, his wife, partner and soul mate of 48 years, to his children, Andrew, Brian and Elizabeth, who lived most of their lives while he was a professor there, and to his granddaughters, Andrea, Abigail, Caroline and Olivia who continue to provide him with encouragement by sharing a vision for the future that is filled with hope and opportunities. iii Table of Contents Preface ..................................................................................................................... v 1. The Beginning of Engineering Education at The University of Alabama 1 ................................................................................................................. 1 2. The Emergence of the Chemical Engineering Profession ........................... 7 3. Chemical Engineering at the University of Alabama – A Century of Excellence and Quality – A Legacy of Leadership 5 ....................................... 11 4. The Significance of Who We Are ................................................................. -
Business Process Engineering Release 3.0 E20216-03
Oracle® Practitioner Guide Business Process Engineering Release 3.0 E20216-03 December 2010 Business Process Engineering, Release 3.0 E20216-03 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. Primary Author: Mark Wilkins Contributing Author: Dave Chappelle, Bob Hensle, Stephen Bennett, Anbu Krishnaswamy, Cliff Booth, Jeff McDaniel Contributor: Meera Srinivasan, Barry O’Reilly Warranty Disclaimer THIS DOCUMENT AND ALL INFORMATION PROVIDED HEREIN (THE "INFORMATION") IS PROVIDED ON AN "AS IS" BASIS AND FOR GENERAL INFORMATION PURPOSES ONLY. ORACLE EXPRESSLY DISCLAIMS ALL WARRANTIES OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. ORACLE MAKES NO WARRANTY THAT THE INFORMATION IS ERROR-FREE, ACCURATE OR RELIABLE. ORACLE RESERVES THE RIGHT TO MAKE CHANGES OR UPDATES AT ANY TIME WITHOUT NOTICE. As individual requirements are dependent upon a number of factors and may vary significantly, you should perform your own tests and evaluations when making technology infrastructure decisions. This document is not part of your license agreement nor can it be incorporated into any contractual agreement with Oracle Corporation or its affiliates. If you find any errors, please report them to us in writing. Third Party Content, Products, and Services Disclaimer This document may provide information on content, products, and services from third parties. Oracle is not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services. -
Public Lecture: "Nanotechnology to Nano Engineering; Where Less May Be More"
Public Lecture: "Nanotechnology to Nano engineering; where less may be more" The Public Lecture organised by Mechanical Engineering Sectional Committee in collaboration with Section C of Sri Lanka Association for the Advancement of Science(SLAAS) on “Nanotechnology to Nanoengineering ; where less may be more " was successfully held at the Wimaladharmasuriya Auditorium of Institute of Engineers Sri Lanka from 5.30 pm on wards on 25th April 2018. The resource person was Dr. Nadeesh Adassooriya who has completed his BSc Honours in Chemistry at University of Sri Jayewardenepura in 2009 followed by an M.Sc Research Degree in Chemical and Process Engineering at University of Moratuwa and an M.Phil in Materials Chemistry at University of Cambridge, UK. He obtained his PhD in Engineering (Materials) also from University of Cambridge, UK in 2017. He has authored/co-authored over 25 research publications which were presented at well reputed journals and international conferences and is an inventor of 2 US patents. He won a number of international and national awards including, The Adams Glinsman Research Award, Cambridge Commonwealth Trust Awards, Dyson Studentship and Lundgren Research Award from University of Cambridge, National Science and Technology Award and Presidential Awards. He served Sri Lanka Institute ofNanotechnology as a scientist being a starting member from 2009 to 2011 and served Talga Resources Ltd. Cambridge as a consultant in 2016. Presently, he is working as a senior lecturer at the Faculty of Applied Sciences, University of Sri Jayewardenepura. His research interests are preparation, characterization and structure-properties relationship of nanocomposites in the areas of energy, agriculture and pharmaceuticals. -
Process Descriptions: an Introductory Library Research Assignment on Chemical Processes for First Year Students
Session 1313 Process Descriptions: An Introductory Library Research Assignment on Chemical Processes for First Year Students S. Scott Moor Lafayette College Abstract In our first year “Introduction to Engineering” class, each student passes through a three-week block on chemical engineering. In such a short period of time, it is always a challenge to give students a clear idea of the nature and diversity of chemical engineering. I have particularly wanted them to understand the process focus of chemical engineering and the wide range of products made with chemical processes. One tool I have used over the past two years is a assignment requiring students to research how some product is made, writing up a brief (two- page plus figures) summary of their research. Groups of three students work on a topic together and are given approximately one week to complete their research. They are required to look into the basic process for making their assigned product, the safety and environmental issues for that process, the uses of the product and some background on the economics of the product. In this paper, I present the details of the set-up of this assignment so it can be easily reproduced. Included are the over 50 topics currently used and references that cover these topics. I also present an assessment of our experience. Students seem to find this assignment interesting and enjoyable. The resulting summaries are generally well done. This assignment has the added benefit of getting the engineering students into the library early in their engineering studies. Introduction In our first year ”Introduction to Engineering” class, I wanted students to gain insight into the nature of chemical engineering and the issues which chemical engineers face. -
Research Challenges in Process Systems Engineering
Research Challenges in Process Systems Engineering Ignacio E. Grossmann and Arthur W. Westerberg Department of Chemical Engineering Carnegie Mellon University Pittsburgh, PA 15213 Introduction Companies must design and operate chemical processes effectively and efficiently so they may survive in today’s highly competitive world. Providing the methods, tools and people that allow industry to meet its needs by tying science to engineering is a compelling aspect of Process Systems Engineering (PSE). Despite the importance of the PSE, the scope and research of this area are often not well understood. One of the major reasons is that chemical engineering has evolved over the past five decades from being an engineering discipline rooted in the concept of unit operations to one based on engineering science and mathematics, and most recently to one with increasing ties to the natural sciences. This very significant change in emphasis has created a gap between the science-based and the systems-based research in chemical engineering. We argue here that this gap might be closed in two ways: first, by broadening the definition of Process Systems Engineering through the introduction of the concept of the “chemical supply chain,” and second, by gaining a better appreciation of the intellectual research challenges in this area. We address this last issue by discussing the nature and major accomplishments of the PSE area and outlining emerging research directions. Broadening the Scope of PSE As shown in the insert, Process Systems Engineering is a relatively young area in chemical engineering. PSE is about 35 years old; its progress is closely tied with developments in computing. -
Metallurgical and Materials Engineering - (2021-2022 Catalog) 1
Metallurgical and Materials Engineering - (2021-2022 Catalog) 1 MTGN501 - MME 1.0 Metallurgical and GRADUATE SEMINAR** Materials Engineering MTGN700 - 3.0 - 5.0 GRADUATE Degrees Offered RESEARCH CREDIT: • Master of Engineering (Metallurgical and Materials Engineering) MASTER OF • Master of Science (Metallurgical and Materials Engineering) ENGINEERING • Doctor of Philosophy (Metallurgical and Materials Engineering) or DESIGNATED DESIGN Program Description COURSE*** The program of study for the Master or Doctor of Philosophy degrees * 18 of the 26 credit hours must be taken from the Metallurgy or in Metallurgical and Materials Engineering is selected by the student in Materials Science courses. All other course credits can be taken in consultation with her or his advisor, and with the approval of the Thesis any department. Committee. The program can be tailored within the framework of the ** Students are expected to enroll in this seminar every semester, but a regulations of the Graduate School to match the student’s interests while maximum of 1 credit hour may apply toward the degree. maintaining the main theme of materials engineering and processing. *** There are three areas of specialization within the Department: Students can choose to fulfill the NT masters degree requirements by either taking 30 course credits, including 3 hours of a “design” • Physical and Mechanical Metallurgy; course, or take 25 hours of course credits and have 5 hours devoted • Physicochemical Processing of Materials; and, to a project; in that case, students -
ENCH - Engineering, Chemical 1
ENCH - Engineering, Chemical 1 ENCH751 Turbulent and Multiphase Transport Phenomena (3 Credits) ENCH - ENGINEERING, Basic equations and statistical theories for transport of heat, mass, and momentum in turbulent fluids with applications to processing equipment. CHEMICAL Fundamental equations of multiphase flow for dilute systems with applications to particles, drops and bubbles. Current approaches for ENCH608 Research in Chemical Engineering (1 Credit) analysis of concentrated suspensions including deterministic models and Students gain experience in research through lab rotations and population balance approaches. experience presenting their findings. Prerequisite: ENCH620 and ENCH630. Restriction: Must be in the Chemical Engineering Doctoral or Master of ENCH781 Polymer Reaction Engineering (3 Credits) Science program. Advanced topics in polymerization kinetics, reactor design and Repeatable to: 8 credits. analysis; addition and step-growth polymerization; homogeneous and ENCH609 Graduate Seminar (1 Credit) heterogeneous polymerization; photopolymerization; reactor dynamics; ENCH610 Chemical Engineering Thermodynamics (3 Credits) optimal operation and control of industrial polymerization reactors. Advanced application of the general thermodynamic methods to Prerequisite: ENCH640; or permission of instructor. chemical engineering problems. First and second law consequences; ENCH799 Master's Thesis Research (1-6 Credits) estimation and correlation of thermodynamic properties; phase and ENCH818 Advanced Topics in Thermodynamics (3 Credits) -
A Unified Framework for Modeling Cooperative Design Processes and Cooperative Business Processes
A Unified Framework for Modeling Cooperative Design Processes and Cooperative Business Processes Colette Rolland, Selmin Nurcan, Georges Grosz Université Paris 1 - Panthéon - Sorbonne, Centre de Recherche en Informatique 17, rue de Tolbiac, 75013 Paris, FRANCE, email : {rolland, nurcan, grosz}@univ-paris1.fr Abstract during this process (goals, roles, etc.), why and how it We look at any cooperative design process as a decision should be analyzed (goal decomposition, role dependency making process, i.e. a non deterministic process. The study, etc.) following some relevant techniques process is performed by responsible agents having the (brainstorming, SWOT analysis, etc.). It also suggests freedom to decide how to proceed according to their which problem should be tackled next and provides some assessment of the situation they are faced to. However, the argument to help in the making of the most appropriate cooperative design process cannot be an ad-hoc and design decision. Finally, it includes means to support chaotic process. We look at it as a repeatable process cooperative design processes and cooperative business made of steps resulting each of the application of the same processes including brainstorming, exchange and pattern for decision making. The pattern views a decision emergence of ideas. Due to the tool support, some process as a choice of the way to proceed in a given situation to automation is possible and tracing facilities emphasize the achieve an intention. An intention can be fulfilled in recording of the rationale and argumentation provided different ways depending on the situation being throughout the process. considered. We propose a process meta-model for This approach, called EKD (Enterprise Knowledge Development), is currently being applied, in the ESPRIT describing such a pattern of decision making. -
Are Methods Really Useful?
Are Methods Really useful ? Colette Rolland To cite this version: Colette Rolland. Are Methods Really useful ?. International Conference on Software Engineering, 1998, Japan. pp.1-3. hal-00707939 HAL Id: hal-00707939 https://hal.archives-ouvertes.fr/hal-00707939 Submitted on 19 Jun 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. CREWS Report Series 98 ARE METHODS REALLY USEFUL? C. Rolland University Paris-1 Sorbonne, 17, rue de la Sorbonne, 75005 Paris cedex 5, FRANCE email : [email protected] Proceedings of the 20th International Conference on Software Engineering ICSE'98, Kyoto, Japan, April 1998. Are Methods Really Useful? Colette Rolland Université de Paris1 Sorbonne 17, rue de la Sorbonne 75231 Paris Cedex 05 France [email protected] There are a large number of methods available for information systems development (ISD). These include structured approaches, prototyping approaches, systemic approaches, object- oriented, etc. Many of these methods have been comparatively analysed in books [OLLE88] and journals (e.g [HIRS92]). Despite a large body of work concerning details of systems development methods, there is still a poor understanding of how such methods are actually used in practice [WYNE93].