Neuroinformatics for Neuropsychology Vinoth Jagaroo

Total Page:16

File Type:pdf, Size:1020Kb

Neuroinformatics for Neuropsychology Vinoth Jagaroo Neuroinformatics for Neuropsychology Vinoth Jagaroo Neuroinformatics for Neuropsychology 123 Vinoth Jagaroo Department of Communication Sciences & Disorders Emerson College 120 Boylston Street Boston, MA 02116 USA [email protected] and Department of Psychiatry and the Behavioral Neuroscience Program Boston University School of Medicine 715 Albany Street Boston, MA 02118 USA [email protected] ISBN 978-1-4419-0059-3 e-ISBN 978-1-4419-0060-9 DOI 10.1007/978-1-4419-0060-9 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2009930050 © Springer Science+Business Media, LLC 2009 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) I dedicate this book to my parents, Barath and Sona Preface The idea for this book was conceived over many years and through many influences. The fields of neuropsychology, general neuroscience, and information technology were certainly among the main influences. It was in particular an unusual context in which I was on the one hand exposed to academic and clinical neuropsychology and on the other to information technology that gave rise to the ideas that would eventually lead to this work. I began thinking about informatics for neuropsychology more than a decade ago as a graduate student in behavioral neuroscience at Boston University School of Medicine. My track in this broad interdisciplinary area cut across neuropsychology, neuroanatomy and neurobiology, and my focus was visual cognitive neuroscience. I had concurrently held a position in a large information technology unit at the university where I gained experience in computer networks and database program- ming. The neuropsychology component of my training involved neuropsychological assessment, which was carried out at the Boston Veterans Administration Hospital, one of the teaching hospitals of Boston University Medical School. It was at these institutions that many legendary neuropsychologists had pioneered their craft and where some famous assessment instruments were developed. As I engaged in carrying out neuropsychological assessment, I could not help being struck by how comfortably this subspecialty of neuropsychology had con- tained critical problems tied to its origins and its development. Psychometric testing had played a huge part in the shaping of neuropsychological batteries and in some cases assessment batteries were nothing more than modified psychometric tests. When tests were developed from scratch in clinical neuropsychology, they were typically developed around symptom clusters or operational tasks. Assessment tools bore little tie to highly defined neuroanatomic systems or to rich conceptual frameworks of cognition. Where was the alignment between neuropsychological assessment tools, which were developed in earlier generations, and that rich body of theory on neurocognitive principles that had arisen through cognitive neuro- science and cognitive neurobiology, in a more recent generation? The “decade of the brain” had brought forth so many neural systems and modules that related, with relative precision, cognitive processes to the brain. In comparison, neuropsycholog- ical assessment tools and neuropsychological models of cognition appeared rather unsophisticated. It would have been possible to strive for reconciliation between vii viii Preface assessment tools and functional neuroanatomic/neurocognitive systems if assess- ment took on a more computational dimension, but again, this consideration was absent in neuropsychology. My interest in the representational model of spatial neglect had me comb- ing through primate neuroscience literature on posterior parietal mechanisms for coordinate-based spatiotopic transformations. The conventional assessment tools for neglect, e.g., line bisection, letter cancellation, and clock and figure drawings, by virtue of their simplicity, could generate dramatic pictures of neglect, but had no potential to relate to neural models of neglect. It was this problem that made me look to computerized methods, which in this case could be devised to tap into the com- plexities of neglect. I began work on an informatics system involving a grid-based screen interfaced with a database. The coordinates of presented visual stimuli and the gradients of neglect could be recorded and subjected to various kinds of analysis (this is described in a subsection of this book). Exploring informatics systems for neuropsychological applications inevitably had me surveying the larger field of biological informatics (bioinformatics) and its subspecialty in the neurosciences (neuroinformatics). The levels of sophistication attained by these disciplines were astounding as was the unique and transforma- tive potential that they conferred. It was evident that modern biomedical science was inseparable from bioinformatics. The Human Genome Project was in large part a bioinformatics project and so much of the Human Brain Project centered on neuroinformatics. The absence of neuropsychology on the vast and flourishing landscape of neuroinformatics was stark and striking. The scenario was that most of the sub- disciplines in neuroscience had discovered a powerful new technology, enabling novel methods of research, data analysis, problem solving, and knowledge build- ing. With neuroinformatics, they could capture, manipulate, and visualize data in ways never before conceived. Neuropsychology, however, remained quite oblivious to this informatics-based revolution in the neurosciences. Neuropsychology, espe- cially clinical neuropsychology, had by the 1980 s solidified an identity that had been shaped over many decades. It had developed a modus operandi that was inti- mately tied to its tools and models, most of which were rooted in periods that long preceded the modern era of cognitive-brain sciences. By the late 1990 s, informat- ics had become a tour de force in neuroscience, but neuropsychology, lying snug under its canopy of conventions, showed almost no awareness or understanding of the potential that was spelled by neuroinformatics. In February 2005, I presented a paper at the US annual meeting of the Interna- tional Neuropsychological Society, in St. Louis, Missouri. The paper described the impact of neuroinformatics in neuroscience, and a case was laid out for neuroinfor- matics in neuropsychology. I soon after began to structure the paper as a manuscript for a review publication. Research for the paper brought me into contact with a small but steadily increasing number of individuals whose work in neuropsychology tied in with informatics. They shared valuable data with me and were also keen about a larger account of neuroinformatics in neuropsychology. During this period, the Internet had also been transitioning from its first generation to its second, marked Preface ix by a host of web-based technologies for data modeling and collective knowledge building. Needless to say, with all these factors, what began as manuscript for a review publication quickly evolved into a book. This book introduces the field of neuroinformatics to neuropsychologists. It tours the field of neuroinformatics and articulates ways by which neuroinformatics can be integrated with neuropsychological research and practice. It describes various applications for neuropsychology. The book is an ambitious first account of neu- roinformatics for neuropsychology – it discusses the kinds of changes required in the discipline for a successful integration with neuroinformatics, and it also lays out various issues that are likely to arise as neuroinformatics becomes an everyday part of neuropsychology. It presents a vision of 21st century neuropsychology defined by neuroinformatics. The book is aimed at neuropsychologists and to those in related disciplines – behavioral neurology, psychiatry, clinical psychology, speech-language pathol- ogy, cognitive psychology, and cognitive neuroscience. The introduction offered by this book is non-technical. The reader does not require a background in computer science or computational neuroscience. A reader of general neuropsychological literature will have no problem understanding the material presented. Numerous possibilities for the realization of neuroinformatics in neuropsy- chology are conveyed by this book. It is the author’s hope that the book will help accelerate discussion and enhance awareness of neuroinformatics for neu- ropsychology. A theme carried throughout the book is that neuroinformatics for neuropsychology is not an option but an inevitability brought about by technological and theoretical advances of our time. Boston, Massachusetts Vinoth Jagaroo Acknowledgements I am grateful to the many individuals who helped make this book possible. The encouragement and support I received from my colleagues, Daniel Kempler, Cynthia
Recommended publications
  • Artificial Intelligence in Health Care: the Hope, the Hype, the Promise, the Peril
    Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril Michael Matheny, Sonoo Thadaney Israni, Mahnoor Ahmed, and Danielle Whicher, Editors WASHINGTON, DC NAM.EDU PREPUBLICATION COPY - Uncorrected Proofs NATIONAL ACADEMY OF MEDICINE • 500 Fifth Street, NW • WASHINGTON, DC 20001 NOTICE: This publication has undergone peer review according to procedures established by the National Academy of Medicine (NAM). Publication by the NAM worthy of public attention, but does not constitute endorsement of conclusions and recommendationssignifies that it is the by productthe NAM. of The a carefully views presented considered in processthis publication and is a contributionare those of individual contributors and do not represent formal consensus positions of the authors’ organizations; the NAM; or the National Academies of Sciences, Engineering, and Medicine. Library of Congress Cataloging-in-Publication Data to Come Copyright 2019 by the National Academy of Sciences. All rights reserved. Printed in the United States of America. Suggested citation: Matheny, M., S. Thadaney Israni, M. Ahmed, and D. Whicher, Editors. 2019. Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril. NAM Special Publication. Washington, DC: National Academy of Medicine. PREPUBLICATION COPY - Uncorrected Proofs “Knowing is not enough; we must apply. Willing is not enough; we must do.” --GOETHE PREPUBLICATION COPY - Uncorrected Proofs ABOUT THE NATIONAL ACADEMY OF MEDICINE The National Academy of Medicine is one of three Academies constituting the Nation- al Academies of Sciences, Engineering, and Medicine (the National Academies). The Na- tional Academies provide independent, objective analysis and advice to the nation and conduct other activities to solve complex problems and inform public policy decisions.
    [Show full text]
  • Annual Report 2018–2019 Our Vision
    ANNUAL REPORT 2018–2019 OUR VISION We shape tomorrow. We confront problems and create solutions. We expand information’s impact and technology’s potential. Together, our faculty, staff, students, and alumni make the world a better place—day by day, project by project, leap by leap. LEADERSHIP Raj Acharya Since its establishment in 2000, the Luddy School of Informatics, Computing, and Dean Engineering has built a reputation as one of the broadest of its kind. Our more than 3,000 students come from Indiana and around the world, and our unique blend Mathew Palakal of programs in informatics, computer science, intelligent systems engineering, Senior Executive Associate information and library science, data science, and more create an interdisciplinary, Dean collaborative environment where ideas thrive. Erik Stolterman Bergqvist Our forward-looking school is a mélange, a salad bowl of disparate but related Senior Executive Associate disciplines. That salad bowl provides us with a holistic taste of creativity and Dean innovation while preserving and enhancing the taste of the individual components. Esfandiar Haghverdi As we have grown exponentially through our first two decades, we have maintained Executive Associate Dean for our core values with an open-minded view of tomorrow, one that has allowed us to Undergraduate Education stay on the cutting edge of technology while anticipating what the future holds. David Leake We accomplished much during the 2018-19 school year. Our information and library Executive Associate Dean science program was ranked second in the world behind only Harvard by the 2018 Academic Ranking of World Universities. Researchers at our school garnered Kay Connelly $16.1 million in grants from the National Science Foundation, the National Institute Associate Dean for Research of Health, the National Cancer Institute, the Department of Defense, and other prestigious organizations, and our school ranks 12th in computer and information Karl F.
    [Show full text]
  • Information Technology Management 14
    Information Technology Management 14 Valerie Bryan Practitioner Consultants Florida Atlantic University Layne Young Business Relationship Manager Indianapolis, IN Donna Goldstein GIS Coordinator Palm Beach County School District Information Technology is a fundamental force in • IT as a management tool; reshaping organizations by applying investment in • understanding IT infrastructure; and computing and communications to promote competi- • ȱǯ tive advantage, customer service, and other strategic ęǯȱǻȱǯȱǰȱŗşşŚǼ ȱȱ ȱ¢ȱȱȱ¢ǰȱȱ¢Ȃȱ not part of the steamroller, you’re part of the road. ǻ ȱǼ ȱ ¢ȱ ȱ ȱ ęȱ ȱ ȱ ¢ǯȱȱȱȱȱ ȱȱ ȱ- ¢ȱȱȱȱȱǯȱ ǰȱ What is IT? because technology changes so rapidly, park and recre- ation managers must stay updated on both technological A goal of management is to provide the right tools for ȱȱȱȱǯ ěȱ ȱ ě¢ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱ ȱȱȱǰȱȱǰȱ ȱȱȱȱȱȱǯȱȱȱȱ ǰȱȱȱȱ ȱȱ¡ȱȱȱȱ recreation organization may be comprised of many of terms crucial for understanding the impact of tech- ȱȱȱȱǯȱȱ ¢ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ - ȱȱęȱȱȱ¢ȱȱȱȱ ¢ȱǻ Ǽȱȱȱȱ¢ȱ ȱȱȱȱ ǰȱ ȱ ȱ ȬȬ ȱ ȱ ȱ ȱȱǯȱȱȱȱȱ ¢ȱȱǯȱȱ ȱȱȱȱ ȱȱ¡ȱȱȱȱȱǻǰȱŗşŞśǼǯȱ ȱȱȱȱȱȱĞȱȱȱȱ ǻȱ¡ȱŗŚǯŗȱ Ǽǯ ě¢ȱȱȱȱǯ Information technology is an umbrella term Details concerning the technical terms used in this that covers a vast array of computer disciplines that ȱȱȱȱȱȱȬȬęȱ ȱȱ permit organizations to manage their information ǰȱ ȱ ȱ ȱ Ȭȱ ¢ȱ ǯȱ¢ǰȱȱ¢ȱȱȱ ȱȱ ǯȱȱȱȱȱȬȱ¢ȱ a fundamental force in reshaping organizations by applying ȱȱ ȱȱ ȱ¢ȱȱȱȱ investment in computing and communications to promote ȱȱ¢ǯȱ ȱȱȱȱ ȱȱ competitive advantage, customer service, and other strategic ȱ ǻȱ ȱ ŗŚȬŗȱ ęȱ ȱ DZȱ ęȱǻǰȱŗşşŚǰȱǯȱřǼǯ ȱ Ǽǯ ȱ¢ȱǻ Ǽȱȱȱȱȱ ȱȱȱęȱȱȱ¢ȱȱ ȱ¢ǯȱȱȱȱȱ ȱȱ ȱȱ ȱȱȱȱ ȱ¢ȱ ȱȱǯȱ ȱ¢ǰȱ ȱȱ ȱDZ ȱȱȱȱǯȱ ȱȱȱȱǯȱ It lets people learn things they didn’t think they could • ȱȱȱ¢ǵ ȱǰȱȱǰȱȱȱǰȱȱȱȱȱǯȱ • the manager’s responsibilities; ǻȱǰȱȱ¡ȱĜȱȱĞǰȱȱ • information resources; ǷȱǯȱȱȱřŗǰȱŘŖŖŞǰȱ • disaster recovery and business continuity; ȱĴDZȦȦ ǯ ǯǼ Information Technology Management 305 Exhibit 14.
    [Show full text]
  • Bioinformatics 1
    Bioinformatics 1 Bioinformatics School School of Science, Engineering and Technology (http://www.stmarytx.edu/set/) School Dean Ian P. Martines, Ph.D. ([email protected]) Department Biological Science (https://www.stmarytx.edu/academics/set/undergraduate/biological-sciences/) Bioinformatics is an interdisciplinary and growing field in science for solving biological, biomedical and biochemical problems with the help of computer science, mathematics and information technology. Bioinformaticians are in high demand not only in research, but also in academia because few people have the education and skills to fill available positions. The Bioinformatics program at St. Mary’s University prepares students for graduate school, medical school or entry into the field. Bioinformatics is highly applicable to all branches of life sciences and also to fields like personalized medicine and pharmacogenomics — the study of how genes affect a person’s response to drugs. The Bachelor of Science in Bioinformatics offers three tracks that students can choose. • Bachelor of Science in Bioinformatics with a minor in Biology: 120 credit hours • Bachelor of Science in Bioinformatics with a minor in Computer Science: 120 credit hours • Bachelor of Science in Bioinformatics with a minor in Applied Mathematics: 120 credit hours Students will take 23 credit hours of core Bioinformatics classes, which included three credit hours of internship or research and three credit hours of a Bioinformatics Capstone course. BS Bioinformatics Tracks • Bachelor of Science
    [Show full text]
  • Information Technology Manager Is a Professional Technical Stand Alone Class
    CITY OF GRANTS PASS, OREGON CLASS SPECIFICATION FLSA Status : Exempt Bargaining Unit : Non-Bargaining INFORMATION TECHNOLOGY Salary Grade : UD2 MANAGER CLASS SUMMARY: The Information Technology Manager is a Professional Technical Stand Alone class. Incumbents are responsible for management of specific applications, computer hardware and software, and development of systems based on detailed specifications. Incumbents apply a broad knowledge base of programming code to City issues and work with systems that link to multiple databases involving complex equations. Based upon assignment, incumbents may manage small information technology projects. The Information Technology Manager is responsible for the full range of supervisory duties including directing work, training and coaching, discipline, and performance evaluation. CORE COMPETENCIES: Integrity/Accountability: Conducts oneself in a manner that is ethical, trustworthy and professional; demonstrates transparency with honest, responsive communication; behaves in a manner that supports the needs of Council, the citizens and co-workers; and conducts oneself in manner that supports the vision and goals of the organization taking pride in being engaged in the community. Vision: Actively seeks to discover and create ways of doing things better using resources and skills in an imaginative and innovative manner; encourages others to find solutions and contributes, regardless of responsibilities, to achieve a common goal; and listens and is receptive to different ideas and opinions while solving problems. Leadership/United: Focuses on outstanding results of the betterment of the individual, the organization and the community; consistently seeks opportunities for coordination and collaboration, working together as a team; displays an ability to adjust as needed to accomplish the common goal and offers praise when a job is done well.
    [Show full text]
  • Neuro Informatics 2020
    Neuro Informatics 2019 September 1-2 Warsaw, Poland PROGRAM BOOK What is INCF? About INCF INCF is an international organization launched in 2005, following a proposal from the Global Science Forum of the OECD to establish international coordination and collaborative informatics infrastructure for neuroscience. INCF is hosted by Karolinska Institutet and the Royal Institute of Technology in Stockholm, Sweden. INCF currently has Governing and Associate Nodes spanning 4 continents, with an extended network comprising organizations, individual researchers, industry, and publishers. INCF promotes the implementation of neuroinformatics and aims to advance data reuse and reproducibility in global brain research by: • developing and endorsing community standards and best practices • leading the development and provision of training and educational resources in neuroinformatics • promoting open science and the sharing of data and other resources • partnering with international stakeholders to promote neuroinformatics at global, national and local levels • engaging scientific, clinical, technical, industry, and funding partners in colla- borative, community-driven projects INCF supports the FAIR (Findable Accessible Interoperable Reusable) principles, and strives to implement them across all deliverables and activities. Learn more: incf.org neuroinformatics2019.org 2 Welcome Welcome to the 12th INCF Congress in Warsaw! It makes me very happy that a decade after the 2nd INCF Congress in Plzen, Czech Republic took place, for the second time in Central Europe, the meeting comes to Warsaw. The global neuroinformatics scenery has changed dramatically over these years. With the European Human Brain Project, the US BRAIN Initiative, Japanese Brain/ MINDS initiative, and many others world-wide, neuroinformatics is alive more than ever, responding to the demands set forth by the modern brain studies.
    [Show full text]
  • An Academic Discipline
    Information Technology – An Academic Discipline This document represents a summary of the following two publications defining Information Technology (IT) as an academic discipline. IT 2008: Curriculum Guidelines for Undergraduate Degree Programs in Information Technology. (Nov. 2008). Association for Computing Machinery (ACM) and IEEE Computer Society. Computing Curricula 2005 Overview Report. (Sep. 2005). Association for Computing Machinery (ACM), Association for Information Systems (AIS), Computer Society (IEEE- CS). The full text of these reports with details on the model IT curriculum and further explanation of the computing disciplines and their commonalities/differences can be found online: http://www.acm.org/education/education/curricula-recommendations) From IT 2008: Curriculum Guidelines for Undergraduate Degree Programs in Information Technology IT programs aim to provide IT graduates with the skills and knowledge to take on appropriate professional positions in Information Technology upon graduation and grow into leadership positions or pursue research or graduate studies in the field. Specifically, within five years of graduation a student should be able to: 1. Explain and apply appropriate information technologies and employ appropriate methodologies to help an individual or organization achieve its goals and objectives; 2. Function as a user advocate; 3. Manage the information technology resources of an individual or organization; 4. Anticipate the changing direction of information technology and evaluate and communicate the likely utility of new technologies to an individual or organization; 5. Understand and, in some cases, contribute to the scientific, mathematical and theoretical foundations on which information technologies are built; 6. Live and work as a contributing, well-rounded member of society. In item #2 above, it should be recognized that in many situations, "a user" is not a homogeneous entity.
    [Show full text]
  • Artificial Brain Project of Visual Motion
    In this issue: • Editorial: Feeding the senses • Supervised learning in spiking neural networks V o l u m e 3 N u m b e r 2 M a r c h 2 0 0 7 • Dealing with unexpected words • Embedded vision system for real-time applications • Can spike-based speech Brain-inspired auditory recognition systems outperform conventional approaches? processor and the • Book review: Analog VLSI circuits for the perception Artificial Brain project of visual motion The Korean Brain Neuroinformatics Re- search Program has two goals: to under- stand information processing mechanisms in biological brains and to develop intel- ligent machines with human-like functions based on these mechanisms. We are now developing an integrated hardware and software platform for brain-like intelligent systems called the Artificial Brain. It has two microphones, two cameras, and one speaker, looks like a human head, and has the functions of vision, audition, inference, and behavior (see Figure 1). The sensory modules receive audio and video signals from the environment, and perform source localization, signal enhancement, feature extraction, and user recognition in the forward ‘path’. In the backward path, top-down attention is per- formed, greatly improving the recognition performance of real-world noisy speech and occluded patterns. The fusion of audio and visual signals for lip-reading is also influenced by this path. The inference module has a recurrent architecture with internal states to imple- ment human-like emotion and self-esteem. Also, we would like the Artificial Brain to eventually have the abilities to perform user modeling and active learning, as well as to be able to ask the right questions both to the right people and to other Artificial Brains.
    [Show full text]
  • Applications of Social Media in Hydroinformatics: a Survey
    Applications of Social Media in Hydroinformatics: A Survey Yufeng Yu, Yuelong Zhu, Dingsheng Wan,Qun Zhao [email protected] College of Computer and Information Hohai University Nanjing, Jiangsu, China Kai Shu, Huan Liu [email protected] School of Computing, Informatics, and Decision Systems Engineering Arizona State University Tempe, Arizona, U.S.A Abstract Floods of research and practical applications employ social media data for a wide range of public applications, including environmental monitoring, water resource managing, disaster and emergency response, etc. Hydroinformatics can benefit from the social media technologies with newly emerged data, techniques and analytical tools to handle large datasets, from which creative ideas and new values could be mined. This paper first proposes a 4W (What, Why, When, hoW) model and a methodological structure to better understand and represent the application of social media to hydroinformatics, then provides an overview of academic research of applying social media to hydroinformatics such as water environment, water resources, flood, drought and water Scarcity management. At last,some advanced topics and suggestions of water-related social media applications from data collection, data quality management, fake news detection, privacy issues , algorithms and platforms was present to hydroinformatics managers and researchers based on previous discussion. Keywords: Social Media, Big Data, Hydroinformatics, Social Media Mining, Water Resource, Data Quality, Fake News 1 Introduction In the past two
    [Show full text]
  • 14 School Subject Informatics (Computer Science) in Russia: Educational Relevant Areas
    i i i i School Subject Informatics (Computer Science) in Russia: Educational Relevant Areas EVGENIY KHENNER and IGOR SEMAKIN, Perm State National Research University, Russia This article deals with some aspects of studying Informatics in Russian schools. Those aspects are part of the ‘third dimension’ of the Darmstadt model (they are also projected on the other two dimensions of this model) and include evolution of the subject, regulatory norms conforming to the Federal Educational Standards, the learning objectives, the required learning outcomes, and the Unified National Examination in Informatics, which is required for admission to a number of university programs. It is interesting to note that correspondence between requirements for the outcomes of learning Informatics in Russian school and the requirements of K-12 Computer Science Standards (USA) is quite satisfactory. It is noteworthy that the relatively high level of school education in Informatics in Russia is determined by the well-established methodological system with a 30-year history, the subject’s being on the list of core disciplines at school, as well as the existence of a state-sponsored system of education teachers of Informatics. Categories and Subject Descriptors: K.3.2 [Computers and Education]: Computer and Information Science Education—Computer science education General Terms: Algorithms, Languages, Security Additional Key Words and Phrases: History of Informatics in school, education policies, educational standards, qualification and professional experience of teachers, learning objectives and outcomes, structural components of Informatics, curriculum issues, Unified National Exam, extracurricular activities, textbooks, didactic software ACM Reference Format: Khenner, E. and Semakin, I. 2014. School subject informatics (computer science) in Russia: Educational relevant areas.
    [Show full text]
  • B.A. in Computing and Informatics 856-256-4805
    College of Science and Mathematics Contact Department of Computer Science Robinson Hall B.A. in Computing and Informatics 856-256-4805 www.rowan.edu/computerscience Curriculum About this program The curriculum for the major is divided into The Bachelor of Arts in Computing and Informatics is a new degree designed for three major areas: Foundation courses, Basic students who are interested in pursuing careers in information technology which requires Core Areas, and Computing and Informatics a solid understanding of the principles of computing – but not the underpinnings of Electives. computer science theory and mathematics. Such careers include, but are not limited to: The Foundation courses represent a sequence of courses primarily focused on programming Programmers Software QA / Testing Engineers skills across a variety of infrastructure Infrastructure Administrators Computer Service Coordinators platforms. Introductory courses will expose Support Technicians Deployment Technicians students to programming concepts in two different languages (e.g.,, Java, C++ or (e.g., Help Desk support) (e.g., end-user support for system releases) Python). Students will then master more Technical Application Trainers Technical Documentation Specialists complex programming via the completion of two Advanced Programming Workshops. How does this program differ from the B.S. in Computer Students will also be required to complete the Science? Basic Core Areas which cover data structures, In comparison to the existing B.S. in Computer Science, this
    [Show full text]
  • ALGORITHMS of INFORMATICS Volume 3 Antoncom Budapest, 2011
    ALGORITHMS OF INFORMATICS Volume 3 AnTonCom Budapest, 2011 This electronic book was prepared in the framework of project Eastern Hungarian Informatics Books Repository no. TÁMOP-4.1.2-08/1/A-2009-0046. This electronic book appeared with the support of European Union and with the co-financing of European Social Fund. Editor: Antal Iványi Authors of Volume 3: Béla Vizvári (Chapter 24), Antal Iványi and Shariefuddin Pirzada (Chapter 25), Zoltán Kása, and Mira-Cristiana Anisiu (Chapter 26), Ferenc Szidarovszky and László Domoszlai, (Chapter 27), László Szirmay-Kalos and László Szécsi (Chapter 28), Antal Iványi (Chapter 29), Shariefuddin Pirzada, Antal Iványi and Muhammad Ali Khan (Chapter 30) Validators of Volume 3: Gergely Kovács (Chapter 24), Zoltán Kása (Chapter 25), Antal Iványi (Chapter 26), Sándor Molnár (Chapter 27), György Antal (Chapter 28), Zoltán Kása (Chapter 29), Zoltán Kása (Chapter 30), Anna Iványi (Bibliography) c 2011 AnTonCom Infokommunikációs Kft. Homepage: http://www.antoncom.hu/ Contents Introduction to Volume 3 ........................... 1207 24.The Branch and Bound Method ..................... 1208 24.1. An example: the Knapsack Problem ................. 1208 24.1.1. The Knapsack Problem .................... 1209 24.1.2. A numerical example ...................... 1211 24.1.3. Properties in the calculation of the numerical example . 1214 24.1.4. How to accelerate the method ................. 1216 24.2. The general frame of the B&B method ................ 1217 24.2.1. Relaxation ............................ 1217 24.2.2. The general frame of the B&B method ............ 1224 24.3. Mixed integer programming with bounded variables ......... 1229 24.3.1. The geometric analysis of a numerical example . 1230 24.3.2. The linear programming background of the method .
    [Show full text]