Message from the Director General SUMMARY of a REPORT to the ESO STAFF

Total Page:16

File Type:pdf, Size:1020Kb

Message from the Director General SUMMARY of a REPORT to the ESO STAFF No. 76 - June 1994 Message from the Director General SUMMARY OF A REPORT TO THE ESO STAFF 1. Audit This will not be easy and will require a schedule, if a solution to this critical certain effort from all involved. The team which was charged by the problem is not found soon. The recent visit by the ESO delegation to Chile dur­ ESO Council to provide an audit report about ESO and in particular the VLT ing which meetings were held with the 2. Chile project, has now finished its work with a Foreign Minister and also the President of the Republic of Chile, reassured us final discussion at the ESO Headquar­ The situation of ESO in Chile has been that the Chilean Government fully ters on April 28, 1994. The report has the subject of ;llany recent discussions adheres to the conditions laid down in been published and was discussed by and, as is known and has been made the Chile-ESO Treaty, including ESO's Council in its recent meeting. public through recent press releases, immunities and privileges. I am glad to tell you that ESO came ESO appears to be under a concerted In view of the crucial importance of through this exercise "with flying col­ attack from some groups in that coun­ the Paranal issue for the VLT project and ours" and that our earlier statements try. While ESO has meticulously ad­ since we have at this moment commit­ concerning the work done at ESO were hered to its legal obligations in Chile, it is ted approximately half of the total VLT largely confirmed by the Audit Team. In true that the wishes of the Chilean as­ budget, it is obvious that we must now particular, it was agreed that the request tronomers as well as the ESO Chilean do our utmost to "find a home" for the for an increased VLT budget was staff were not always sufficiently taken world's largest optical telescope. reasonable and the need to add a into account. However, the Supplemen­ number of staff positions was also tary Agreement which is now in the final supported. stages of negotiation, takes care of this. 3.0PC The Audit Team proposed specific We are hopeful that it will become pos­ measures to the Council including in­ sible to conclude the signing and ratifi­ The Observing Programmes Committee creases in budget and staff and also cation procedure, so that this Agree­ met for the first time under the new improvements of various aspects of the ment can enter into force and our Chi­ evaluation system at the end of May. work breakdown structure, the manage­ lean colleagues can then profit from the The new process means that more sci­ ment system, as well as the plans for new regulations. In fact, ESO has done entists will be involved in the peer re­ operations. A very important conclusion everything it can reasonably do and the view and this will undoubtedly result in a was that ESO will be able to manage the issues surrounding the ownership of Pa­ better and more equitable assessment VLT project under these assumptions. It ranal is not ESO's problem, but a prob­ of the observing proposals. Things went should be noted that this means that it lem of the Chilean Government. We are extremely well and a very good job was has been possible to obtain support for confident that the Chilean Government done by Jacques Breysacher and his a number of new positions since early will take the necessary actions in due people despite the fact that a record last year. It is now our task to fill these time, but it is unfortunate that we may number of applications was received for positions with the best possible staff. run into problems with the VLT this round, close to 600. 1 4. STC 5. Scientific Visiting Committee become much clearer after the termina­ tion of the current comparative study of The Scientific Technical Committee also This Committee has now delivered its employment conditions (including met recently and evaluated the scientific report about the science carried out at salaries) at ESO and other national and technical aspects of the ESO operations La Silla and at the Headquarters. It is the private organizations. at La Silla. The STC again underlined intention to continue to rely upon its that science must be the driver of all services as an Advisory Body for these ESO activities and expressed the opin­ questions. Certain problems were re­ 6. Budget ion that there are currently too many marked on, in particular that more atten­ I am happy to report that Finance Com­ tasks for the astronomical/technical tion should be given to the involvement mittee and Council approved the budget staff at La Silla. Reductions will be of ESO scientists in the development of for 1994 as well as the forecast for necessary, probably by the closure of new instrumental facilities, communica­ 1995-1997. They also approved vari­ some of the telescopes, or by transfer­ tions between the scientists inside and ous management tools in connection ring the operational responsibility to na­ outside ESO and also the personnel pol­ with the cash flow, etc. which will facili­ tional groups. icy of the Organization of which certain tate the financial administration during The STC strongly supported the aspects, for instance salaries, are in the the next years of heavy VLT expen­ view that the VLTI must be re-intro­ state of an undesirable lack of definition. ditures. duced in the VLT as soon as possible It is obvious that we must attempt to since it is a unique feature of this tele­ define better what we are really trying to 7. Conclusions scope. The STC endorsed the new, do in the personnel area, but also that smaller interferometry programme we must do everything possible to at­ In conclusion, I am glad to state that I do which was presented by ESO. It costs tract and keep the staff with the best not see any real show-stoppers for ESO 30 % less and also further reduces the qualifications. For this reason, special and its VLT project at this moment. We annual cost, since it will be stretched measures may become necessary dur­ will surely be able to carry through suc­ over twice the period earlier envisaged. ing the period until the personnel policy cessfully this great project but it is also In this connection, the interest of our has become better defined. The issue of true that we must improve ourselves in Australian colleagues in VLT interfer­ a system based on merit is still open, terms of management techniques and ometry and the possibility of using in but it is particularly important that the internal communication. There may still addition to the MPG/CNRS and ESO staff gets a feeling of fairness in the be some "cultural" problems within contributions the entry fee by Australia judgement of their performance. It will ESO, but I think that good will and en­ for this purpose, if and when it be­ be my task to try to convince the Fi­ thusiasm for the common cause will comes a full member of ESO, is indeed nance Committee and Council of what make it possible to overcome these very exciting. our "fair market value" really is. This will difficulties. R. GIACCONI TELESCOPES AND INSTRUMENTATION Work Starts on the VLT M2 Units D. ENARD, ESO The development and construction of as the adapters. This secondary mirror the case for the NTI as well as for most the 4 VLT secondary mirror units is go­ has a diameter of about 1.2 metre for modern telescopes. ing to be carried out by Matra Marconi the nominal aperture of F/15 at the Nas­ In addition, the VLT secondary mirrors Systems together with REOSC, SFIM myth focus. Because the VLT is largely can be controlled in tilt around a point and MAN. The kick-off meeting was optimized for the IR, the secondary close to the vertex to correct for fast held on April 20 and 21 and the design mirror also defines the pupil which is guiding errors. This mode is called field work is already proceeding. slightly undersized with respect to the stabilization and was introduced at a One of the basic features of the VLT is beam defined by the primary mirror out­ very early stage of the project and was that there is only one secondary mirror er diameter. This approach sets how­ driven by the important wind loads to to serve the different observing modes. ever a number of tough requirements on which the structure would have been The switch from Cassegrain to the Nas­ the M2 unit since aile the requirements subjected with the retractable enclosure myth and coude foci is achieved by which traditionally are distributed on originally foreseen. The later decision to moving the tertiary mirror into different several mirror units of different sizes are revert to a conventional enclosure ­ positions rather than - as is traditional ­ concentrated into one single unit. essentially in order to better protect the by exchanging the secondary mirror As part of the active optics scheme, primary mirror from wind loads - did not unit. There are important operational the secondary mirror must be able to remove that need. As a matter of fact, and cost-saving advantages in this ap­ maintain the telescope geometry with numerical and wind tunnel simulations proach. It gives a unique opportunity to respect to the primary mirror. To this have shown that the enclosure did not change at any time of observing mode, effect, the secondary mirror can be po­ contribute much to reduce the dynamic reduces maintenance and significantly sitioned in three coordinates to correct part of the wind loads and that, consid­ simplifies the operation software as well for focusing and centring as it is already ering the strong winds at Cerro Paranal, 2 a fast guiding would be necessary if the very ambitious image quality goals were COVER to be attained.
Recommended publications
  • Stark Broadening of Spectral Lines in Plasmas
    atoms Stark Broadening of Spectral Lines in Plasmas Edited by Eugene Oks Printed Edition of the Special Issue Published in Atoms www.mdpi.com/journal/atoms Stark Broadening of Spectral Lines in Plasmas Stark Broadening of Spectral Lines in Plasmas Special Issue Editor Eugene Oks MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editor Eugene Oks Auburn University USA Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Atoms (ISSN 2218-2004) in 2018 (available at: https://www.mdpi.com/journal/atoms/special issues/ stark broadening plasmas) For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03897-455-0 (Pbk) ISBN 978-3-03897-456-7 (PDF) Cover image courtesy of Eugene Oks. c 2018 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editor ...................................... vii Preface to ”Stark Broadening of Spectral Lines in Plasmas” ..................... ix Eugene Oks Review of Recent Advances in the Analytical Theory of Stark Broadening of Hydrogenic Spectral Lines in Plasmas: Applications to Laboratory Discharges and Astrophysical Objects Reprinted from: Atoms 2018, 6, 50, doi:10.3390/atoms6030050 ...................
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Readingsample
    Stellar Physics 2: Stellar Evolution and Stability Bearbeitet von Gennady S. Bisnovatyi-Kogan, A.Y. Blinov, M. Romanova 1. Auflage 2011. Buch. xxii, 494 S. Hardcover ISBN 978 3 642 14733 3 Format (B x L): 15,5 x 23,5 cm Gewicht: 1024 g Weitere Fachgebiete > Physik, Astronomie > Astronomie: Allgemeines > Astrophysik Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Chapter 8 Pre-Main Sequence Evolution As can be seen from the calculations of cloud collapse described in Sect. 7.2,stars with mass M>3Mˇ appear in the optical range immediately near to the main se- quence. Objects of lower mass exist for part of the time as optical stars with radiation due to gravitational contraction energy. Consider evolution of a star from its ap- pearance in the optical region until it reaches the main sequence, and its central temperature becomes sufficiently high to initiate a nuclear reaction converting hy- drogen into helium (see review [105]). 8.1 Hayashi Phase The pre-main sequence evolution of stars takes place at not very high temperatures, when a non-full ionization of matter and large opacity cause such stars to be almost convective. This fact was first established by Hayashi [461, 462], who took into account a convection in constructing evolutionary tracks for contracting stars in the HR diagram (see Fig.
    [Show full text]
  • Brightness Profiles of Early-Type Galaxies Hosting Seyfert Nuclei
    A&A 469, 75–88 (2007) Astronomy DOI: 10.1051/0004-6361:20066684 & c ESO 2007 Astrophysics The host galaxy/AGN connection Brightness profiles of early-type galaxies hosting Seyfert nuclei A. Capetti and B. Balmaverde INAF - Osservatorio Astronomico di Torino, Strada Osservatorio 20, 10025 Pino Torinese, Italy e-mail: [capetti;balmaverde]@oato.inaf.it Received 2 November 2006 / Accepted 15 March 2007 ABSTRACT We recently presented evidence of a connection between the brightness profiles of nearby early-type galaxies and the properties of the AGN they host. The radio loudness of the AGN appears to be univocally related to the host’s brightness profile: radio-loud nuclei are only hosted by “core” galaxies while radio-quiet AGN are only found in “power-law” galaxies. We extend our analysis here to a −1 sample of 42 nearby (Vrec < 7000 km s ) Seyfert galaxies hosted by early-type galaxies. From the nuclear point of view, they show a large deficit of radio emission (at a given X-ray or narrow line luminosity) with respect to radio-loud AGN, conforming with their identification as radio-quiet AGN. We used the available HST images to study their brightness profiles. Having excluded complex and highly nucleated galaxies, in the remaining 16 objects the brightness profiles can be successfully modeled with a Nuker law with a steep nuclear cusp characteristic of “power-law” galaxies (with logarithmic slope γ = 0.51−1.07). This result is what is expected for these radio-quiet AGN based on our previous findings, thus extending the validity of the connection between brightness profile and radio loudness to AGN of a far higher luminosity.
    [Show full text]
  • Interstellar Na I Absorption Towards Stars in the Region of the IRAS Vela Shell 1 3 M
    4. Towards the Galactic Rotation Observatory and is now permanently in­ the rotation curve from 12 kpc to 15 kpc Curve Beyond 12 kpc with stalled at the 1.93-m telescope of the and answer the question: ELODIE Haute-Provence Observatory. This in­ "Does the dip of the rotation curve at strument possesses an automatic re­ 11 kpc exist and does the rotation curve A good knowledge of the outer rota­ duction programme called INTER­ determined from cepheids follow the tion curve is interesting since it reflects TACOS running on a SUN SPARC sta­ gas rotation curve?" the mass distribution of the Galaxy, and tion to achieve on-line data reductions The answer will give an important clue since it permits the kinematic distance and cross-correlations in order to get about the reality of a local non-axi­ determination of young disk objects. the radial velocity of the target stars symmetric motions and will permit to The rotation curve between 12 and minutes after the observation. The investigate a possible systematic error 16 kpc is not clearly defined by the ob­ cross-correlation algorithm used to find in the gas or cepheids distance scale servations as can be seen on Figure 3. the radial velocity of stars mimics the (due for instance to metal deficiency). Both the gas data and the cepheid data CORAVEl process, using a numerical clearly indicate a rotation velocity de­ mask instead of a physical one (for any References crease from RG) to R= 12 kpc, but then details, see Dubath et al. 1992).
    [Show full text]
  • B Stars Seen at High Resolution by XMM-Newton
    Astronomy & Astrophysics manuscript no. paper c ESO 2018 April 16, 2018 B stars seen at high resolution by XMM-Newton⋆ Constantin Cazorla and Yaël Nazé⋆⋆ Groupe d’Astrophysique des Hautes Energies, STAR, Université de Liège, Quartier Agora (B5c, Institut d’Astrophysique et de Géo- physique), Allée du 6 Août 19c, B-4000 Sart Tilman, Liège, Belgium e-mail: [email protected] April 16, 2018 ABSTRACT We report on the properties of 11 early B stars observed with gratings on board XMM-Newton and Chandra, thereby doubling the number of B stars analysed at high resolution. The spectra typically appear soft, with temperatures of 0.2–0.6 keV, and moderately bright (log[LX/LBOL] ∼−7) with lower values for later type stars. In line with previous studies, we also find an absence of circumstellar absorption, negligible line broadening, no line shift, and formation radii in the range 2 – 7 R⋆. From the X-ray brightnesses, we derived the hot mass-loss rate for each of our targets and compared these values to predictions or values derived in the optical domain: in some cases, the hot fraction of the wind can be non-negligible. The derived X-ray abundances were compared to values obtained from the optical data, with a fair agreement found between them. Finally, half of the sample presents temporal variations, either in the long-term, short-term, or both. In particular, HD 44743 is found to be the second example of an X-ray pulsator, and we detect a flare-like activity in the binary HD 79351, which also displays a high-energy tail and one of the brightest X-ray emissions in the sample.
    [Show full text]
  • Observing List
    day month year Epoch 2000 local clock time: 22.00 Observing List for 20 4 2019 RA DEC alt az Constellation object mag A mag B Separation description hr min deg min 27 293 Auriga M36 Pinwheel Cluster open cluster of a dozen or so young stars (30million years old) 5 36.1 34 8 29 289 Auriga M37 January Salt and Pepper Cluster rich, open cluster of 150 stars, very fine 5 52.4 32 33 27 295 Auriga M38 Starfish Cluster large open cluster 220 million years old 5 28.7 35 50 36 303 Auriga IC2149 planetary nebula, stellar to small disk, slightly elongated 5 56.5 46 6.3 30 307 Auriga Capella 0.1 alignment star 5 16.6 46 0 40 290 Auriga UU Aurigae Magnitude 5.1-7.0 carbon star (AL# 36) 6 36.5 38 27 33 293 Auriga 37 Theta Aurigae 2.6 7.1 3.6 white & bluish stars 5 59.7 37 13 23 294 Auriga 14 Aurigae 5.1 7.4 14.6 pale yellow and blue 5 15.4 32 31 57 56 Bootes 17, Kappa Bootis 4.6 6.6 13.4 bright white primary & bluish secondary 14 13.5 51 47 56 57 Bootes 21, Iota Bootis 4.9 7.5 38.5 wide yellow & blue pair 14 16.2 51 22 38 102 Bootes 29, Pi Bootis 4.9 5.8 5.6 fine bright white pair 14 40.7 16 25 43 90 Bootes 36, Epsilon Bootis (Izar) (*311) (HIP72105) 2.9 4.9 2.8 golden & greenish-blue 14 45 27 4 37 97 Bootes 37, Xi Bootis 4.7 7 6.6 beautiful yellow & reddish orange pair 14 51.4 19 6 41 72 Bootes 51, Mu Bootis 4.3 7 108.3 primary of yellow & close orange BC pair 15 24.5 37 23 41 78 Bootes Delta Bootis 3.5 8.7 105 wide yellow & blue pair 15 15.5 33 19 44 104 Bootes Arcturus -0.11 alignment star 14 15.6 19 10.4 43 124 Bootes NGC5248 galaxy with bright
    [Show full text]
  • Arxiv:2001.08266V1 [Astro-Ph.SR] 22 Jan 2020
    Astronomy & Astrophysics manuscript no. aanda c ESO 2020 January 24, 2020 Searching for central stars of planetary nebulae in Gaia DR2 N. Chornay and N. A. Walton Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, United Kingdom e-mail: [email protected], e-mail: [email protected] January 24, 2020 ABSTRACT Context. Accurate distance measurements are fundamental to the study of Planetary Nebulae (PNe) but have long been elusive. The most accurate and model-independent distance measurements for galactic PNe come from the trigonometric parallaxes of their central stars, which were only available for a few tens of objects prior to the Gaia mission. Aims. Accurate identification of PN central stars in the Gaia source catalogues is a critical prerequisite for leveraging the unprece- dented scope and precision of the trigonometric parallaxes measured by Gaia. Our aim is to build a complete sample of PN central star detections with minimal contamination. Methods. We develop and apply an automated technique based on the likelihood ratio method to match candidate central stars in Gaia Data Release 2 (DR2) to known PNe in the HASH PN catalogue, taking into account the BP–RP colours of the Gaia sources as well as their positional offsets from the nebula centres. These parameter distributions for both true central stars and background sources are inferred directly from the data. Results. We present a catalogue of over 1000 Gaia sources that our method has automatically identified as likely PN central stars. We demonstrate how the best matches enable us to trace nebula and central star evolution and to validate existing statistical distance scales, and discuss the prospects for further refinement of the matching based on additional data.
    [Show full text]
  • Maneuver Estimation Model for Relative Orbit Determination
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-2005 Maneuver Estimation Model for Relative Orbit Determination Tara R. Storch Follow this and additional works at: https://scholar.afit.edu/etd Part of the Astrodynamics Commons Recommended Citation Storch, Tara R., "Maneuver Estimation Model for Relative Orbit Determination" (2005). Theses and Dissertations. 3698. https://scholar.afit.edu/etd/3698 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. Maneuver Estimation Model for Relative Orbit Determination THESIS Tara R. Storch, Capt, USAF AFIT/GA/ENY/05-M011 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government. AFIT/GA/ENY/05-M011 Maneuver Estimation Model for Relative Orbit Determination THESIS Presented to the Faculty Department of Aeronautics and Astronautics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Master of Science in Astronautical Engineering Tara R. Storch, B.S. Capt, USAF March, 2005 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT/GA/ENY/05-M011 Maneuver Estimation Model for Relative Orbit Determination Tara R.
    [Show full text]
  • Nonthermal Particles and Photons in Starburst Regions and Superbubbles
    Astron Astrophys Rev (2014) 22:77 DOI 10.1007/s00159-014-0077-8 REVIEW ARTICLE Nonthermal particles and photons in starburst regions and superbubbles Andrei M. Bykov Received: 7 July 2014 / Published online: 14 November 2014 © Springer-Verlag Berlin Heidelberg 2014 Abstract Starforming factories in galaxies produce compact clusters and loose asso- ciations of young massive stars. Fast radiation-driven winds and supernovae input their huge kinetic power into the interstellar medium in the form of highly supersonic and superalfvenic outflows. Apart from gas heating, collisionless relaxation of fast plasma outflows results in fluctuating magnetic fields and energetic particles. The energetic particles comprise a long-lived component which may contain a sizeable fraction of the kinetic energy released by the winds and supernova ejecta and thus modify the magnetohydrodynamic flows in the systems. We present a concise review of observa- tional data and models of nonthermal emission from starburst galaxies, superbubbles, and compact clusters of massive stars. Efficient mechanisms of particle acceleration and amplification of fluctuating magnetic fields with a wide dynamical range in star- burst regions are discussed. Sources of cosmic rays, neutrinos and multi-wavelength nonthermal emission associated with starburst regions including potential galactic “PeVatrons” are reviewed in the global galactic ecology context. Keywords Starburst · Supernova remnants · Stellar winds · Interstellar medium · Cosmic rays · High energy neutrinos A. M. Bykov (B) Ioffe Institute for Physics and Technology, 194021 St. Petersburg, Russia e-mail: [email protected] A. M. Bykov International Space Science Institute, Bern, Switzerland A. M. Bykov St. Petersburg State Polytechnical University, St. Petersburg, Russia 123 Page 2 of 54 Astron Astrophys Rev (2014) 22:77 1 Introduction Almost 80 years ago W.
    [Show full text]
  • SLOWMO: a Search for Nearby Stars
    Georgia State University ScholarWorks @ Georgia State University Physics and Astronomy Theses Department of Physics and Astronomy 12-3-2007 SLOWMO: A Search for Nearby Stars Misty Adana Brown Follow this and additional works at: https://scholarworks.gsu.edu/phy_astr_theses Part of the Astrophysics and Astronomy Commons, and the Physics Commons Recommended Citation Brown, Misty Adana, "SLOWMO: A Search for Nearby Stars." Thesis, Georgia State University, 2007. https://scholarworks.gsu.edu/phy_astr_theses/4 This Thesis is brought to you for free and open access by the Department of Physics and Astronomy at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Physics and Astronomy Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. SLOWMO: A Search for Nearby Stars by Misty Brown Under the Direction of Todd Henry Abstract I report on suspected nearby stars with proper motions 1.000 > µ ≥ 0.500/yr in the southern sky (DEC = −90◦ to 00◦). This sample of slow-motion (SLOWMO) stars complements the work of Jao (2004), who reported on faster moving stars with µ ≥ 1.000/yr in the entire sky for his doctoral dissertation, and the work of Finch et al. (2007), who uncovered stars moving slower than 0.500/yr between declinations −90◦ and −47◦. Characterizations of SLOWMO systems include trigonometric parallaxes, optical and infrared photometry. For stars without trigonometric parallaxes, colors and apparent magnitudes are used to calculate photometric distance estimates and the statistics of this population of stars are analyzed. The SLOWMO sample is comprised of 1906 total stars − 560 estimated to be less than 25 parsecs away, and 245 stars without parallaxes estimated to be within 25 parsecs.
    [Show full text]
  • The COLOUR of CREATION Observing and Astrophotography Targets “At a Glance” Guide
    The COLOUR of CREATION observing and astrophotography targets “at a glance” guide. (Naked eye, binoculars, small and “monster” scopes) Dear fellow amateur astronomer. Please note - this is a work in progress – compiled from several sources - and undoubtedly WILL contain inaccuracies. It would therefor be HIGHLY appreciated if readers would be so kind as to forward ANY corrections and/ or additions (as the document is still obviously incomplete) to: [email protected]. The document will be updated/ revised/ expanded* on a regular basis, replacing the existing document on the ASSA Pretoria website, as well as on the website: coloursofcreation.co.za . This is by no means intended to be a complete nor an exhaustive listing, but rather an “at a glance guide” (2nd column), that will hopefully assist in choosing or eliminating certain objects in a specific constellation for further research, to determine suitability for observation or astrophotography. There is NO copy right - download at will. Warm regards. JohanM. *Edition 1: June 2016 (“Pre-Karoo Star Party version”). “To me, one of the wonders and lures of astronomy is observing a galaxy… realizing you are detecting ancient photons, emitted by billions of stars, reduced to a magnitude below naked eye detection…lying at a distance beyond comprehension...” ASSA 100. (Auke Slotegraaf). Messier objects. Apparent size: degrees, arc minutes, arc seconds. Interesting info. AKA’s. Emphasis, correction. Coordinates, location. Stars, star groups, etc. Variable stars. Double stars. (Only a small number included. “Colourful Ds. descriptions” taken from the book by Sissy Haas). Carbon star. C Asterisma. (Including many “Streicher” objects, taken from Asterism.
    [Show full text]