Pleuropulmonary Changes Induced by Ergoline Drugs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ergot Alkaloids Mycotoxins in Cereals and Cereal-Derived Food Products: Characteristics, Toxicity, Prevalence, and Control Strategies
agronomy Review Ergot Alkaloids Mycotoxins in Cereals and Cereal-Derived Food Products: Characteristics, Toxicity, Prevalence, and Control Strategies Sofia Agriopoulou Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; [email protected]; Tel.: +30-27210-45271 Abstract: Ergot alkaloids (EAs) are a group of mycotoxins that are mainly produced from the plant pathogen Claviceps. Claviceps purpurea is one of the most important species, being a major producer of EAs that infect more than 400 species of monocotyledonous plants. Rye, barley, wheat, millet, oats, and triticale are the main crops affected by EAs, with rye having the highest rates of fungal infection. The 12 major EAs are ergometrine (Em), ergotamine (Et), ergocristine (Ecr), ergokryptine (Ekr), ergosine (Es), and ergocornine (Eco) and their epimers ergotaminine (Etn), egometrinine (Emn), egocristinine (Ecrn), ergokryptinine (Ekrn), ergocroninine (Econ), and ergosinine (Esn). Given that many food products are based on cereals (such as bread, pasta, cookies, baby food, and confectionery), the surveillance of these toxic substances is imperative. Although acute mycotoxicosis by EAs is rare, EAs remain a source of concern for human and animal health as food contamination by EAs has recently increased. Environmental conditions, such as low temperatures and humid weather before and during flowering, influence contamination agricultural products by EAs, contributing to the Citation: Agriopoulou, S. Ergot Alkaloids Mycotoxins in Cereals and appearance of outbreak after the consumption of contaminated products. The present work aims to Cereal-Derived Food Products: present the recent advances in the occurrence of EAs in some food products with emphasis mainly Characteristics, Toxicity, Prevalence, on grains and grain-based products, as well as their toxicity and control strategies. -
Anti-Migraine Agents Reference Number: OH.PHAR.PPA.34 Effective Date: 01.01.21 Last Review Date: 11.20 Line of Business: Medicaid
Clinical Policy: Anti-Migraine Agents Reference Number: OH.PHAR.PPA.34 Effective Date: 01.01.21 Last Review Date: 11.20 Line of Business: Medicaid See Important Reminder at the end of this policy for important regulatory and legal information. Description • When using a preferred agent where applicable, the number of tablets/doses allowed per month will be restricted based on the manufacturer’s package insert and/or Buckeye Health plans quantity limits. CNS AGENTS: ANTI-MIGRAINE AGENTS – ACUTE MIGRANE TREATMENT NO PA REQUIRED “PREFERRED” STEP THERAPY REQUIRED PA REQUIRED “NON-PREFERRED” “PREFERRED” NARATRIPTAN (GENERIC OF AMERGE®) NURTEC™ ODT (rimegepant) ALMOTRIPTAN (generic of Axert®) RIZATRIPTAN TABLETS (GENERIC OF CAFERGOT® (ergotamine w/caffeine) MAXALT®) ELETRIPTAN (generic of Relpax®) RIZATRIPTAN ODT (GENERIC OF ERGOMAR® (ergotamine) MAXALT-MLT®) FROVA® (frovatriptan) SUMATRIPTAN TABLETS, NASAL SPRAY, MIGERGOT® (ergotamine w/caffeine) INJECTION (GENERIC OF MIGRANAL® (dihydroergotamine) IMITREX®) ONZETRA™ XSAIL™ (sumatriptan) REYVOW™ (lasmiditan) SUMAVEL DOSEPRO® (sumatriptan) TOSYMRA® (sumatriptan) TREXIMET® (sumatriptan/naproxen) UBRELVY™ (ubrogepant)* ZOLMITRIPTAN (generic of Zomig®) ZOLMITRIPTAN ODT (generic of Zomig ZMT®) ZOMIG® NASAL SPRAY (zolmitriptan) CNS AGENTS: ANTI-MIGRAINE AGENTS – CLUSTER HEADACHE TREATMENT NO PA REQUIRED “PREFERRED” PA REQUIRED “NON-PREFERRED” VERAPAMIL (Generic of Calan®) EMGALITY™ (galcanezumab) VERAPAMIL SR/ER (Generic of Calan SR®, Isoptin SR®, Verelan®) CNS AGENTS: ANTI-MIGRAINE AGENTS – PROPHYLAXIS TREATMENT NO PA REQUIRED “PREFERRED” STEP THERAPY REQUIRED PA REQUIRED “NON-PREFERRED” (Trials of at least 3 controller “PREFERRED” medications) Cardiovascular Agents: Beta-blockers AIMOVIG™ (erenumab-aooe) † EMGALITY™ (galcanezumab) CNS Agents: Anticonvulsants AJOVY™ (fremanezumab-vfrm) * CNS Agents: Serotonin-norepinephrine reuptake inhibitors CNS Agents: Tricyclic antidepressants †Initial Dose is limited to 70mg once monthly; may request dose increase if 70mg fails to provide adequate relief over two consecutive months. -
Inline-Supplementary-Material-1.Pdf
Appendix 1: STOPP/START criteria version 2 applied to the TRUST dataset Physiological system Criteria Criteria included Number (%) (The relevant () criteria for each participant were applied to the dataset and recorded in of Microsoft Office Excel ® (2013)) criteria included out of total criteria STOPP criteria Indication of medication A1. Any drug prescribed without an evidence-based clinical indication. X 1/3 (33.3) A2. Any drug prescribed beyond the recommended duration, where treatment duration is X well defined. A3. Any duplicate drug class prescription e.g. two concurrent NSAIDs, SSRIs, loop diuretics, ACE inhibitors, anticoagulants (optimisation of monotherapy within a single drug class should be observed prior to considering a new agent). Cardiovascular system B1. Digoxin for heart failure with preserved systolic ventricular function (no clear evidence X 7/13 (53.8) of benefit). B2. Verapamil or diltiazem with NYHA Class III or IV heart failure (may worsen heart failure). B3. Beta-blocker in combination with verapamil or diltiazem (risk of heart block). B4. Beta blocker with symptomatic bradycardia (< 50/min), type II heart block or complete heart block (risk of profound hypotension, asystole). B5. Amiodarone as first-line antiarrhythmic therapy in supraventricular tachyarrhythmias X (higher risk of side-effects than beta-blockers, digoxin, verapamil or diltiazem). B6. Loop diuretic as first-line treatment for hypertension (safer, more effective alternatives available). B7. Loop diuretic for dependent ankle oedema without clinical, biochemical evidence or radiological evidence of heart failure, liver failure, nephrotic syndrome or renal failure (leg elevation and /or compression hosiery usually more appropriate). B8. Thiazide diuretic with current significant hypokalaemia (i.e. -
PDF Download
CURRENT THERAPEUTIC RESEARCH VOL. 56, NO. 5, MAY 1995 EFFECTS OF CEREBRAL METABOLIC ENHANCERS ON BRAIN FUNCTION IN RODENTS KOICHIRO TAKAHASHI,l MINORU YAMAMOTO,’ MASANORI SUZUKI,’ YUKIKO OZAWA,’ TAKASHI YAMAGUCHI,l HIROFUMI ANDOH, AND KOUICHI ISHIKAWA2 ‘Department of Pharmacology, Clinical Pharmacology Research Laboratory, Yamunouchi Pharmaceutical Co. Ltd., and ‘Department of Pharmacology, School of Medicine, Nihon University, Tokyo, Japan AFWI’RACT The effects of cerebral metabolic enhancers (indeloxazine, bi- femelane, idebenone, and nicergoline) on reserpine-induced hypother- mia, the immobility period in forced swimming tests, and passive avoidance learning behavior were compared with the effects of ami- triptyline in rodents. Indeloxazine, bifemelane, and amitriptyline antagonized hypothermia in mice given reserpine. Indeloxaxine and amitriptyline decreased the immobility period in mice in the forced swimming test in a dose-dependent manner. The latency of step- through in the passive avoidance test in rats was prolonged by ad- ministration of indeloxazine but shortened by administration of amitriptyline. Neither idebenone nor nicergoline displayed any phar- macologic action in these tests. The results suggest that indeloxaxine possesses an antidepressant activity similar to that of amitriptyline but differs from amitriptyline in its anticholinergic properties and its ability to ameliorate impaired brain function such as that of learning behavior. In addition, indeloxazine exhibited broader effects on brain functions than either bifemelane, idebenone, or nicergoline. INTRODUCTION Cerebral metabolic enhancers (drugs that enhance energy metabolism) including brain glucose and ATP levels such as indeloxazine,1*2 bi- femelane, 3*4idebenone?6 and nicergoline,7>8 are currently used for the treatment of patients with various psychiatric symptoms. These symptoms include reduced spontaneity and emotional disturbance in patients with cerebral vascular disease. -
Local Product Document Pfizer Venezuela, S.A
LOCAL PRODUCT DOCUMENT PFIZER VENEZUELA, S.A. 1. MEDICINAL PRODUCT BRAND NAME ® SERMION 2. CUALITATIVE AND CUANTITATIVE COMPOSITION Every coated tablet contains 10 and 30 mg of Nicergoline. 3. PHARMACEUTICAL FORM Coated tablets. 4. CLINICAL PARTICULARS 4.1 THERAPEUTIC INDICATIONS 1. Cerebrovascular insufficiency of senile source. 2. Peripheral Vasodilator. 3. Treatment of Senile dementia from light to medium level of vascular type and Alzheimer. 4.2 DOSAGE 1. 30 mg/day and Cerebrovascular insufficiency of senile source. 2. 30 mg twice per day, as Peripheral Vasodilator and on treatment of Senile dementia from light to medium level of vascular type and Alzheimer. 4.3 CONTRAINDICATIONS Hypersensitivity to Nicergoline. 4.4 WARNINGS AND PRECAUTIONS Nicergoline, as other adrenergic blocking agents, may significantly reduce blood pressure (arterial hypotension) in some patients. Likewise, as other sympatholytic agents, it has been associated to different degrees of sexual impotence and libido reduction. Do not administer this product if pregnant, if pregnancy is suspected or during breast-feeding. 4.5 ADVERSE EFFECTS Drowsiness, cephalea, tiredness, constipation, pyrosis, vomiting, diarrhea, facial flushing, sexual impotence and libido reduction, uric acid and L.H increment. 5. PHARMACOLOGICAL PROPERTIES 5.1 Pharmacokinetics Properties A) Onset and Duration - Benign prostatic hypertrophy, intramuscular: 2 hours. - Two hours after a single 4-mg intramuscular injection, average peak and mean urinary flow rates increased by 50% and 77%, respectively. B) Drug Concentration Levels - ORAL: 1 to 1.5 hours. - Maximal blood levels are reached 1 to 1.5 hours after oral dosing. - The mean maximum plasma concentrations after daily administration of a 30-mg film-coated tablet and a 30-mg effervescent tablet solution are 88 ng/mL and 41 ng/mL, respectively). -
TRANDATE® (Labetalol Hydrochloride) Tablets
NDA 18716/S-026 Page 2 PRODUCT INFORMATION TRANDATE® (labetalol hydrochloride) Tablets DESCRIPTION: Trandate Tablets are adrenergic receptor blocking agents that have both selective alpha1-adrenergic and nonselective beta-adrenergic receptor blocking actions in a single substance. Labetalol hydrochloride (HCl) is a racemate chemically designated as 2-hydroxy-5-[1-hydroxy-2-[(1 methyl-3-phenylpropyl)amino]ethyl]benzamide monohydrochloride, and it has the following structure: Labetalol HCl has the empirical formula C19H24N2O3•HCl and a molecular weight of 364.9. It has two asymmetric centers and therefore exists as a molecular complex of two diastereoisomeric pairs. Dilevalol, the R,R′ stereoisomer, makes up 25% of racemic labetalol. Labetalol HCl is a white or off-white crystalline powder, soluble in water. Trandate Tablets contain 100, 200, or 300 mg of labetalol HCl and are taken orally. The tablets also contain the inactive ingredients corn starch, FD&C Yellow No. 6 (100- and 300-mg tablets only), hydroxypropyl methylcellulose, lactose, magnesium stearate, pregelatinized corn starch, sodium benzoate (200-mg tablet only), talc (100-mg tablet only), and titanium dioxide. CLINICAL PHARMACOLOGY: Labetalol HCl combines both selective, competitive, alpha1-adrenergic blocking and nonselective, competitive, beta-adrenergic blocking activity in a single substance. In man, the ratios of alpha- to beta-blockade have been estimated to be approximately 1:3 and 1:7 following oral and intravenous (IV) administration, respectively. Beta2-agonist activity has been demonstrated in animals with minimal beta1-agonist (ISA) activity detected. In animals, at doses greater than those required for alpha- or beta-adrenergic blockade, a membrane stabilizing effect has been demonstrated. -
Biased Ligands Differentially Shape the Conformation of The
International Journal of Molecular Sciences Article Biased Ligands Differentially Shape the Conformation of the Extracellular Loop Region in 5-HT2B Receptors Katrin Denzinger, Trung Ngoc Nguyen, Theresa Noonan, Gerhard Wolber and Marcel Bermudez * Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Strasse 2-4, 14195 Berlin, Germany; [email protected] (K.D.); [email protected] (T.N.N.); [email protected] (T.N.); [email protected] (G.W.) * Correspondence: [email protected] Received: 22 November 2020; Accepted: 18 December 2020; Published: 20 December 2020 Abstract: G protein-coupled receptors are linked to various intracellular transducers, each pathway associated with different physiological effects. Biased ligands, capable of activating one pathway over another, are gaining attention for their therapeutic potential, as they could selectively activate beneficial pathways whilst avoiding those responsible for adverse effects. We performed molecular dynamics simulations with known β-arrestin-biased ligands like lysergic acid diethylamide and ergotamine in complex with the 5-HT2B receptor and discovered that the extent of ligand bias is directly connected with the degree of closure of the extracellular loop region. Given a loose allosteric coupling of extracellular and intracellular receptor regions, we delineate a concept for biased signaling at serotonin receptors, by which conformational interference with binding pocket closure restricts the signaling repertoire of the receptor. Molecular docking studies of biased ligands gathered from the BiasDB demonstrate that larger ligands only show plausible docking poses in the ergotamine-bound structure, highlighting the conformational constraints associated with bias. This emphasizes the importance of selecting the appropriate receptor conformation on which to base virtual screening workflows in structure-based drug design of biased ligands. -
Ergot Alkaloid Biosynthesis in Aspergillus Fumigatus : Association with Sporulation and Clustered Genes Common Among Ergot Fungi
Graduate Theses, Dissertations, and Problem Reports 2009 Ergot alkaloid biosynthesis in Aspergillus fumigatus : Association with sporulation and clustered genes common among ergot fungi Christine M. Coyle West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Coyle, Christine M., "Ergot alkaloid biosynthesis in Aspergillus fumigatus : Association with sporulation and clustered genes common among ergot fungi" (2009). Graduate Theses, Dissertations, and Problem Reports. 4453. https://researchrepository.wvu.edu/etd/4453 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Ergot alkaloid biosynthesis in Aspergillus fumigatus: Association with sporulation and clustered genes common among ergot fungi Christine M. Coyle Dissertation submitted to the Davis College of Agriculture, Forestry, and Consumer Sciences at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Genetics and Developmental Biology Daniel G. Panaccione, Ph.D., Chair Kenneth P. Blemings, Ph.D. Joseph B. -
United States Patent
Patented Aug. 17, 1948 2,447,214 UNITED STATES PATENT OFF ICE 2,447,214 OPTICALLY ACTIVE SALTS OF THE LY SERGIC AND SOLYSERGIC ACD DE RVATIVES AND A PROCESS FOR, THER PREPARATION AND SOLATION Arthur Stoll and Albert Hofmann, Basel, Switzer land, assignors to Sandoz Ltd., Fribourg, Swit zerland, a Swiss firm No Drawing. Application August 23, 1943, Serial No. 499,714. In Switzerland September 16, 1942 16 Claims. (CI. 260-236) 2 The preparation and the isolation of the thera The synthetically prepared derivatives of the peutically valuable and active derivatives con lysergic acid which also correspond to the above tained in ergot is a problem that has occupied cited formula possess also the same lability as chemistry and pharmacy for more than 120 years. the natural lysergic acid derivatives. Their is0 Actually it is known that the action of ergot is 5 lation and preparation encounters the same dif due to the alkaloids contained therein, which have ficulties as in the case of the lysergic acid hydra been isolated in recent years and which are zides C15H15N2CONHNH2 (made according to U. S. always present as pairs of isomers. Chrono Letters Patent 2,090,429) and in the case of the logically the following alkaloids have become alkaloids of the type of ergobasine, which can be 0 prepared by partial synthesis and in which the known up to noW: lysergic acid is combined with an amine in form Ergotinine (1875). Ergotoxine (1906) of an acid amide (see U. S. Letters Patent No. Ergotamine (1918) Ergotaminine (1918) 2,090,430). -
Risk Assessment of Argyreia Nervosa
Risk assessment of Argyreia nervosa RIVM letter report 2019-0210 W. Chen | L. de Wit-Bos Risk assessment of Argyreia nervosa RIVM letter report 2019-0210 W. Chen | L. de Wit-Bos RIVM letter report 2019-0210 Colophon © RIVM 2020 Parts of this publication may be reproduced, provided acknowledgement is given to the: National Institute for Public Health and the Environment, and the title and year of publication are cited. DOI 10.21945/RIVM-2019-0210 W. Chen (author), RIVM L. de Wit-Bos (author), RIVM Contact: Lianne de Wit Department of Food Safety (VVH) [email protected] This investigation was performed by order of NVWA, within the framework of 9.4.46 Published by: National Institute for Public Health and the Environment, RIVM P.O. Box1 | 3720 BA Bilthoven The Netherlands www.rivm.nl/en Page 2 of 42 RIVM letter report 2019-0210 Synopsis Risk assessment of Argyreia nervosa In the Netherlands, seeds from the plant Hawaiian Baby Woodrose (Argyreia nervosa) are being sold as a so-called ‘legal high’ in smart shops and by internet retailers. The use of these seeds is unsafe. They can cause hallucinogenic effects, nausea, vomiting, elevated heart rate, elevated blood pressure, (severe) fatigue and lethargy. These health effects can occur even when the seeds are consumed at the recommended dose. This is the conclusion of a risk assessment performed by RIVM. Hawaiian Baby Woodrose seeds are sold as raw seeds or in capsules. The raw seeds can be eaten as such, or after being crushed and dissolved in liquid (generally hot water). -
United States Patent (19) [11] 3,968,111 Bach Et Al
United States Patent (19) [11] 3,968,111 Bach et al. (45) July 6, 1976 54 8,8-DISUBSTITUTED-6- 3,113,133 12/1963 Hofmann et al..w. 260/285.5 METHYLERGOLINES AND RELATED COMPOUNDS Primary Examiner-Alton D. Rollins 75) inventors: Nicholas J. Bach; Edmund C. Assistant Examiner-Mary Vaughn Kornfeld, both of Indianapolis, Ind. Attorney, Agent, or Firm-James L. Rowe, Everet F. 73) Assignee: Eli Lilly and Company, Indianapolis, Smith Ind. 22 Filed: Dec. 6, 1974 21 Appl. No.: 530,320 57 ABSTRACT 8,8-Disubstituted-6-methylergolines and 9-ergolenes, 52 U.S. Cl............................... 260/285.5; 424/261 prepared by alkylation of lysergic, isolysergic or their 51 int. C.’................ C07D 457/02; C07D 457/10 9,10-dihydro analogues, optionally followed by chemi 58) Field of Search.................................. 260/285.5 cal modification of an 8-substituent. 56 References Cited UNITED STATES PATENTS 9 Claims, No Drawings 2,86,074 1 1/1958 Kornfeld et al.................. 260/285.5 3,968, 111 1 2 1722 (1957) prepared the 8-methyl derivative of D-iso 8,8-DISUBSTITUTED-6-METHYLERGOLINES AND lysergic acid diethylamide, stating that they were, how RELATED COMPOUNDS ever, unable to obtain substitution at C8 using dihydro lysergic acid methyl ester and the alkylating agent used BACKGROUND OF THE INVENTION successfully with lysergic acid itself; to wit, methylio Compounds based on the ergoline ring system dide and potassium amide. These authors also prepared 8-ethyl-D-isolysergic acid diethylamide and the 1,8- dimethyl-D-isolysergic acid diethylamide. There is no mention in the literature of an 8,8-disubstituted-9-ergo O lene in which the substituents at 8 are other than amide groups and in which the 1-position is not substituted. -
Wednesday, July 10, 2019 4:00Pm
Wednesday, July 10, 2019 4:00pm Oklahoma Health Care Authority 4345 N. Lincoln Blvd. Oklahoma City, OK 73105 The University of Oklahoma Health Sciences Center COLLEGE OF PHARMACY PHARMACY MANAGEMENT CONSULTANTS MEMORANDUM TO: Drug Utilization Review (DUR) Board Members FROM: Melissa Abbott, Pharm.D. SUBJECT: Packet Contents for DUR Board Meeting – July 10, 2019 DATE: July 3, 2019 NOTE: The DUR Board will meet at 4:00pm. The meeting will be held at 4345 N. Lincoln Blvd. Enclosed are the following items related to the July meeting. Material is arranged in order of the agenda. Call to Order Public Comment Forum Action Item – Approval of DUR Board Meeting Minutes – Appendix A Update on Medication Coverage Authorization Unit/SoonerPsych Program Update – Appendix B Action Item – Vote to Prior Authorize Jornay PM™ [Methylphenidate Extended-Release (ER) Capsule], Evekeo ODT™ [Amphetamine Orally Disintegrating Tablet (ODT)], Adhansia XR™ (Methylphenidate ER Capsule), and Sunosi™ (Solriamfetol Tablet) – Appendix C Action Item – Vote to Prior Authorize Balversa™ (Erdafitinib) – Appendix D Action Item – Vote to Prior Authorize Annovera™ (Segesterone Acetate/Ethinyl Estradiol Vaginal System), Bijuva™ (Estradiol/Progesterone Capsule), Cequa™ (Cyclosporine 0.09% Ophthalmic Solution), Corlanor® (Ivabradine Oral Solution), Crotan™ (Crotamiton 10% Lotion), Gloperba® (Colchicine Oral Solution), Glycate® (Glycopyrrolate Tablet), Khapzory™ (Levoleucovorin Injection), Qmiiz™ ODT [Meloxicam Orally Disintegrating Tablet (ODT)], Seconal Sodium™ (Secobarbital