UNIVERSITY of CALIFORNIA, SAN DIEGO Piezophysiology of Membrane-Based Adaptations in the Deep-Sea Bacterium Photobacterium Profu

Total Page:16

File Type:pdf, Size:1020Kb

UNIVERSITY of CALIFORNIA, SAN DIEGO Piezophysiology of Membrane-Based Adaptations in the Deep-Sea Bacterium Photobacterium Profu UNIVERSITY OF CALIFORNIA, SAN DIEGO Piezophysiology of Membrane-Based Adaptations in the Deep-Sea Bacterium Photobacterium profundum strain SS9 A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Marine Biology by Eric Ellsworth Allen Committee in charge: Professor Douglas H. Bartlett, Chair Professor Stuart Brody Professor D. John Faulkner Professor Victor D. Vacquier Professor A. Aristides Yayanos 2002 The dissertation of Eric E. Allen is approved, and it is acceptable in quality and form for publication on microfilm: University of California, San Diego 2002 ll1 DEDICATION To Pappy IV TABLE OF CONTENTS Signature Page . III Dedication . .. Iv Table of Contents . .. v Abbreviations . VIII List of Table and Figures . .. .. .. .. .. .. .. .. IX Acknowledgments . .. XII Vita.................................................................................. XIV Publications . xv Abstract . .. xvI I. Introduction - Piezophiles: Microbial Adaptation to the Deep Sea Environment 1 A. Keywords . 2 B. Glossary . .. 2 C. Summary . 5 D. Introduction . 6 E. Deep Sea Habitats . 7 F. Isolation and Characterization of Piezophiles .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 10 G. High Pressure Adaptation Mechanisms .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..... 18 H. Future Prospects . .. 37 I. References . 38 II. Role of Unsaturated Fatty Acids in Growth at High Pressure and Low Temp­ erature in the Deep-Sea Bacterium Photobacterium profundum strain SS9 .. .. 64 A. Introduction . .. 65 v B. Methods . .... 66 C. Results . 66 D. Discussion . ... 69 E. Conclusion . 69 F. References . 69 III. Monounsaturated but Not Polyunsaturated Fatty Acids Are Required for Growth of the Deep-Sea Bacterium Photobacterium profundum strain SS9 At High Pressure and Low Temperature . .. .. .. .. .. .. .. .. .. 72 A. Abstract . .. 73 B. Introduction . 73 C. Materials and Methods . 74 D. Results . 77 E. Discussion . 80 F. References . 82 IV. FabF is Required for Piezoregulation of cis-Vaccenic Acid Levels and Piezophilic Growth of the Deep-Sea Bacterium Photobacterium profundum strain SS9 . 85 A. Abstract . .. 86 B. Introduction . 86 C. Materials and Methods . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 87 D. Results . ... 88 E. Discussion . .. 91 F. References . 92 V. Structure and Regulation of the Omega-3 Polyunsaturated Fatty Acid Synthase Genes from the Deep-Sea Bacterium Photobacterium proftmdum strain SS9 . 95 A. Abstract . 96 YI B. Introduction . .. 96 C. Methods . 97 D. Results . 99 E. Discussion . .. 103 F. References . 105 VI. Conclusions and Suggestions for Future Research . 108 References . ... 117 Appendix 1: cAMP Receptor Protein Mediated Modulation of Unsaturated Fatty Acid Production . 119 Appendix 2: Effect of fabB mutation on growth of Photobacterium profundum strain SS9 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..... 131 V11 ABBREVIATIONS ACP .......................................... Acyl carrier protein AT ............................................ Acyl CoA:ACP transferase CLF ........................................... Chain.
Recommended publications
  • Lipid Remodelling in the Reef-Building Honeycomb Worm, Sabellaria Alveolata, Reflects Acclimation and Local Adaptation to Temperature Anna P
    Lipid remodelling in the reef-building honeycomb worm, Sabellaria alveolata, reflects acclimation and local adaptation to temperature Anna P. Muir, Flavia L. D. Nunes, Stanislas F. Dubois, Fabrice Pernet To cite this version: Anna P. Muir, Flavia L. D. Nunes, Stanislas F. Dubois, Fabrice Pernet. Lipid remodelling in the reef-building honeycomb worm, Sabellaria alveolata, reflects acclimation and local adaptation to tem- perature. Scientific Reports, Nature Publishing Group, 2016, 6, pp.35669. 10.1038/srep35669. hal- 01483198 HAL Id: hal-01483198 https://hal.archives-ouvertes.fr/hal-01483198 Submitted on 31 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NoDerivatives| 4.0 International License www.nature.com/scientificreports OPEN Lipid remodelling in the reef- building honeycomb worm, Sabellaria alveolata, reflects Received: 29 April 2016 Accepted: 28 September 2016 acclimation and local adaptation Published: 20 October 2016 to temperature Anna P. Muir1,2, Flavia L. D. Nunes1,3, Stanislas F. Dubois3 & Fabrice Pernet4 Acclimation and adaptation, which are key to species survival in a changing climate, can be observed in terms of membrane lipid composition. Remodelling membrane lipids, via homeoviscous adaptation (HVA), counteracts membrane dysfunction due to temperature in poikilotherms.
    [Show full text]
  • Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation
    City University of New York (CUNY) CUNY Academic Works Open Educational Resources Queensborough Community College 2016 Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation Joan Petersen CUNY Queensborough Community College Susan McLaughlin CUNY Queensborough Community College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/qb_oers/16 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation By Dr. Susan McLaughlin & Dr. Joan Petersen Queensborough Community College Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation Table of Contents Preface………………………………………………………………………………………i Acknowledgments…………………………………………………………………………..ii Microbiology Lab Safety Instructions…………………………………………………...... iii Lab 1. Introduction to Microscopy and Diversity of Cell Types……………………......... 1 Lab 2. Introduction to Aseptic Techniques and Growth Media………………………...... 19 Lab 3. Preparation of Bacterial Smears and Introduction to Staining…………………...... 37 Lab 4. Acid fast and Endospore Staining……………………………………………......... 49 Lab 5. Metabolic Activities of Bacteria…………………………………………….…....... 59 Lab 6. Dichotomous Keys……………………………………………………………......... 77 Lab 7. The Effect of Physical Factors on Microbial Growth……………………………... 85 Lab 8. Chemical Control of Microbial Growth—Disinfectants and Antibiotics…………. 99 Lab 9. The Microbiology of Milk and Food………………………………………………. 111 Lab 10. The Eukaryotes………………………………………………………………........ 123 Lab 11. Clinical Microbiology I; Anaerobic pathogens; Vectors of Infectious Disease….. 141 Lab 12. Clinical Microbiology II—Immunology and the Biolog System………………… 153 Lab 13. Putting it all Together: Case Studies in Microbiology…………………………… 163 Appendix I.
    [Show full text]
  • A Lipid Pathway for Heat Adaptation
    SCIENCE CHINA Life Sciences • RESEARCH HIGHLIGHT • July 2015 Vol.58 No.7: 727–728 doi: 10.1007/s11427-015-4880-x A lipid pathway for heat adaptation HUANG Xun State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sci- ences, Beijing 100101, China Received May 25, 2015; accepted May 28, 2015; published online June 4, 2015 Citation: Huang X. A lipid pathway for heat adaptation. Sci China Life Sci, 2015, 58: 727–728, doi: 10.1007/s11427-015-4880-x The emergence of cell membrane is an essential step in the drogenase acdh-11 with elevated fat-7 reporter expression origin of life on earth. Cell membrane, a matrix with fatty were recovered. Consistent with the role of fat-7 in lipid acid derived lipids and proteins, separates the outside envi- desaturation, membrane fluidity is increased and the level of ronment from enclosed cell internal. The composition of stearic acid, the most abundant saturated fatty acid, is re- membrane lipids largely determines biophysical properties duced in acdh-11 mutants. Importantly, acdh-11 mutants of cell membrane, such as fluidity, permeability and de- fail to adapt to heat: mutant embryos can develop to adult- formability, which are essential for cellular processes. hood at 15oC or 20oC, but not at 25oC. Is acdh-11 a regula- Temperature is an important environmental factor. Dif- tory component of HVA? One key feature of the regulatory ferent species live in a dramatic variation of temperature component is heat responsiveness. Indeed, it was found that conditions; for example, bacterial Thermus Aquaticus (in heat up-regulates acdh-11 expression.
    [Show full text]
  • Access to Electronic Thesis
    Access to Electronic Thesis Author: Khalid Salim Al-Abri Thesis title: USE OF MOLECULAR APPROACHES TO STUDY THE OCCURRENCE OF EXTREMOPHILES AND EXTREMODURES IN NON-EXTREME ENVIRONMENTS Qualification: PhD This electronic thesis is protected by the Copyright, Designs and Patents Act 1988. No reproduction is permitted without consent of the author. It is also protected by the Creative Commons Licence allowing Attributions-Non-commercial-No derivatives. If this electronic thesis has been edited by the author it will be indicated as such on the title page and in the text. USE OF MOLECULAR APPROACHES TO STUDY THE OCCURRENCE OF EXTREMOPHILES AND EXTREMODURES IN NON-EXTREME ENVIRONMENTS By Khalid Salim Al-Abri Msc., University of Sultan Qaboos, Muscat, Oman Mphil, University of Sheffield, England Thesis submitted in partial fulfillment for the requirements of the Degree of Doctor of Philosophy in the Department of Molecular Biology and Biotechnology, University of Sheffield, England 2011 Introductory Pages I DEDICATION To the memory of my father, loving mother, wife “Muneera” and son “Anas”, brothers and sisters. Introductory Pages II ACKNOWLEDGEMENTS Above all, I thank Allah for helping me in completing this project. I wish to express my thanks to my supervisor Professor Milton Wainwright, for his guidance, supervision, support, understanding and help in this project. In addition, he also stood beside me in all difficulties that faced me during study. My thanks are due to Dr. D. J. Gilmour for his co-supervision, technical assistance, his time and understanding that made some of my laboratory work easier. In the Ministry of Regional Municipalities and Water Resources, I am particularly grateful to Engineer Said Al Alawi, Director General of Health Control, for allowing me to carry out my PhD study at the University of Sheffield.
    [Show full text]
  • Antibiotics from Deep-Sea Microorganisms: Current Discoveries and Perspectives
    marine drugs Review Antibiotics from Deep-Sea Microorganisms: Current Discoveries and Perspectives Emiliana Tortorella 1,†, Pietro Tedesco 1,2,†, Fortunato Palma Esposito 1,3,†, Grant Garren January 1,†, Renato Fani 4, Marcel Jaspars 5 and Donatella de Pascale 1,3,* 1 Institute of Protein Biochemistry, National Research Council, I-80131 Naples, Italy; [email protected] (E.T.); [email protected] (P.T.); [email protected] (F.P.E.); [email protected] (G.G.J.) 2 Laboratoire d’Ingénierie des Systèmes Biologiques et des Procédés, INSA, 31400 Toulouse, France 3 Stazione Zoologica “Anthon Dorn”, Villa Comunale, I-80121 Naples, Italy 4 Department of Biology, University of Florence, Sesto Fiorentino, I-50019 Florence, Italy; renato.fani@unifi.it 5 Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen, Scotland AB24 3UE, UK; [email protected] * Correspondence: [email protected]; Tel.: +39-0816-132-314; Fax: +39-0816-132-277 † These authors equally contributed to the work. Received: 23 July 2018; Accepted: 27 September 2018; Published: 29 September 2018 Abstract: The increasing emergence of new forms of multidrug resistance among human pathogenic bacteria, coupled with the consequent increase of infectious diseases, urgently requires the discovery and development of novel antimicrobial drugs with new modes of action. Most of the antibiotics currently available on the market were obtained from terrestrial organisms or derived semisynthetically from fermentation products. The isolation of microorganisms from previously unexplored habitats may lead to the discovery of lead structures with antibiotic activity. The deep-sea environment is a unique habitat, and deep-sea microorganisms, because of their adaptation to this extreme environment, have the potential to produce novel secondary metabolites with potent biological activities.
    [Show full text]
  • Pathogenic Mechanisms of Photobacterium Damselae Subspecies Piscicida in Hybrid Striped Bass Ahmad A
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2002 Pathogenic mechanisms of Photobacterium damselae subspecies piscicida in hybrid striped bass Ahmad A. Elkamel Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Veterinary Pathology and Pathobiology Commons Recommended Citation Elkamel, Ahmad A., "Pathogenic mechanisms of Photobacterium damselae subspecies piscicida in hybrid striped bass" (2002). LSU Doctoral Dissertations. 773. https://digitalcommons.lsu.edu/gradschool_dissertations/773 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. PATHOGENIC MECHANISMS OF PHOTOBACTERIUM DAMSELAE SUBSPECIES PISCICIDA IN HYBRID STRIPED BASS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Pathobiological Sciences by Ahmad A. Elkamel B.V. Sc., Assiut University, 1993 May 2002 DEDICATION This work is dedicated to the people in my life who encouraged each step of my academic career. My mother was anxious as I was for each exam or presentation. I have been always looking to my Dad as a model, and trying to follow his footsteps in academic career. My wife stood by me like no other one in the world, and her love and support helped me see one of my dreams come true.
    [Show full text]
  • EXTREMOPHILES – Vol
    EXTREMOPHILES – Vol. I - Extremophiles: Basic Concepts - Charles Gerday EXTREMOPHILES: BASIC CONCEPTS Charles Gerday Laboratory of Biochemistry, University of Liège, Belgium Keywords: extremophiles, thermophiles, halophiles, alkaliphiles, acidophiles, metallophiles, barophiles, psychrophiles, piezophiles, extreme conditions Contents 1. Introduction 2. Effects of Extreme Conditions on Cellular Components 2.1. Membrane Structure 2.2. Nucleic Acids 2.2.1. Introduction 2.2.2. Desoxyribonucleic Acids 2.2.3. Ribonucleic Acids 2.3. Proteins 2.3.1. Introduction 2.3.2. Thermophilic Proteins 2.3.3. Psychrophilic Proteins 2.3.4. Halophilic Proteins 2.3.5. Piezophilic Proteins 2.3.6. Alkaliphilic Proteins 2.3.7. Acidophilic Proteins 3. Conclusions Acknowledgments Glossary Bibliography Biographical Sketch Summary Extremophiles are organisms which permanently experience environmental conditions which mayUNESCO be considered as extreme –in comparisonEOLSS to the physico-chemical characteristics of the normal environment of human cells: the latter belonging to the mesophile or temperate world. Some eukaryotic organisms such as fishes, invertebrates, yeasts, fungi, and plants have partially colonized extreme habitats characterized by low temperature and/orSAMPLE of elevated hydrostatic pressure. CHAPTERS In general, however, the organisms capable of thriving at the limits of temperature, pH, salt concentration and hydrostatic pressure, are prokaryotic. In fact, some organisms depend on these extreme conditions for survival and have therefore developed unique adaptations, especially at the level of their membranes and macromolecules, and affecting proteins and nucleic acids in particular. The molecular bases of the various adaptations are beginning to be understood and are briefly described. The study of the extremophile world has contributed greatly to defining, in more precise terms, fundamental concepts such as macromolecule stability and protein folding.
    [Show full text]
  • High-Pressure Adaptation of Extremophiles and Biotechnological Applications M
    High-pressure Adaptation of Extremophiles and Biotechnological Applications M. Salvador Castell, P. Oger, Judith Peters To cite this version: M. Salvador Castell, P. Oger, Judith Peters. High-pressure Adaptation of Extremophiles and Biotech- nological Applications. Physiological and Biotechnological aspects of extremophiles, In press. hal- 02122331 HAL Id: hal-02122331 https://hal.archives-ouvertes.fr/hal-02122331 Submitted on 4 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 High-pressure Adaptation of Extremophiles and Biotechnological 2 Applications 3 M. Salvador Castell1, P.M. Oger1*, & J. Peters2,3* 4 1 Univ Lyon, INSA de Lyon, CNRS, UMR 5240, F-69621 Villeurbanne, France. 5 2 Université Grenoble Alpes, LiPhy, F-38044 Grenoble, France. 6 3 InsRtut Laue Langevin, F-38000 Grenoble, France. 7 8 * corresponding authors 9 J. Peters: [email protected] 10 Pr. Judith Peters, InsRtut Laue Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble cedex 09 11 tel: 33-4 76 20 75 60 12 13 P.M. Oger : [email protected]; 14 Dr Phil M. Oger, UMR 5240 MAP, INSA de Lyon, 11 avenue Jean Capelle, 69621 Villeurbanne cedex.
    [Show full text]
  • Microbial Diversity Course 2005 Attempt to Cultivate Mesophile
    Microbial Diversity course 2005 Attempt to cultivate mesophile Archaea from marine sediments Lois MAIGNIEN Ghent University Introduction The diversity and ecology of the Archaea domain remains a very intriguing question and a promising field of research. Indeed, it has fisrt been observed that Archaea were thriving in very limited ecological niches, often associated with extreme temperature, salt concentration, or low pH. Methanogens, though very successful in mesophilic anaerobic environments, don’t display the same variety of energy metabolisms as most bacteria. Their growth is restricted to strict anaerobic environments; their substrate range is limited to CO2/H2, acetate and a few methylated compounds. Alternative energy metabolism such as anaerobic respiration (some halophiles and crenarchaeota) using a wide range of terminal electron acceptor such as nitrate (pyrobaculum, pyrococcus), iron III (pyrodictium), sulphate (Archaeoglobus), elemental sulfur (Ignicoccus) or aerobic respiration on sulfur or oxygen are all present in this domain. Some archaea are also able to carry fermentation and even thrive on light energy through the use of bacteriorhodopsin (Halobacterium). Thus, archaea possess in theory high diversity of energy metabolism. So why archaeal cells would display and use this metabolic diversity only in extreme environments? However, several clue from molecular surveys, especially in marine environment, such as 16s clone library and fosmid cloning and sequencing show that Archaea are much more widespread than previously thought, even in mesophilic environments. The main problem that prevent further understanding of their metabolism and environmental contribution have been the inability to cultivate them. An increasing interest for this environmental microbiology mystery, growing number of cultivation attempts, new cultivation methods, and valuable information from metagenomics should progressively reveal the environmental diversity of mesophilic Archaea and provide a better understanding of their contribution to various environments.
    [Show full text]
  • Microbiologically Contaminated and Over-Preserved Cosmetic Products According Rapex 2008–2014
    cosmetics Article Microbiologically Contaminated and Over-Preserved Cosmetic Products According Rapex 2008–2014 Edlira Neza * and Marisanna Centini Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy; [email protected] * Correspondence: [email protected]; Tel.: +355-685-038-408 Academic Editors: Lidia Sautebin and Immacolata Caputo Received: 25 December 2015; Accepted: 25 January 2016; Published: 30 January 2016 Abstract: We investigated the Rapid Alert System (RAPEX) database from January 2008 until week 26 of 2014 to give information to consumers about microbiologically contaminated cosmetics and over-preserved cosmetic products. Chemical risk was the leading cause of the recalls (87.47%). Sixty-two cosmetic products (11.76%) were recalled because they were contaminated with pathogenic or potentially pathogenic microorganisms. Pseudomonas aeruginosa was the most frequently found microorganism. Other microorganisms found were: Mesophilic aerobic microorganisms, Staphylococcus aureus, Candida albicans, Enterococcus spp., Enterobacter cloacae, Enterococcus faecium, Enterobacter gergoviae, Rhizobium radiobacter, Burkholderia cepacia, Serratia marcescens, Achromabacter xylosoxidans, Klebsiella oxytoca, Bacillus firmus, Pantoea agglomerans, Pseudomonas putida, Klebsiella pneumoniae and Citrobacter freundii. Nine cosmetic products were recalled because they contained methylisothiazolinone (0.025%–0.36%), benzalkonium chloride (1%), triclosan (0.4%) in concentrations higher than the limits allowed by European Regulation 1223/2009. Fifteen products were recalled for the presence of methyldibromo glutaronitrile, a preservative banned for use in cosmetics. Thirty-two hair treatment products were recalled because they contained high concentrations of formaldehyde (0.3%–25%). Keywords: microbiologically contaminated; over-preserved cosmetics; formaldehyde; RAPEX 1. Introduction The European Commission (EC) has an early warning system for safety management called the Rapid Alert System (RAPEX).
    [Show full text]
  • An Integrative Genomic Island Affects the Adaptations of the Piezophilic Hyperthermophilic Archaeon Pyrococcus Yayanosii to High
    fmicb-07-01927 November 25, 2016 Time: 18:18 # 1 ORIGINAL RESEARCH published: 29 November 2016 doi: 10.3389/fmicb.2016.01927 An Integrative Genomic Island Affects the Adaptations of the Piezophilic Hyperthermophilic Archaeon Pyrococcus yayanosii to High Temperature and High Hydrostatic Pressure Zhen Li1,2, Xuegong Li2,3, Xiang Xiao1,2 and Jun Xu1,2* 1 State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China, 2 Institute of Oceanology, Shanghai Jiao Tong University, Shanghai, China, 3 Deep-Sea Cellular Microbiology, Department of Deep-Sea Science, Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China Deep-sea hydrothermal vent environments are characterized by high hydrostatic pressure and sharp temperature and chemical gradients. Horizontal gene transfer is Edited by: thought to play an important role in the microbial adaptation to such an extreme Philippe M. Oger, UMR CNRS 5240 Institut National environment. In this study, a 21.4-kb DNA fragment was identified as a genomic des Sciences Appliquées, France island, designated PYG1, in the genomic sequence of the piezophilic hyperthermophile Reviewed by: Pyrococcus yayanosii. According to the sequence alignment and functional annotation, Federico Lauro, University of New South Wales, the genes in PYG1 could tentatively be divided into five modules, with functions related Australia to mobility, DNA repair, metabolic processes and the toxin-antitoxin system. Integrase Amy Michele Grunden, can mediate the site-specific integration and excision of PYG1 in the chromosome of North Carolina State University, USA R Anaïs Cario, P. yayanosii A1. Gene replacement of PYG1 with a Sim cassette was successful.
    [Show full text]
  • Eubacteria and Archaea Communities in Seven Mesophile Anaerobic
    Abendroth et al. Biotechnology for Biofuels (2015) 8:87 DOI 10.1186/s13068-015-0271-6 RESEARCH ARTICLE Open Access Eubacteria and archaea communities in seven mesophile anaerobic digester plants in Germany Christian Abendroth1,2, Cristina Vilanova1, Thomas Günther3, Olaf Luschnig2,4 and Manuel Porcar1,5* Abstract Background: Only a fraction of the microbial species used for anaerobic digestion in biogas production plants are methanogenic archaea. We have analyzed the taxonomic profiles of eubacteria and archaea, a set of chemical key parameters, and biogas production in samples from nine production plants in seven facilities in Thuringia, Germany, including co-digesters, leach-bed, and sewage sludge treatment plants. Reactors were sampled twice, at a 1-week interval, and three biological replicates were taken in each case. Results: A complex taxonomic composition was found for both eubacteria and archaea, both of which strongly correlated with digester type. Plant-degrading Firmicutes as well as Bacteroidetes dominated eubacteria profiles in high biogas-producing co-digesters; whereas Bacteroidetes and Spirochaetes were the major phyla in leach-bed and sewage sludge digesters. Methanoculleus was the dominant archaea genus in co-digesters, whereas Methanosarcina and Methanosaeta were the most abundant methanogens in leachate from leach-bed and sewage sludge digesters, respectively. Conclusions: This is one of the most comprehensive characterizations of the microbial communities of biogas-producing facilities. Bacterial profiles exhibited very low variation within replicates, including those of semi-solid samples; and, in general, low variation in time. However, facility type correlated closely with the bacterial profile: each of the three reactor types exhibited a characteristic eubacteria and archaea profile.
    [Show full text]