Advanced Electrolyte System Design of Battery Towards Expanded Applications on Energy Storage

Total Page:16

File Type:pdf, Size:1020Kb

Advanced Electrolyte System Design of Battery Towards Expanded Applications on Energy Storage Advanced Electrolyte System Design of Battery towards Expanded Applications on Energy Storage A Dissertation Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirement for the Degree of Doctor of Philosophy in Materials Science and Engineering by Jiayu Cao November 2020 Approved by: Dr. Yan Wang, Advisor, Professor, Mechanical Engineering Dr. Brajendra Mishra, Head of the Materials Science and Engineering Program Abstract The battery technology is approaching a larger share portion of the energy storage demands nowadays. These sustainable electrochemical-based methods are gradually replacing the traditional fossil resource to power the world with its carry-on capability and eco-friendly nature. Many applications such as, military power supplies, civil transportation, and stationary storage need higher energy density of the rechargeable battery as the development of society. For example, the goal of commercializing next-generation electric vehicles which can satisfy a longer traveling distance is hard to achieve since the lack of lower cost, higher energy density and longer cycling life rechargeable batteries as next-generation energy storage devices. Both lithium sulfur (Li-S) battery and lithium ion battery (LIB) with silicon anode have potential to be the next-generation storage batteries. Because sulfur and silicon are both stored largely on earth, exploited easily and low cost. Therefore, a variety of deep dive and large-scale research have been started about Li-S battery and Si anode applied in LIB. Over the last few years, Argonne National Laboratory team has developed various ideas and methods to optimize Li-S battery and Si anode used in LIB, such as, introducing appropriate co- solvents and additives, replacing traditional electrolyte with ionic liquid and polymer electrolyte and enhancing Si anode by surface modification. For a comprehensive study, here we discuss four design schemes based on two major problems and one main barrier of Li-S battery and Si anode, respectively. In terms of Li-S battery, the first problem is the rapid capacity fading during cycling process and the second problem is the lithium polysulfide shuttling. The main barrier of Si anode applied in LIB is the strength and stability of solid electrolyte interphase (SEI) layer formed on the surface of Si anode. In the first part of this thesis, we report for the first time using hexafluorobenzene (HFB) to tackle the issue of rapid capacity fading during cycling process. When used as an electrolyte additive for Li-S cell, HFB preferably chelates with low-order lithium sulfides Li2S and Li2S2 and subsequently reacts and converts both into active aromatic sulfides: bis(pentafluorophenyl) disulfides and bis(pentafluorophenyl) polysulfides in-situ, thus facilitating the utilization of the electronically insulating Li2S and Li2S2 and improving the cycling stability of Li-S cell. The second part of this thesis is to determine the relationship between various electrochemical properties of Li-S battery and a series of lithium salt concentrations. According to the experimental results, choosing an appropriate salt concentration by balancing different properties the for each electrolyte to maximize their performances is more reasonable than using a certain salt concentration as a standard for all electrolytes and this is also an effective way to constrain the rapid capacity fading during cycling process. In the third part, the impact of the electrolyte solvation structure on the performance of Li-S battery was investigated using an electrolyte system containing various solvent ratios of dioxolane (DOL) and a nonafluorinated ether: 1,1,2,2-tetrafluoroethyl-2,2,3,3,3-pentafluoropropyl ether (TPE). The cell testing results indicate that increasing the ratio of TPE led to both a higher discharge capacity and a higher Coulombic efficiency, because lithium polysulfide shuttling issue is constrained when increasing the ratio of TPE in the electrolyte. In the fourth part, we introduce for the first time using 2,2,2-Trifluoroethyl methyl carbonate (FEMC) to optimize the Si anode. Based on the performance of LIBs, FEMC has potential to be an effective electrolyte co-solvent to protect Si anode due to the rich fluorine groups in its structure. When used as an co-solvent of all-fluorinated electrolyte, FEMC preferably passivates Si anode, helps the formation of a robust and resilient SEI layer, and alleviates the continuous reactions between Si and electrolyte and the delamination of electrode caused by the large volume change of Si during charging and discharging process. Therefore, FEMC co-solvent improves the electrochemical properties of LIB applying Si as anode. II Acknowledgements I would like to express my deep gratitude to my advisors, Prof. Yan Wang and Dr. Zhengcheng Zhang for their persistent supports and professional guidance. They discipline themselves with high standards and show me all the excellent qualities a researcher should have. They will be a role model I am following in my careers. I am honored to have Professor Richard D. Sisson, Professor Yu Zhong and Professor Qi Wen as committee members. Thanks for their help, encouragement, and guidance during my graduate studies. Special thanks to Professor Richard D. Sisson, who is always there and provides great help to me. His generosity and kindness make MSE department look like a big family for all of us. I want to thank Dr. Rachel Koritala and Dr. Zhenzhen Yang for their continuous help and technical guidance with SEM and XPS equipment. I also want to thank Dr. Quinton James Meisner, who helps me a lot on the organic chemistry and chemical characterization. Many thanks to Rita Shilansky, who treats me as a sincere friend, gave me generous help and constant care. I would like to thank all the collaborator and partners in this electrolyte optimization project. Tobias Glossmann from Mercedes-Benz Research & Development North America, Inc; Andreas Hintennach from Daimler AG (Mercedes-Benz Cars); Tomas Rojas, Ritu Sahore, Zhenzhen Yang, Paul Redfern, Anh Ngo, Larry A. Curtiss, from Argonne National Laboratory. I would like to thank my colleagues in Electrochemical Energy Laboratories of WPI and ANL, Zhangfeng Zheng, Qiang Wang, Bin Chen, Ruihan Zhang, Sungyool Bong, Jin Liu, Yubin Zhang, Mengyuan Chen, Xiaotu Ma, Yangtao Liu, Qing Yin, Azhari Luqman, Panawan Vanaphuti, Zifei Meng, Chao Shen, Dapeng Xu, Yadong Zheng, Jinzhao Fu, Jiajun Chen, Zeyi Yao, Yilun Tang; Quinton James Meisner, Sisi Jiang, Qian Liu, Zhangxing Shi, Johnson, Noah Mark, Bin Hu, III Jingjing Zhang, Jianzhong Yang, Haotian Yang, Mingfu He, Kewei Liu, Yuyue Zhao, Mengxi Yang, Lily, A Robertson, Lu Zhang, Chen Liao, who have been helping me a lot in the labs. I thank my parents and friends for their unconditional love and care. Without their support, I won’t achieve anything. I acknowledge the financial support of the Department of Energy and Mercedes-Benz Research & Development North America, Inc. Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government and Department of Energy and Mercedes-Benz Research & Development North America, Inc. Neither the Department of Energy and Mercedes-Benz Research & Development North America, Inc, the United States Government, nor any agency thereof, nor any of their employees, makes any warranty, expresses, implies, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or those of Department of Energy and Mercedes-Benz Research & Development North America, Inc. IV Table of Content Abstract···································································································································· I Acknowledgements ···················································································································· III Table of Content ························································································································ V Chapter 1 Introduction of Lithium-Sulfur Battery and Si Electrode ······························································· 1 Chapter 2 Tackling the Capacity Fading Issue of Li-S Battery by a Functional Additive – Hexafluorobenzene ·········· 33 Chapter 3 A Systematic Research on the Relationship between Lithium Salt Concentration and Li-S Battery. ·········· 48 Chapter 4 Understanding the Impact of a Nonafluorinated Ether-Based Electrolyte on Li-S Battery ······················ 66 Chapter 5 Optimize the Lithium-Silicon Battery by a New Kind of All Fluorinated Electrolyte ···························· 83 Chapter 6. Summary ··················································································································· 98 Chapter 7. Future Work ·············································································································· 101 Chapter 8. Publications and Presentations ·························································································
Recommended publications
  • Carbon-Based Quantum Dots for Supercapacitors: Recent Advances and Future Challenges
    nanomaterials Review Carbon-Based Quantum Dots for Supercapacitors: Recent Advances and Future Challenges Fitri Aulia Permatasari 1 , Muhammad Alief Irham 1,2 , Satria Zulkarnaen Bisri 2,* and Ferry Iskandar 1,3,* 1 Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; [email protected] (F.A.P.); aliefi[email protected] (M.A.I.) 2 RIKEN Center of Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan 3 Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia * Correspondence: [email protected] (S.Z.B.); ferry@fi.itb.ac.id (F.I.); Tel.: +81-48-462-1111 (S.Z.B.); +62-22-251-5032 (F.I.) Abstract: Carbon-based Quantum dots (C-QDs) are carbon-based materials that experience the quantum confinement effect, which results in superior optoelectronic properties. In recent years, C-QDs have attracted attention significantly and have shown great application potential as a high- performance supercapacitor device. C-QDs (either as a bare electrode or composite) give a new way to boost supercapacitor performances in higher specific capacitance, high energy density, and good durability. This review comprehensively summarizes the up-to-date progress in C-QD applications either in a bare condition or as a composite with other materials for supercapacitors. The current state of the three distinct C-QD families used for supercapacitors including carbon quantum dots, carbon dots, and graphene quantum dots is highlighted. Two main properties of C-QDs (structural and electrical properties) are presented and analyzed, with a focus on the contribution to supercapacitor performances.
    [Show full text]
  • Tuning Interface Bridging Between Mose2 and Three-Dimensional Carbon Framework by Incorporation of Moc Intermediate to Boost Lithium Storage Capability
    University of Wollongong Research Online Australian Institute for Innovative Materials - Papers Australian Institute for Innovative Materials 1-1-2020 Tuning Interface Bridging Between MoSe2 and Three-Dimensional Carbon Framework by Incorporation of MoC Intermediate to Boost Lithium Storage Capability Jing Chen Yilin Luo Wenchao Zhang University of Wollongong, [email protected] Yun Qiao Xinxin Cao See next page for additional authors Follow this and additional works at: https://ro.uow.edu.au/aiimpapers Part of the Engineering Commons, and the Physical Sciences and Mathematics Commons Recommended Citation Chen, Jing; Luo, Yilin; Zhang, Wenchao; Qiao, Yun; Cao, Xinxin; Xie, Xuefang; Zhou, Haoshen; Pan, Anqiang; and Liang, Shuquan, "Tuning Interface Bridging Between MoSe2 and Three-Dimensional Carbon Framework by Incorporation of MoC Intermediate to Boost Lithium Storage Capability" (2020). Australian Institute for Innovative Materials - Papers. 4288. https://ro.uow.edu.au/aiimpapers/4288 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Tuning Interface Bridging Between MoSe2 and Three-Dimensional Carbon Framework by Incorporation of MoC Intermediate to Boost Lithium Storage Capability Abstract © 2020, The Author(s). Highlights: MoSe2/MoC/C multiphase boundaries boost ionic transfer kinetics.MoSe2 (5–10 nm) with rich edge sites is uniformly coated in N-doped framework.The obtained MoSe2 nanodots achieved ultralong cycle performance in LIBs and high capacity retention in full cell. Abstract: Interface engineering has been widely explored to improve the electrochemical performances of composite electrodes, which governs the interface charge transfer, electron transportation, and structural stability.
    [Show full text]
  • New Supercapacitors of Hybrid Configurations Nuevos Supercondensadores De Configuración Híbrida
    nº28 / Junio 2013 New Supercapacitors of Hybrid Configurations Nuevos supercondensadores de configuración híbrida Katsuhiko Naoi1 and Wako Naoi2 1Department of Applied Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184- 8558, Japan 2Division of Art and Innovative Technologies, K & W Inc, 1-3-16-901 Higashi, Kunitachi, Tokyo 186-0002, Japan. Abstract a promising means for storing electricity [1-6]. This technology has an additional advantage of increasing In recent years, the improvement of the energy effectiveness when combined with renewable (wind density of nano-composite battery materials has and solar) energy sources [6,11]. In recent years, been object of great study. Hybridizing battery and electrochemical capacitors have been vigorously capacitor materials overcome the energy density researched in hopes to improve their energy density. limitation of existing generation-I capacitors without However, since electrochemical capacitors generally much sacrificing the cycling performances. Normal have low energy densities (below 10 Wh L-1), their battery-capacitor hybrids employ high-energy & uses are limited and cannot fully meet performance sluggish redox electrode and low-energy & fast demands required by existing electrical equipment double-layer electrodes, possibly producing a larger and electronic devices. In the case of automobiles working voltage and higher over-all capacitance. In and smart grids, new energy storage devices order to smoothly operate such asymmetric systems, necessitate both the attributes of lithium ion batteries, however, the rates of the two different electrodes must allowing high energy density, and the characteristics be highly balanced. Especially, the redox rates of the of electrochemical capacitors of fast charge- battery electrodes must be substantially increased discharge rates in order to optimize the energy and to the levels of double-layer process.
    [Show full text]
  • In Situ Formation of Hierarchical Bismuth Nanodots/Graphene Nanoarchitectures for Ultrahigh‐Rate and Durable Potassium‐Ion S
    FULL PAPER www.small-journal.com In Situ Formation of Hierarchical Bismuth Nanodots/ Graphene Nanoarchitectures for Ultrahigh-Rate and Durable Potassium-Ion Storage Yuanxin Zhao, Xiaochuan Ren, Zhenjiang Xing, Daming Zhu,* Weifeng Tian, Cairu Guan, Yong Yang, Wenming Qin, Juan Wang, Lili Zhang, Yaobo Huang, Wen Wen,* Xiaolong Li, and Renzhong Tai* urgent strategies worldwide.[1] Recharge- Metallic bismuth (Bi) has been widely explored as remarkable anode mate- able lithium-ion batteries have achieved rial in alkali-ion batteries due to its high gravimetric/volumetric capacity. great success during the last 40 years, while However, the huge volume expansion up to ≈406% from Bi to full potassia- they gradually display certain limitations tion phase K Bi, inducing the slow kinetics and poor cycling stability, hinders in further large-scale applications, such as 3 high cost, uneven geological distribution its implementation in potassium-ion batteries (PIBs). Here, facile strategy is and short supplies of lithium resources developed to synthesize hierarchical bismuth nanodots/graphene (BiND/G) (0.0017 wt%) around the world. As alternative composites with ultrahigh-rate and durable potassium ion storage derived energy storage sources, sodium ion batteries from an in situ spontaneous reduction of sodium bismuthate/graphene (SIBs) and potassium ion batteries (PIBs) composites. The in situ formed ultrafine BiND ≈( 3 nm) confined in graphene have recently attracted tremendous interest owing to their natural abundance, low cost layers can not only effectively accommodate the volume change during the and environmental friendliness. Despite alloying/dealloying process but can also provide high-speed channels for having a similar abundance with sodium ionic transport to the highly active BiND.
    [Show full text]
  • Highly Efficient Quasi-Solid-State Asymmetric Supercapacitors Based
    Cheng et al. Nanoscale Research Letters (2019) 14:66 https://doi.org/10.1186/s11671-019-2902-5 NANO EXPRESS Open Access Highly Efficient Quasi-Solid-State Asymmetric Supercapacitors Based on MoS2/MWCNT and PANI/MWCNT Composite Electrodes Bing Cheng1,2, Renzhi Cheng1,2, Furui Tan1,2, Xiansheng Liu1,2, Jinghao Huo3 and Gentian Yue1,2* Abstract Molybdenum disulfide (MoS2) and polyaniline (PANI) electrodes were decorated with multi-walled carbon nanotubes (MWCNTs) on the basis of a facial hydrothermal and in situ polymerization methods and served in the asymmetric supercapacitor (ASC). The MoS2 and MWCNTs with a mole ratio of 1:1 in MoS2|MWCNTs electrode exhibited better electrochemical properties through extensive electrochemical studies, in terms of the highest specific capacitance of 255.8 F/g at 1 A/g, low internal resistance, and notable electrochemical stability with retention of the initial specific capacitance at 91.6% after 1000 cycles. The as-prepared PANI|MWCNTs electrode also exhibited good specific capacitance of 267.5F/g at 1A/g and remained 97.9% capacitance retention after 1000cycles. Then, the ASC with MoS2|MWCNTs and PANI|MWCNTs composite electrodes were assembled with polyvinyl alcohol (PVA)- Na2SO4 gel electrolyte, which displayed good electrochemical performance with the specific capacitance of 138.1 F/g at 1 A/g, and remained the energy density of 15.09 Wh/kg at a high power density of 2217.95 W/kg. This result shows that this ASC device possesses excellent electrochemical properties of high energy density and power output and thus showing a potential application prospect. Keywords: Molybdenum disulfide, Multi-walled carbon nanotube, Polyaniline, Quasi-solid-state, Supercapacitor Background research focus [4–7].
    [Show full text]
  • Current Progress of Si/Graphene Nanocomposites for Lithium-Ion Batteries
    Journal of C Carbon Research Review Current Progress of Si/Graphene Nanocomposites for Lithium-Ion Batteries Yinjie Cen 1 ID , Richard D. Sisson 1, Qingwei Qin 2,* and Jianyu Liang 1,* 1 Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA; [email protected] (Y.C.); [email protected] (R.D.S.) 2 The Key State Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China * Correspondence: [email protected] (Q.Q.); [email protected] (J.L.); Tel.: +86-189-7162-1606 (Q.Q.); +1-508-831-5178 (J.L.) Received: 28 January 2018; Accepted: 15 March 2018; Published: 19 March 2018 Abstract: The demand for high performance lithium-ion batteries (LIBs) is increasing due to widespread use of portable devices and electric vehicles. Silicon (Si) is one of the most attractive candidate anode materials for next generation LIBs. However, the high-volume change (>300%) during lithium ion alloying/de-alloying leads to poor cycle life. When Si is used as the anode, conductive carbon is needed to provide the necessary conductivity. However, the traditional carbon coating method could not overcome the challenges of pulverization and unstable Solid Electrolyte Interphase (SEI) layer during long-term cycling. Since 2010, Si/Graphene composites have been vigorously studied in hopes of providing a material with better cycling performance. This paper reviews current progress of Si/Graphene nanocomposites in LIBs. Different fabrication methods have been studied to synthesize Si/Graphene nanocomposites with promising electrochemical performances. Graphene plays a key enabling role in Si/Graphene anodes. However, the desired properties of graphene for this application have not been systematically studied and understood.
    [Show full text]
  • Challenges of Fast Charging for Electric Vehicles and the Role of Red Phosphorus As Anode Material: Review
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 September 2019 doi:10.20944/preprints201909.0337.v1 Peer-reviewed version available at Energies 2019, 12, 3897; doi:10.3390/en12203897 Review Challenges of Fast Charging for Electric Vehicles and the Role of Red Phosphorus as Anode Material: Review Hong Zhao 1,2, Li Wang 2, Zonghai Chen 3 and Xiangming He 2,* 1 School of Materials Science and Energy Engineering, Foshan University, China; [email protected] 2 Institute of Nuclear and New Energy, Tsinghua University, Beijing, China; [email protected] 3 Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439, USA; [email protected] * Correspondence: [email protected]; Tel.: +86-10-6279-4226 (X.H.) Abstract: Electric vehicles (EVs) are being endorsed as the uppermost successor to fuel-powered cars, with timetables for banning the sale of petrol-fueled vehicles announced in many countries. However, the range and charging times of EVs are still considerable concerns. Fast charging could be a solution to consumers' range anxiety and the acceptance of EVs. Nevertheless, it is a complicated and systematized challenge to realize the fast charging of EVs because it includes the coordinated development of battery cells, including electrode materials, EV battery power systems, charging piles, electric grids, etc. This paper aims to serve as an analysis for the development of fast-charging technology, with a discussion of the current situation, constraints and development direction of EV fast-charging technologies from the macroscale and microscale perspectives of fast-charging challenges. If the problem of fast-charging can be solved, it will satisfy consumers' demand for 10-minute charging and accelerate the development of electric vehicles.
    [Show full text]
  • Challenges of Fast Charging for Electric Vehicles and the Role of Red Phosphorous As Anode Material: Review
    energies Review Challenges of Fast Charging for Electric Vehicles and the Role of Red Phosphorous as Anode Material: Review Hong Zhao 1,2, Li Wang 2 , Zonghai Chen 3 and Xiangming He 2,* 1 School of Materials Science and Energy Engineering, Foshan University, Foshan 528225, China; [email protected] 2 Institute of Nuclear and New Energy, Tsinghua University, Beijing 100084, China; [email protected] 3 Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439, USA; [email protected] * Correspondence: [email protected]; Tel.: +86-10-6279-4226 Received: 11 September 2019; Accepted: 8 October 2019; Published: 15 October 2019 Abstract: Electric vehicles (EVs) are being endorsed as the uppermost successor to fuel-powered cars, with timetables for banning the sale of petrol-fueled vehicles announced in many countries. However, the range and charging times of EVs are still considerable concerns. Fast charging could be a solution to consumers’ range anxiety and the acceptance of EVs. Nevertheless, it is a complicated and systematized challenge to realize the fast charging of EVs because it includes the coordinated development of battery cells, including electrode materials, EV battery power systems, charging piles, electric grids, etc. This paper aims to serve as an analysis for the development of fast-charging technology, with a discussion of the current situation, constraints and development direction of EV fast-charging technologies from the macroscale and microscale perspectives of fast-charging challenges. If the problem of fast-charging can be solved, it will satisfy consumers’ demand for 10-min charging and accelerate the development of electric vehicles.
    [Show full text]
  • 2016 CEE Symposium Abstracts
    DEPARTMENT OF CHEMICAL & ENVIRONMENTAL 2016 ENGINEERING: FALL SYMPOSIUM University of California, Riverside SYMPOSIUM PRESENTERS Wastewater Reuse for Agriculture: Development of a Regional Water Reuse Decision-Support Model (RWRM) for Cost-Effective Irrigation Sources Quynh K. Tran Advisor: Dr. David Jassby Water scarcity has become a critical problem in many semiarid and arid regions. The single largest water use in such regions is for crop irrigation, which typically relies on groundwater and surface water sources. With increasing stress on these traditional water sources, it is important to consider alternative irrigation sources for areas with limited freshwater resources. One potential irrigation water resource is treated wastewater for agricultural fields located near urban centers. In addition, treated wastewater can contribute an appreciable amount of necessary nutrients for plants. The suitability of reclaimed water for specific applications depends on water quality and usage requirements. The main factors that determine the suitability of recycled water for agricultural irrigation are salinity, heavy metals, and pathogens, which cause adverse effects on human, plants, and soils. In this paper, we develop a regional water reuse decision-support model (RWRM) using the general algebraic modeling system to analyze the cost-effectiveness of alternative treatment trains to generate irrigation water from reclaimed wastewater, with the irrigation water designed to meet crop requirements as well as California’s wastewater reuse regulations (Title 22). Using a cost-minimization framework, least-cost solutions consisting of treatment processes and their intensities (blending ratios) are identified to produce alternative irrigation sources for citrus and turfgrass. Our analysis illustrates the benefits of employing an optimization framework and flexible treatment design to identify cost-effective blending opportunities that may produce high-quality irrigation water for a wide range of end uses.
    [Show full text]
  • Exploring Advanced Electrode Materials for Sodium-Ion Batteries
    University of Wollongong Research Online University of Wollongong Thesis Collection 2017+ University of Wollongong Thesis Collections 2020 Exploring Advanced Electrode Materials for Sodium-Ion Batteries Nana Wang University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses1 University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Wang, Nana, Exploring Advanced Electrode Materials for Sodium-Ion Batteries, Doctor of Philosophy thesis, Institute for Superconducting and Electronic Materials, University of Wollongong, 2020. https://ro.uow.edu.au/theses1/813 Research Online is the open access institutional repository for the University of Wollongong.
    [Show full text]
  • 3D Interconnected Macro-Mesoporous Electrode with Self-Assembled Nio Nanodots for High-Performance Supercapacitor-Like Li-Ion Battery
    3D Interconnected Macro-mesoporous Electrode with Self-assembled NiO nanodots for High-performance Supercapacitor-like Li-ion Battery Xianfeng Zhenga, Hongen Wanga, Chao Wanga, Zhao Denga, Lihua Chen,a Yu Li,a* Tawfique Hasanb, c and Bao-Lian Sua,d,e,* aLaboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China; Email: [email protected] and [email protected] bCambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK cNanoscience Centre, University of Cambridge, Cambridge CB3 0FF, UK dLaboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium; E-mail: [email protected] eDepartment of Chemistry and Clare Hall, University of Cambridge, Cambridge CB2 1EW, UK; E-mail: [email protected] Abstract We report a binder-free three-dimensional (3D) macro-mesoporous electrode architecture via self-assembly of 3 nm NiO nanodots on macroporous nickel foam for high performance supercapacitor-like lithium battery. This electrode architecture provides a hierarchically 3D macro-mesoporous electrolyte-filled network that simultaneously enables rapid ion transfer and ultra-short solid-phase ion diffusion. Benefitting from the structural superiority owing to the interconnected porous hierarchy, the electrode exhibits supercapacitor-like high rate capabilities with high lithium battery capacities during the discharge-charge process: a very high capacity of 518 mA h g-1 at an ultrahigh current density of 50 A g-1. It exceeds at least ~10 times than that of the state-of-art graphite anode, which shows only ~50 mA h g-1 at ~2-3 A g-1 as anode for Li-ion battery.
    [Show full text]
  • Nanostructures for Electrical Energy Storage (NEES) a DOE Energy Frontier Research Center
    Nanostructures for Electrical Energy Storage (NEES) a DOE Energy Frontier Research Center Gary W. Rubloff University of Maryland, College Park, MD www.rubloffgroup.umd.edu , [email protected] Minta Martin Professor of Engineering and Director, Maryland Nanocenter Director, DOE-EFRC Nanostructures for Electrical Energy Storage (NEES) Dept of Materials Science & Engineering and Institute for Systems Research Creating the EFRC Rubloff: NRC CMMRC 5-2-2011 2 Electrodeposition into Nanopores Coaxial Nanowires AAO nanopores 60nm dia, 1-30µm deep Simultaneously electrodeposit: Liu & Lee, J. Am. Chem. Soc. (2008) MnO2 charge storage material Conducting polymer charge transport material 100 billion coaxial electrochemical nanowires per square inch 3 Rubloff: NRC CMMRC 5-2-2011 MnO2/PEDOT Coaxial Nanowires for High Power & Energy MnO2/PEDOT coaxial nanowires PEDOT nanowires MnO2 nanowires MnO2 films Liu & Lee, J. Am. Chem. Soc. (2008) 4 Rubloff: NRC CMMRC 5-2-2011 Atomic Layer Deposition (ALD) Reactant A exposure Purge L • Reactive CVD precursors L M L L L L M L LH alternately and separately Initial surface L L L L L exposed to surface L M L L M L L M L L M L OH OH OH OH OH O O O O SUBSTRATE • Self-limiting adsorption/reaction H2O H2O LH H2O OH OH OH OH OH L L L L Monolayer M O M O M OH M O M M growth O O O O O O • Monolayer thickness control Purge Reactant B exposure Superb conformality and • Thickness control Conformality Nanolaminates uniformity Rubloff: NRC CMMRC 5-2-2011 5 AAO-ALD for MIM Electrostatic Supercapacitor AAO nanopores SEM images 60nm dia, 1-10µm deep ALD MIM layers: Top electrode: TiN 12.6nm Dielectric: Al2O3 6.6nm Bottom electrode: TiN 5.6nm Aspect ratios 200-1000 (depth/width) ALD conformality >93% in all layers 100 billion nanocapacitors per square inch P.
    [Show full text]