Existing Open Source Tools and Possibilities for Cadastre Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Workshop GRASS GIS and RDBMS
Workshop W-11 GRASS GIS and RDBMS Workshop GRASS GIS and RDBMS by Marco Ciolli, Paolo Zatelli and Clara Tattoni Department of Civil and Environmental Engineering University of Trento Italy FOSS4G2007 Victoria, Canada 24-27 September 2007 Workshop W-11 GRASS GIS and RDBMS GGIISS aanndd DDBBMMSS GISs can manage all the features of geographic information: geometry, topology and attributes. Sometimes it is more efficient to manage some or all of these features with an external Data Base Management System (DBMS). A DBMS can manage the attributes, a DBMS with spatial extension can manage the geometry as well. It is possible to use different DBMS, databases and configurations for different maps in the same dataset or for different layers of the same map. FOSS4G2007 Victoria, Canada 24-27 September 2007 2 Workshop W-11 GRASS GIS and RDBMS GGRRAASSSS,, QQGGIISS aanndd DDBBMMSS GRASS and QGIS can read all formats supported by the OGR library, that is data from the more used DBMS If using OGR Library with GRASS, data can be: – imported (GRASS native format) – linked as read-only external data with pseudotopology (v.external) FOSS4G2007 Victoria, Canada 24-27 September 2007 3 Workshop W-11 GRASS GIS and RDBMS QQGGIISS aanndd DDBBMMSS QGIS can access directly PostgreSQL/PostGIS data both attributes and geometry. In order to use a PostgreSQL/PostGIS layer in QGIS, it must be present a key column of int4. This layer processing speed can be enhanced by indexing that column (if it is a PostgreSQL primary key it is indexed by default). If a view is used, it must contain a type int4 column or a primary key, possibly indexed. -
Development of a Web Mapping Application Using Open Source
Centre National de l’énergie des sciences et techniques nucléaires (CNESTEN-Morocco) Implementation of information system to respond to a nuclear emergency affecting agriculture and food products - Case of Morocco Anis Zouagui1, A. Laissaoui1, M. Benmansour1, H. Hajji2, M. Zaryah1, H. Ghazlane1, F.Z. Cherkaoui3, M. Bounsir3, M.H. Lamarani3, T. El Khoukhi1, N. Amechmachi1, A. Benkdad1 1 Centre National de l’Énergie, des Sciences et des Techniques Nucléaires (CNESTEN), Morocco ; [email protected], 2 Institut Agronomique et Vétérinaire Hassan II (IAV), Morocco, 3 Office Régional de la Mise en Valeur Agricole du Gharb (ORMVAG), Morocco. INTERNATIONAL EXPERTS’ MEETING ON ASSESSMENT AND PROGNOSIS IN RESPONSE TO A NUCLEAR OR RADIOLOGICAL EMERGENCY (CN-256) IAEA Headquarters Vienna, Austria 20–24 April 2015 Context In nuclear disaster affecting agriculture, there is a need for rapid, reliable and practical tools and techniques to assess any release of radioactivity The research of hazards illustrates how geographic information is being integrated into solutions and the important role the Web now plays in communication and disseminating information to the public for mitigation, management, and recovery from a disaster. 2 Context Basically GIS is used to provide user with spatial information. In the case of the traditional GIS, these types of information are within the system or group of systems. Hence, this disadvantage of traditional GIS led to develop a solution of integrating GIS and Internet, which is called Web-GIS. 3 Project Goal CRP1.50.15: “ Response to Nuclear Emergency affecting Food and Agriculture” The specific objective of our contribution is to design a prototype of web based mapping application that should be able to: 1. -
Building a Spatial Database in Postgresql
Building a Spatial Database in PostgreSQL David Blasby Refractions Research [email protected] http://postgis.refractions.net Introduction • PostGIS is a spatial extension for PostgreSQL • PostGIS aims to be an “OpenGIS Simple Features for SQL” compliant spatial database • I am the principal developer Topics of Discussion • Spatial data and spatial databases • Adding spatial extensions to PostgreSQL • OpenGIS and standards Why PostGIS? • There aren’t any good open source spatial databases available • commercial ones are very expensive • Aren’t any open source spatial functions • extremely difficult to properly code • building block for any spatial project • Enable information to be organized, visualized, and analyzed like never before What is a Spatial Database? Database that: • Stores spatial objects • Manipulates spatial objects just like other objects in the database What is Spatial data? • Data which describes either location or shape e.g.House or Fire Hydrant location Roads, Rivers, Pipelines, Power lines Forests, Parks, Municipalities, Lakes What is Spatial data? • In the abstract, reductionist view of the computer, these entities are represented as Points, Lines, and Polygons. Roads are represented as Lines Mail Boxes are represented as Points Topic Three Land Use Classifications are represented as Polygons Topic Three Combination of all the previous data Spatial Relationships • Not just interested in location, also interested in “Relationships” between objects that are very hard to model outside the spatial domain. • The most -
Development of an Extension of Geoserver for Handling 3D Spatial Data Hyung-Gyu Ryoo Pusan National University
Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings Volume 17 Boston, USA Article 6 2017 Development of an extension of GeoServer for handling 3D spatial data Hyung-Gyu Ryoo Pusan National University Soojin Kim Pusan National University Joon-Seok Kim Pusan National University Ki-Joune Li Pusan National University Follow this and additional works at: https://scholarworks.umass.edu/foss4g Part of the Databases and Information Systems Commons Recommended Citation Ryoo, Hyung-Gyu; Kim, Soojin; Kim, Joon-Seok; and Li, Ki-Joune (2017) "Development of an extension of GeoServer for handling 3D spatial data," Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings: Vol. 17 , Article 6. DOI: https://doi.org/10.7275/R5ZK5DV5 Available at: https://scholarworks.umass.edu/foss4g/vol17/iss1/6 This Paper is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings by an authorized editor of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Development of an extension of GeoServer for handling 3D spatial data Optional Cover Page Acknowledgements This research was supported by a grant (14NSIP-B080144-01) from National Land Space Information Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government and BK21PLUS, Creative Human Resource Development Program for IT Convergence. This paper is available in Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings: https://scholarworks.umass.edu/foss4g/vol17/iss1/6 Development of an extension of GeoServer for handling 3D spatial data Hyung-Gyu Ryooa,∗, Soojin Kima, Joon-Seok Kima, Ki-Joune Lia aDepartment of Computer Science and Engineering, Pusan National University Abstract: Recently, several open source software tools such as CesiumJS and iTowns have been developed for dealing with 3-dimensional spatial data. -
Assessmentof Open Source GIS Software for Water Resources
Assessment of Open Source GIS Software for Water Resources Management in Developing Countries Daoyi Chen, Department of Engineering, University of Liverpool César Carmona-Moreno, EU Joint Research Centre Andrea Leone, Department of Engineering, University of Liverpool Shahriar Shams, Department of Engineering, University of Liverpool EUR 23705 EN - 2008 The mission of the Institute for Environment and Sustainability is to provide scientific-technical support to the European Union’s Policies for the protection and sustainable development of the European and global environment. European Commission Joint Research Centre Institute for Environment and Sustainability Contact information Cesar Carmona-Moreno Address: via fermi, T440, I-21027 ISPRA (VA) ITALY E-mail: [email protected] Tel.: +39 0332 78 9654 Fax: +39 0332 78 9073 http://ies.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC [49291] EUR 23705 EN ISBN 978-92-79-11229-4 ISSN 1018-5593 DOI 10.2788/71249 Luxembourg: Office for Official Publications of the European Communities © European Communities, 2008 Reproduction is authorised provided the source is acknowledged Printed in Italy Table of Content Introduction............................................................................................................................4 1. -
The Use of GIS and Remote Sensing for Environment Statistics Contents
UNITED NATIONS STATISTICS DIVISION (UNSD) Workshop on Environment Statistics in support of the implementation of the Framework for the Development of Environment Statistics, Arusha, Tanzania, 6-10 July 2015 The use of GIS and remote sensing for environment statistics Contents • Temporal and spatial considerations • GIS data • Geospatial information • Data collections • Remote sensing • GIS Tools • Demos Temporal and spatial considerations • From FDES 2013 – Environment statistics require the simultaneous consideration of a number of temporal and spatial issues. – Important to align the temporal aggregations of environmental data with those used in economic and social statistics to ensure their proper integration, often a uniform calendar or fiscal year do not fit the diversity of natural phenomena; – therefore the use of different time scales, longer or shorter time periods is also necessary for the aggregation of environmental data over time. Spatial and Temporal • Spatial - Anything/event that occur in space has a spatial dimension – e.g environmental phenomena like air pollution, biodiversity conservation… • Temporal – anything/event relating to or limited by time, e.g disasters in 2014, hourly PM10 concentration at a specific site… Temporal and spatial considerations • For example, in fluid environmental phenomena, the temporal dimension is needed since there can be ebbs and flows, droughts and floods, snow and runoffs which all influence measurements. • Sometimes daily variations and at other times seasonal variations depending on what is being measured. Seasonal variations can be seen in the fluctuations in certain types of fish biomass, surface water levels, ice cap surface or the incidence of fires – monitoring focused more during some months • Temporal statistics often point out the maximum, the minimum and/or other ways of describing the relevant phenomenon and its levels below or above certain benchmarks, and are not restricted to a sum or an average over a longer period. -
JULIO GABRIEL CHILELA +1 (832) 212-4501 ~ [email protected]
JULIO GABRIEL CHILELA +1 (832) 212-4501 ~ [email protected] EDUCATION: UNIVERSITY OF HOUSTON, College of Technology United States Of America, TX Internship: WEB Geographic Information Systems (WebGIS) for Smart Campus and Facility Management. Development of a cross-platform application to integrate smart door, smart HVAC and Volunteer Geographic Information. September 2015 – September 2016 UNIVERSITY OF COIMBRA Portugal, Coimbra Master of Geographic Information Technology October 2014 – June 2016 INSTITUTO SUPERIOR DE CIENCIAS DA EDUCACAO, ISCED Angola, Lubango Bachelors Degree in Computer Science for Education March 2008 – November 2012 LANGUAGES (Scale 0-5): Portuguese: spoken and written(5), English: spoken and written(3.5), French: spoken and written(2). EXPERIENCE: UNIVERSITIY MANDUME YA NDEMUFAIO, Department of Informatics and Computer Engeneering Angola, Lubango Teacher July 2013 § Subjects: Computation Technology, Introduction to Computer and Software Development, Introduction to Software Development and Problem Solving. HIGH-SCHOOL POLYTECHNICAL INSTITUTE OF NAMIBE, Department of Computer Science Angola, Namibe Teacher 2011 - 2014 § Subject: Technical of Software Development TECHNICAL PROFICIENCY: § Technical Certificate at Microsoft Certified Partner CompuClass, Sao Paulo, Brazil May, 2013 o Windows Server o SQL Server Level I (User) o SQL Server Level II (Admin) o PHP+MYSQL+JavaScript+CSS+HTML § Co-author of the School Software Management named as OSIKOLA. On behalf of the Angolan Television, Semba Communications held a report on its functions and advantages: Youtube: https://www.youtube.com/watch?v=d2fnhE6nB-Q § Last websites developed: o www.gestaodeigrejas.info (Created with Django Framework) o www.siblubango.com (Created with ASP.NET) § Amazon Web Services: o EC2, Route53. § Technical Knowledge: o Computer Networks; Computer maintenance and Repair; Software development, website development. -
A Survey of Open Source Geospatial Software Bob Bruce, P.Eng Mapping and Lands Branch, Manitoba Conservation [email protected]
Open Source Geospatial Software Bob Bruce, P.Eng. A Survey of Open Source Geospatial Software Bob Bruce, P.Eng Mapping and Lands Branch, Manitoba Conservation WWW.HWPS.CA [email protected] APEGM PD Breakfast Tuesday, 12 June 2007 access this presentation here: http://www.apegm.mb.ca/pdnet/papers.html There are many web addresses given in this presentation. In order to save you from writing them all down, I have provided you with the address to download this presentation. 1 Open Source Geospatial Software Bob Bruce, P.Eng. A Survey of Open Source Geospatial Software Outline of Presentation z What open source software is and how it is licensed z The organizations supporting open source geospatial software and some Canadian companies and consultants working in this field z WWW standards for accessing geospatial data z Some interesting and well known open source geospatial software applications z The use of open source geospatial software to support the spatial infrastructure in a government organization z Where you can get more information 2 Open Source Geospatial Software Bob Bruce, P.Eng. A Survey of Open Source Geospatial Software Some popular, successful open-source projects OpenOffice.org – is a multi-platform office suite which is compatible with all other major office suites. Firefox – a web browser from the Mozilla Foundation – has second largest useage worldwide Thunderbird – is a full-featured email application The open-source software field has a multitude of applications that mirror nearly every successful commercial field. Here are some high-profile applications that are free and can be used for common functions needed in computers: OpenOffice can replace Microsoft Office, it comes with a document editor (like Word), a spreadsheet, a presentation manager and a database manager and other utilities. -
The State of Open Source GIS
The State of Open Source GIS Prepared By: Paul Ramsey, Director Refractions Research Inc. Suite 300 – 1207 Douglas Street Victoria, BC, V8W-2E7 [email protected] Phone: (250) 383-3022 Fax: (250) 383-2140 Last Revised: September 15, 2007 TABLE OF CONTENTS 1 SUMMARY ...................................................................................................4 1.1 OPEN SOURCE ........................................................................................... 4 1.2 OPEN SOURCE GIS.................................................................................... 6 2 IMPLEMENTATION LANGUAGES ........................................................7 2.1 SURVEY OF ‘C’ PROJECTS ......................................................................... 8 2.1.1 Shared Libraries ............................................................................... 9 2.1.1.1 GDAL/OGR ...................................................................................9 2.1.1.2 Proj4 .............................................................................................11 2.1.1.3 GEOS ...........................................................................................13 2.1.1.4 Mapnik .........................................................................................14 2.1.1.5 FDO..............................................................................................15 2.1.2 Applications .................................................................................... 16 2.1.2.1 MapGuide Open Source...............................................................16 -
Proof of Concept and State of the Art in FOSS Geospatial Technology
Field Information Geospatial-database System (FIGS) for the United Nations Office for Coordination of Humanitarian Affairs (OCHA) Proof of concept and state of the art in FOSS Geospatial Technology Report by Sean Ahearn, Ph.D., Hunter College - CUNY David Almeida, Hunter College CUNY Software Engineer, TTSI Mark Gahegan, Ph.D. Pennsylvania State University To Mr. Suha Ulgen Technical Coordinator Field Information Support Project Office for the Coordination of Humanitarian Affairs One UN Plaza DC1-1368 New York, NY 10017 March 2006 FIGS Working Group Document: Proof of Concept and state of the art in FOSS 1 Geospatial Technology 3/15/2006 Table of Contents Page number Executive Summary 5 1.0 Introduction 7 2.0 Purpose of broader project 9 2.1 Phase 1: Proof of Concept and state of the art in FOSS Geospatial Technology 9 2.2 FIGS Development 9 2.3 Phase 3: FIGS Field Implementation 11 3.0 Background 11 4.0 Phase I: Proof of Concept and state of the 12 art in FOSS Geospatial Technology 4.1.1 Initial overview of the use of geospatial 12 technology for disaster relief management. 4.1.2 Introduction: Humanitarian Information Centers (HIC) 13 4.1.3 Tsunami (South-east Asia) 16 4.1.4 Earthquake (Pakistan-India) 17 4.2 Within the context of these emergencies, conduct a 20 preliminary data needs assessment and establish functionality requirements for geospatial query, analysis and cartographic output. 4.2.1 Current software systems used 21 4.2.2 Required functionality of Geospatial environment 21 4.2.3 Critical information needs 22 4.2.4 Operational conditions 24 4.3 Assemble, integrate and test Free Open Source Software 24 (FOSS) systems for storage, maintenance, access and analysis of geospatial information. -
Overview of GIS Applications Risk Assessment and Risk Management of Climate Change Hazards
Overview of GIS applications risk assessment and risk management of climate change hazards Fact irrigated lands Planed irrigated lands Watershed Water bodies Settlements River Soil types Overview of GIS applications risk assessment and risk management of climate change hazards © 2010 PREPARED The European Commission is funding the Collaborative project ‘PREPARED Enabling Change’ (PREPARED, project number 244232) within the context of the Seventh Framework Programme 'Environment'.All rights reserved. No part of this book may be reproduced, stored in a database or retrieval system, or published, in any form or in any way, electronically, mechanically, by print, photoprint, microfilm or any other means without prior written permission from the publisher COLOPHON Title Overview of GIS applications, risk assessment and risk management of climate change hazards Report number Prepared 2011.015 Deliverable number D2.5.1 Author(s) Ielizaveta Dunaieva (Crimean Scientific and Research Center) Victor Popovych (Crimean Scientific and Research Center) Elisa Traverso (Iren Acqua Gas) Quality Assurance Patrick Smeets (KWR Watercycle Research Institute) Document history Version Team member Status Date update Comments 01 Ielizaveta Dunaieva Draft 27-08-2010 Chapters 1-4, 6 02 Ielizaveta Dunaieva Draft 24-06-2011 Applications from cities Simferopol and Genoa added 03 Patrick Smeets Final 03-08-2011 QA by WA leader This report is: PU = Public Summary The first step to prepare for climate change effects on the water cycle is a risk assessment for the observed system to be prepared and, if it is necessary, protected. Risk assessment (RA) means the determination of qualitative and quantitative value of risks, related to a certain situation and the recognized hazards. -
GRASS-News Geographic Resources Analysis Support System Volume 3, June 2005
GRASS-News Geographic Resources Analysis Support System Volume 3, June 2005 Editorial proaches on the GRASS user inferface. These articles outline pretty well some capabili- by Martin Wegmann ties of GRASS but far more functions could be pre- sented, personally I would like to see the actual use Dear GRASS user, of GRASS functions in different projects and a more detailed presentation of GRASS visualisation poten- tials. welcome to the third volume of GRASSNews which features a broad spectrum of articles. Looking forward to No 4, with kind regards Preprocessing of SRTM data and its further use in GRASS is the topic of the first two articles. Followed Martin Wegmann by GRASS- R articles describing the new GRASS 6 - R interface and the use of R for raster manipulation. Moreover r.infer is presented, a tool for Martin Wegmann knowledge management, this shall be the begin- DRL - German Aerospace Centre @ ning of a series featuring different approaches on Remote Sensing and Biodiversity Unit knowledge management in GRASS. Dept. of Geography, University of Würzburg, Germany A very promising preview of QGIS 0.7 including BIOTA-Project the new capabilities to interact with GRASS and the ¢¡£¡¥¤§¦£¨£¨ ©£©£© ¢ ¡ presentation of the GRASS extension manager (GEM) ¢¡£¡¥¤§¦£¨£¨ ©£©£© ¢ ! " ¢ in the News section shows the two parallel ap- #%$&'()£)+*£,.-¢/!01$)2£34!' 564£)¢/!7!#£4%$3£1-£43£&85¥9$ Contents of this volume: Use of R tightly coupled to GRASS for correc- tion of single-detector errors in EO1 hyper- spectral images . 16 Editorial . 1 Knowledge Management and GRASS GIS: SRTM and VMAP0 data in OGR and GRASS .