<<

Navier-Stokes Equations

D # "U = # Pds + # "FdV Dt V S V Where it is assumed that in D the j direction is summed over all # "u = # $ ds + # "f dV three i surface elements Dt j ij j ! V S V

Recall the Reynolds Transport Theorem has the following form… ! D % $" $ ( # "dV = # ' + ("uk )* dV Dt V V& $t $xk )

By replacing α with ρu , the LHS of the top equation can be expanded… ! j $ " " ' * & (#u j ) + (#u juk )) dV = * +ijds + * #f jdV V% "t "xk ( S V

Note that we are dealing with each component of U=[u1,u2,u3] separately. !

$ " " ' * & #u j + #u juk ) dV = * +ijds + * #f jdV V% "t "xk ( S V

Recall: Divergence Theorem from Vector States: #u r r u n dS i dV ! " U • nˆ dS = " # •UdV " i i = " s V #xi S V The equivalent expression in notation

$ " " ' "+ij ! ! * & #u j + #u juk ) dV = * dV + * #f jdV V% "t "xk ( V "xi V Since the choice is "$ " " ij arbitrary ! (#u j ) + (#u juk ) = + #f j "t "xk "xi

!

1 " " "$ij (#u j ) + (#u juk ) = + #f j "t "xk "xi

expanding the derivative…

! # # # # #$ij " (u j ) + u j (") + u j ("uk ) + "uk (u j ) = + "f j #t #t #xk #xk #xi

terms sum to zero because of continuity (conservation of ! mass) requirements

# # #$ij " (u j ) + "uk (u j ) = + "f j #t #xk #xi

!

# # #$ij " (u j ) + "uk (u j ) = + "f j #t #xk #xi

Local rate of change !of

rate of change due to advection of momentum

divergence of stress tensor or net stress over the surface element

body (e.g., )

The stress tensor (σij) can be broken down into a hydrostatic term (P) that only acts normal the the surface (i = j) and a stress tensor (τij)

" = #P$ + % δij=1 when i=j ij ij ij δij=0 when i䍫㼍

# # # " (u j ) + "uk (u j ) = ($P%ij + &ij ) + "f j ! #t #xk #xi

! The number of unknowns in the conservation of momentum equation can be reduced by replacing the tensor (τ

ij) with an expression containing the rate tensor (εij) which is a function of spatial derivatives of U.

2 du "y"t du dv dy #y#t "x"t dy du dx dv "#$1 = = #t "#2 = = "t #y dy "x dx

-ΔΘ1 d"1 du ! d"2 dv ! ! = # = dv dt dy dt dx "x"t ΔΘ2 dx

! !

deformation = (ΔΘ2 - ΔΘ1) ! d(#$2 % #$1) d#$2 d#$1 ' &v &u* deformation rate = "xy = = % = ) + , dt dt dt ( &x &y+

deformation rate tensor ! $ ' #u j #ui "ij = & + ) % #xi #x j (

!

Assume that the shear stress (τij) on a element is linearly related to the deformation rate (εij)… % ( $u j $ui Note: there is also a normal component "ij = µ#ij = µ' + * ' $x $x * of deformation but for incompressible & i j ) this terms is zero Note: This is a purely empirical by continuity & ) %u %u %u j relationship. the constant (µ) has to " = #$ k + µ( i + + ij ij x ( x x + be determined by laboratory % k ' % j % i * ! measurement. It defines the fluid as being a # # # ! " (u j ) + "uk (u j ) = ($P%ij + &ij ) + "f j #t #xk #xi

& ) ! # # # # #u j #ui " (u j ) + "uk (u j ) = $ (P%ij ) + µ ( + + + "f j #t #xk #xi #xi ' #xi #x j *

!

& ) # # # # #u j #ui " (u j ) + "uk (u j ) = $ (P%ij ) + µ ( + + + "f j #t #xk #xi #xi ' #xi #x j *

δij=1 when i=j

δij=0 when i䍫㼍 continuity ! % 2 ( # # #P # # % #ui ( " (u j ) + "uk (u j ) = $ + µ' (u j ) + ' ** + "f j #t #xk #x j & #xi#xi #x j & #xi ))

Navier-Stokes Equation ! # # #P #2 " (u j ) + "uk (u j ) = $ + µ (u j ) + "f j #t #xk #x j #xi#xi Local rate of Advection of j-directed j-directed j-directed change j-directed pressure force due to body force of j-directed momentum fluid stress (e.g., gravity momentum force (i.e., viscous force) !

3 Flux vector due to Fickian diffusion "C Fi = a "xi Loss of material from a volume element due to divergence of the flux vector ! " "2C (Fi ) = a "xi "xi"xi

"2 µ "2 µ (u j ) = (#u j ) ! "xi"xi # "xi"xi The viscous stress term in the Navier-Stokes equation can be seen as the divergence of the diffusive flux of momentum where the momentum diffusion coefficient is µ/ρ ! µ = dynamic µ/ρ = υ = kinematic viscosity

Ω

ˆ ˆ ˆ r R = i x + j y + k z

R

!

Knauss, page 90-94

4