Postal Penguin An Unmanned Combat Air Vehicle for the Navy

Team 8-Ball Final Presentation April 22nd, 2003

1 Agenda

„ Introduction „ Background Research „ Concept Overview, Selection „ Design Evolution, Weights „ Final Configuration „ Systems Overview „ Aero-Performance „ Control & Stability „ Structural Analysis „ Pelikan Tail „ Autonomy, Carrier Integration „ Cost „ Summary and Questions

2 Introduction Team Members and Positions

Justin Hayes Greg Little Ben Smith

David Andrews Chuhui Pak

Alex Rich Nate Wright Jon Hirschauer Christina DeLorenzo 3 Introduction Request for Proposal Overview

RFP Requirement Specification Effect of Specification Mission 1, Strike Range 500 nm High Fuel Requirements Mission 2, Endurance 10 Hrs Low TSFC, High Fuel Payload 4,600 lbs Internal Volume Cruise Speed > M 0.7 No Supersonic, Engine Ceiling > 40,000 ft Engine, Aero Performance Sensor Suite Global Hawk Volume, Integration Stealth Survivability Oblique Angles Carrier Ops Structural Loads

4 Introduction Project Drivers (Pictures Courtesy of Global Security)

Carrier Operation Fuel Store Capacity

Stealth Sensor Suite Flyaway Costs 5 Agenda

„ Introduction „ Background Research „ Concept Overview, Selection „ Design Evolution, Weights „ Final Configuration „ Systems Overview „ Aero-Performance „ Control & Stability „ Structural Analysis „ Pelikan Tail „ Autonomy, Carrier Integration „ Cost „ Summary and Questions

6 Background Research Existing Aircraft (Pictures Courtesy of GlobalSecurity)

7 Background Research Advanced Technologies, VSTOL

„ Harrier Review 14

Panel Study AV-8b Harrier Jump Jet (HaRP) 12 10 „ Increased Failure Rates 8

„ 55 Peacetime 6 Vehicle Losses All Other Navy Aircraft (17 lives lost) 4 2 „ Mishap Rates of Hours 100,000 Flight per Mishaps 14-20 per 100,000 0 91 92 93 94 95 96 97 hrs Fiscal Year „ Increases Weight, Cost, Volume 8 Agenda

„ Introduction „ Background Research „ Concepts Overview, Selection „ Design Evolution, Weights „ Final Configuration „ Systems Overview „ Aero-Performance „ Control & Stability „ Structural Analysis „ Pelikan Tail „ Autonomy, Carrier Integration „ Cost „ Summary and Questions

9 Concepts Overview Concept Descriptions

Concept Rubber Stealth Ducky Biggun Delta U2 Beetle Conventional Tail YES YES Canted Tail YES YES YES Delta Wing YES Flying Wing YES Single Engine YES YES YES YES YES Multi Engine YES Vectored Thrust YES YES YES Water Landing YES Acceptable Length YES YES YES YES 10 Concepts Overview Reduction Chart

Stealth Wing Beetle Delta U2 Biggun Rubber Ducky 11 Agenda

„ Introduction „ Background Research „ Concept Overview, Selection „ Design Evolution, Weights „ Final Configuration „ Systems Overview „ Aero-Performance „ Control & Stability „ Structural Analysis „ Pelikan Tail „ Autonomy, Carrier Integration „ Cost „ Summary and Questions

12 Design Evolution, Weights Initial Configuration, Problems

„ Severe Instability (21% MAC) „ Significant cg Travel „ Landing Problems „ Divergence „ Fuel Volume

13 Design Evolution, Weights Weight Changes, cg Shift

„ Shift Engine Forward

„ Widen Midsection

„ New , MS(1)-0313

„ Planform Sweep

14 Design Evolution, Weights Solving the Weights Problem

Ordinance Release Ordinance Retention

Loiter

JDAM

JDAM, pre-drop

HARM, pre-drop HARM

JDAM/HARM, post-drop

15 Agenda

„ Introduction „ Background Research „ Concept Overview, Selection „ Design Evolution, Weights „ Final Configuration „ Systems Overview „ Aero-Performance „ Control & Stability „ Structural Analysis „ Pelikan Tail „ Autonomy, Carrier Integration „ Cost „ Summary and Questions

16 Final Configuration Postal Penguin Layout

17 Final Configuration Postal Penguin Internal Layout

Exhaust Wing Tanks Engine Integrated Sensor Suite

Fuel Tanks Main Gear

Nose Gear Inlets Payload

18 Final Configuration Postal Penguin External Layout

Pelikan Tails Ailerons Flaps

Main Gear Nose Gear Air intake

19 Final Configuration For Dr. Brown

General Characteristics Length 32' Weight 16-34.5 kips

Span 45' VStall 105 knt

SpanFolded 30' VLaunch 130-150 knt

HeightMax 14.3' VLand 125 knt

AR 4.35 Λo 22.7°

20 Final Configuration Penguin Top/Side View

Length 35’ Folded Length 32’ Span 45’ Folded Span 30’ Wheelbase 15’ Track Width 10’

21 Final Configuration Penguin Front View

22 Agenda

„ Introduction „ Background Research „ Concept Overview, Selection „ Design Evolution, Weights „ Final Configuration „ Systems Overview „ Aero-Performance „ Control & Stability „ Structural Analysis „ Pelikan Tail „ Autonomy, Carrier Integration „ Cost „ Summary and Questions

23 Systems Overview General Systems (Pictures Courtesy of GlobalSecurity, FAS)

Landing Gear Defensive

Weapons

Engine

Hydraulics Bomb Bay

Command/Control

Electrical Flight Control

24 Systems Overview Bomb Bay, HARM

„ Must be rail launched

„ Utilize already existing technology

„ LAU-118/A Guided Missile Launcher

„ BRU-32/A Bomb Rack (Courtesy of GlobalSecurity)

25 Systems Overview HARM Rail Launch System

26 Systems Overview JDAM Pneumatic Ejector

„ Utilize already existing technology

„ Pneumatic Ejector Racks

„ The Advantages of Pneumatic Ejection

27 Systems Overview Main Gear

„ Placement

„ Size

„ Geometric Retraction

„ Weight: 600 lbs

„ Tires – Type VII cg Diameter: 25.84 in. Width: 7.30 in.

„ Ground Clearance

28 Systems Overview Nose Gear

„ Size „ Placement „ Tires – Type VII „ Geometric Retraction Diameter: 18.27 in. „ Weight: 600 lbs Width: 4.27 in.

4 x 10 Weight vs. Length 5.5

5

4.5

4

3.5

3

2.5 Weight

2

1.5

1

0.5

0 30 35 40 45 50 55 60 Length 29 Agenda

„ Introduction „ Background Research „ Concept Overview, Selection „ Design Evolution, Weights „ Final Configuration „ Systems Overview „ Aero-Performance „ Control & Stability „ Structural Analysis „ Pelikan Tail „ Autonomy, Carrier Integration „ Cost „ Summary and Questions

30 Aero-Performance Aerodynamic Considerations

„ General Characteristics:

„ Supercritical airfoil for drag divergence AR λ b S MAC Λ 1/2 „ Moderate sweep for performance/neutral point location 4.35 0.29 45 ft. 465 ft 11.4 ft 10 deg

„ High span and area for good L/D characteristics

„ Reasonable thickness for potential fuel storage

22.65 deg

45’ If Penguins Had … 31 Aero-Performance The Contenders

MS(1)-0313

SC(2)-0712 MS(1)-0317 MS(1)-0313

The Penguin presented unique design requirements: High L/D, good low-speed lift, all in a very small package. Some characteristics looked at are below.

40 kft SC(2)-0712 MS(1)-0317 MS(1)-0313

CL max 1.3 1.38 1.42

α max 3.1 6.8 5.2 t/c 0.12 0.17 0.13

The MS(1)-0313 provided the best combination of characteristics.

32 Aero-Performance Drag Polar, Build-up

Drag Polar (40,000 ft)

1.6 Example drag polar 1.4 for the cruise altitude 1.2 of 40,000 ft (deep 1 strike/SEAD missions) 0.8 The marker signifies 0.6 CL maximum L/D of 13.8 0.4

0.2

0 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 L/D)MAX = 13.8 CD

33 Aero-Performance Sweep and MDD

„ A supercritical CL vs. MDD airfoil alone is not enough to counter the 0.74 effects of increased wave 0.72 drag. 10 deg 0.7 5 deg „ Wing has been DD M swept 10 deg at 0 deg mid-chord to 0.68 raise Mach drag divergence. 0.66

0.64 0.25 0.45 0.65 0.85 1.05 1.25 CL

34 Aero-Performance Thickness and MDD

„ While sacrificing fuel Midchord Sweep vs.DD M volume, the decreased CL = 0.5 thickness in the wings allowed for great improvement in the Mach drag divergence values for 0.82 all potential angles of 0.8 sweep. 0.78 0.76 DD 13 % t/c M 0.74 17 % t/c 0.72 0.7 0.68 0.66 0 10203040

Midchord sweep (deg)

35 Aero-Performance Performance Factors

Requirements refresher:

„ 0.85 Mach at Sea Level

„ 0.7 Mach (or better) cruise speed at 40kft or better (Deep Strike/SEAD)

„ 10 hour endurance/loiter mission

„ 8400 ft/min (or better) initial climb rate

Endurance Range (40,000 ft) Max Speed (SL) Initial ROC (SL) RFP 14.5 h 550 nm 0.83 M 10260 ft/min

T/O Accel. Speed Approach Speed T/O speed Carrier 5g 109 kts 131 kts 150 kts

Ceiling L/D Max Loiter Velocity Range Velocity Other 57,700 ft 13.8 0.54 M 0.71 M

36 Agenda

„ Introduction „ Background Research „ Concept Overview, Selection „ Design Evolution, Weights „ Final Configuration „ Systems Overview „ Aero-Performance „ Control & Stability „ Structural Analysis „ Pelikan Tail „ Autonomy, Carrier Integration „ Cost „ Summary and Questions

37 Control and Stability Control Surface Sizing

Take Off Rotation Speed Aileron Size 7.28 ft^2 JDAM MISSION Flap Size 13.49 ft^2 117.66 knots Rudder Size 16.84 ft^2 HARM MISSION 121.29 knots LOITER MISSION 121.83 knots

38 Control and Stability Roll

Required Roll Rate: 45 degrees in 1.4 seconds Landing Take off Cruise Mach # 0.197 0.227 0.7 HARM 201 262 638 (Deg/sec) JDAM 202 262 456 (Deg/sec) Loiter 201 262 562 (Deg/sec) 39 Control and Stability HARM Mission Sideslip Flight ( Beta = 11.5 deg ) Take Off Landing Cruise Mach # 0.197 0.227 0.7 Delta A 1.82 1.81 1.83 (degrees) Delta R 0.31 0.32 0.21 (degrees) PHI 2.64 2.671 6.92 (degrees) 40 Control and Stability JDAM Mission

Stead/Level Flight Control Power Assessment Landing Take Off Cruise Mach # 0.197 0.227 0.7 CL trim 1.12 0.85 0.48 Delta e -3.9 -.96 0.28 (degrees) AOA 12.54 9.26 -.84 (degrees) 41 Agenda

„ Introduction „ Background Research „ Concept Overview, Selection „ Design Evolution, Weights „ Final Configuration „ Systems Overview „ Aero-Performance „ Control & Stability „ Structural Analysis „ Pelikan Tail „ Autonomy, Carrier Integration „ Cost „ Summary and Questions

42 Structural Analysis Material Usage

Large, One-Piece, Carbon Composites Titanium, Ceramic Aramid Composites

BMI

Silicon Titanium Radar Absorbent Paint

43 Structural Analysis Wing Box Layout

Skin Stiffeners Aft Spar

Aileron

LE Spar

44 Structural Analysis Bulkhead/Spar Placement

36% 60%

12%

Al 7075

Al 2024

45 Structural Analysis Bulkhead Placement

Leading Edge Spar, Engine Support Inlet Support Exhaust Support

Aft Tail, Nose Gear Tail Hook Tie In Main Gear Support Tie In

46 Structural Analysis Engine Bulkhead Design

Engine mounts

Removable piece Supporting plate

Navy requires engines be removable through Weapons bay doors Ordinance mounts bottom of airframe

47 Agenda

„ Introduction „ Background Research „ Concept Overview, Selection „ Design Evolution, Weights „ Final Configuration „ Systems Overview „ Aero-Performance „ Control & Stability „ Structural Analysis „ Pelikan Tail „ Autonomy, Carrier Integration „ Cost „ Summary and Questions

48 Pelikan Tail About the Pelikan Tail

„ What is a Pelikan tail? „ Why do we want to use it? „ Testing the Pelikan Tail

49 Pelikan Tail What Is the Pelikan Tail?

A tail configuration that obtains yaw and pitch control through the use of two rear control surfaces. Named for Ralph Pelikan.

50 Pelikan Tail Look at our Model

Courtesy: NOVA JSF Video 51 Pelikan Tail Obtaining Yaw

PO DE SIT FL IV EC E TI ON

NEG ATIVE DEFL ECTION

Opposite deflection causes equivalent side forces, creating yaw. 52 Induced rolling moment will be countered by control system & ailerons. Pelikan Tail Why Use a Pelikan Tail?

„ Stealth

„ Fewer vertical surfaces reduces RCS

„ Other Factors

„ Less skin friction drag

„ Only 2 actuated rear control surfaces

„ Unproven design

53 Pelikan Tail Importance of Stealth

„ The stealth of the aircraft keeps it safe from the enemy

„ Interceptors are faster & more agile, survivability depends on stealth

„ Stealth CAN provide all of an aircrafts survivability:

Courtesy: www.fas.org 54 Pelikan Tail Other Factors

„ Drag

„ The less skin friction drag the better „ Fewer rear control surfaces

„ Only 2 hydraulic actuators, less weight „ Unproven Design

„ Opportunity to explore a new idea with physical testing

„ No previous examples to justify Pelikan tail implementation

„ Can we get enough side force?

55 Pelikan Tail Testing

„ Senior Design / Junior Lab Partnership

„ Dr. Mason & Dr. Devenport

„ Would provide future senior design teams with the opportunity CLASS to test their designs OF „ Would expose juniors 2003 to a vast array of different aerodynamic 2004 designs. ƒ Promote healthy Junior / Senior relations!

56 Pelikan Tail Model Construction

„ Draft tail sections in UniGraphics

„ Construct base plate (poplar)

„ Fabricate tail sections with 3D printer

„ Coat with epoxy, then fiberglass

„ Epoxy hinges & attach deflection braces

57 Pelikan Tail Model Dimensions

23”

12”

Base Plate 8”

9”

Hinge Angle = 15o

53o Tail Airfoil Section – NACA 0012

*Note: Drawings not to scale 4” 58 Pelikan Tail Experimental Goals

„ Can we obtain the Yaw force needed?

„ Will Pitch controls produce excess Yaw?

„ Discover any unexpected characteristics

„ We do not have direct control over the testing process

59 Pelikan Tail Pictures (Pictures Courtesy of Perez’s Junior Lab Group)

60 Pelikan Tail Testing Data

V = 80mph 0.600 CY vs. Angle of Attack Re = 540,000

L-Neg / R-Pos 0.400

0.200 R-Neg / L-Zero

Both Negative

Both Positive 0.000 C CY Y R-Pos / L-Zero

Both Zero -0.200

L-Pos / R-Neg -0.400

-0.600 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 Angle of Attack (degrees) 61 (Data from Perez’s Junior Lab Group) Pelikan Tail Test Conclusions

„ We can obtain the Yaw needed. Pelikan tail is a viable tail design „ There is little Yaw effect in pitch.

„ Testing still in progress.

„ From what data we have we believe that the .

62 Pelikan Tail Conclusion

Thank you to the TAs and students who participated in this concept test

„ Rafael Perez’s Lab Group

„ Nanyaporn Intaratep’s Lab Group

„ Any groups to test this week

Additional thanks to Dr. Devenport and Dr. Mason for this unique opportunity and we hope this partnership continues in the years to come.

63 Agenda

„ Introduction „ Background Research „ Concept Overview, Selection „ Design Evolution, Weights „ Final Configuration „ Systems Overview „ Aero-Performance „ Control & Stability „ Structural Analysis „ Pelikan Tail „ Autonomy, Carrier Integration „ Cost „ Summary and Questions

64 Autonomy Mission Logic SEAD ISR Launch Launch Climb Climb Waypoint Cruise Waypoint Cruise Combat Approach ISR Pattern Search Seek Target Return Information Release Abort Stores Attack Command/Control

Retreat/Cruise Land Land 65 Autonomy Flight Controls, Weapons Arming

„ Fly-by-Wire

„ Pre-Programmed Missions

„ Autonomous Capability

„ ISR

„ SEAD

„ Auto Pre-launch Weapons Arming

„ Pin-Puller Mechanisms, Electronic

66 Carrier Integration Autonomous Integration, “Spot”

„ Autonomous Movement in Carrier

„ Precise Placement and Manuevering

„ Lessens Crew Requirements “SPOT” (Courtesy of Alec Gosse) 67 Carrier Integration Carrier Characteristics

Carrier Characteristics Design 1 Design 2 Landing Length (ft) 350 348 Deceleration 3 3 Take-off Length (ft) 200 285 Acceleration (g’s) 5 4 Launch Angle (deg) 2 3 # UCAVs 30 28

„ EMALS

„ Landing and Stowing Procedure 68 Agenda

„ Introduction „ Background Research „ Concept Overview, Selection „ Design Evolution, Weights „ Final Configuration „ Systems Overview „ Aero-Performance „ Control & Stability „ Structural Analysis „ Pelikan Tail „ Autonomy, Carrier Integration „ Cost „ Summary and Questions

69 Costs Postal Penguin Cost Analysis

Life-cycle: 20 years

Production Run: 100 Production Run: 500

RUN COSTS RUN COSTS

Program Cost: Program Cost: $ 7.3 billion $ 15 billion

Unit Program Cost: Unit Program Cost: $ 72.9 million $ 30.1 million

Unit Life Cycle Cost: Unit Life Cycle Cost: $ 84 million $ 41.9 million

Using Raymer DAPCA IV

70 Agenda Summary

„ Introduction „ Background Research „ Concept Overview, Selection „ Design Evolution, Weights „ Final Configuration „ Systems Overview „ Aero-Performance „ Control & Stability „ Structural Analysis „ Pelikan Tail „ Autonomy, Carrier Integration „ Cost „ Summary and Questions

71 Questions

Thank You,

We appreciate your time and attendance

72 References

„ Carrier Suitability Testing Manual, Pax River MD Rev 2, Sept 1994 „ BoeingMaterials Corporate and Manufacturing Website, http://www.boeing.com Processes „ Doyle, Michael R. Electromagnetic Aircraft Launch System – EMALS , Naval Air Warfare Center, Aircraft Division, Lakehurst, NJ 08733 „ Northrop Corporate Website, http://www.ng.com „ Global Security Website, http://www.globalsecurity.com „ Raymer, Daniel P. Aircraft Design. Reston: AIAA, 1999 „ Kennedy, Michael, Younossi, Obaid, Graser, John C. Military Airframe Costs, . Santa Monica: Rand, 2001 „ Eden, Paul and Moeng, Soph. Modern Military Aircraft Anatomy. New York: Friedman/Fairfax, 2002 „ Niu, Michael C. Airframe Structural Design. Los Angeles: Conmilit Press, 1988The Effects of Advanced „ Beer, Ferdinand P. and Johnston, E. Russel. Mechanics of Materials. New York: McGraw- Hill, 1992 „ Kirschbaum, Nathan with Mason, W.H. Aircraft Design Handbook, Aircra . Blacksburg: Virginia Tech, 1993 „ NOVA Films, Battle of the X-Planes. Broadcast on PBS, 2003 „ Mason, W.H. Configurational Aerodynamics . Online Notes, avail http://www.aoe.vt.edu/~Mason/Mason_f/ConfigAero.html ft Design Aid and Layout Guide „ Whitford, Ray. Fundamentals of Fighter Design. Shrewsbury: Longlife, 2002 „ Knott, Eugene F., Schaeffer, John F. and Tuley, Michael T. Radar Cross Section. 2ed. Boston: Artech House, 1993 „ Jenn, David C. Radar and Laser Cross . Reston: AIAA, 1995 „ Survivability Book „ MORE REFERENCES (freshman?) Section Engineering

73