Adaptive Sampling of Pressure Distribution Features for the Airfoil Statistical Analysis
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Aerodynamics Material - Taylor & Francis
CopyrightAerodynamics material - Taylor & Francis ______________________________________________________________________ 257 Aerodynamics Symbol List Symbol Definition Units a speed of sound ⁄ a speed of sound at sea level ⁄ A area aspect ratio ‐‐‐‐‐‐‐‐ b wing span c chord length c Copyrightmean aerodynamic material chord- Taylor & Francis specific heat at constant pressure of air · root chord tip chord specific heat at constant volume of air · / quarter chord total drag coefficient ‐‐‐‐‐‐‐‐ , induced drag coefficient ‐‐‐‐‐‐‐‐ , parasite drag coefficient ‐‐‐‐‐‐‐‐ , wave drag coefficient ‐‐‐‐‐‐‐‐ local skin friction coefficient ‐‐‐‐‐‐‐‐ lift coefficient ‐‐‐‐‐‐‐‐ , compressible lift coefficient ‐‐‐‐‐‐‐‐ compressible moment ‐‐‐‐‐‐‐‐ , coefficient , pitching moment coefficient ‐‐‐‐‐‐‐‐ , rolling moment coefficient ‐‐‐‐‐‐‐‐ , yawing moment coefficient ‐‐‐‐‐‐‐‐ ______________________________________________________________________ 258 Aerodynamics Aerodynamics Symbol List (cont.) Symbol Definition Units pressure coefficient ‐‐‐‐‐‐‐‐ compressible pressure ‐‐‐‐‐‐‐‐ , coefficient , critical pressure coefficient ‐‐‐‐‐‐‐‐ , supersonic pressure coefficient ‐‐‐‐‐‐‐‐ D total drag induced drag Copyright material - Taylor & Francis parasite drag e span efficiency factor ‐‐‐‐‐‐‐‐ L lift pitching moment · rolling moment · yawing moment · M mach number ‐‐‐‐‐‐‐‐ critical mach number ‐‐‐‐‐‐‐‐ free stream mach number ‐‐‐‐‐‐‐‐ P static pressure ⁄ total pressure ⁄ free stream pressure ⁄ q dynamic pressure ⁄ R -
NASA Supercritical Airfoils
NASA Technical Paper 2969 1990 NASA Supercritical Airfoils A Matrix of Family-Related Airfoils Charles D. Harris Langley Research Center Hampton, Virginia National Aeronautics-and Space Administration Office of Management Scientific and Technical Information Division Summary wind-tunnel testing. The process consisted of eval- A concerted effort within the National Aero- uating experimental pressure distributions at design and off-design conditions and physically altering the nautics and Space Administration (NASA) during airfoil profiles to yield the best drag characteristics the 1960's and 1970's was directed toward develop- over a range of experimental test conditions. ing practical two-dimensional turbulent airfoils with The insight gained and the design guidelines that good transonic behavior while retaining acceptable were recognized during these early phase 1 investiga- low-speed characteristics and focused on a concept tions, together with transonic, viscous, airfoil anal- referred to as the supercritical airfoil. This dis- ysis codes developed during the same time period, tinctive airfoil shape, based on the concept of local resulted in the design of a matrix of family-related supersonic flow with isentropic recompression, was supercritical airfoils (denoted by the SC(phase 2) characterized by a large leading-edge radius, reduced prefix). curvature over the middle region of the upper surface, and substantial aft camber. The purpose of this report is to summarize the This report summarizes the supercritical airfoil background of the NASA supercritical airfoil devel- development program in a chronological fashion, dis- opment, to discuss some of the airfoil design guide- lines, and to present coordinates of a matrix of cusses some of the design guidelines, and presents family-related supercritical airfoils with thicknesses coordinates of a matrix of family-related super- critical airfoils with thicknesses from 2 to 18 percent from 2 to 18 percent and design lift coefficients from and design lift coefficients from 0 to 1.0. -
Experimental and Numerical Investigations of a 2D Aeroelastic Arifoil Encountering a Gust in Transonic Conditions Fabien Huvelin, Arnaud Lepage, Sylvie Dequand
Experimental and numerical investigations of a 2D aeroelastic arifoil encountering a gust in transonic conditions Fabien Huvelin, Arnaud Lepage, Sylvie Dequand To cite this version: Fabien Huvelin, Arnaud Lepage, Sylvie Dequand. Experimental and numerical investigations of a 2D aeroelastic arifoil encountering a gust in transonic conditions. CEAS Aeronautical Journal, Springer, In press, 10.1007/s13272-018-00358-x. hal-02027968 HAL Id: hal-02027968 https://hal.archives-ouvertes.fr/hal-02027968 Submitted on 22 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 EXPERIMENTAL AND NUMERICAL INVESTIGATIONS OF A 2D 2 AEROELASTIC AIRFOIL ENCOUNTERING A GUST IN TRANSONIC 3 CONDITIONS 4 Fabien HUVELIN1, Arnaud LEPAGE, Sylvie DEQUAND 5 6 ONERA-The French Aerospace Lab 7 Aerodynamics, Aeroelasticity, Acoustics Department 8 Châtillon, 92320 FRANCE 9 10 KEYWORDS: Aeroelasticity, Wind Tunnel Test, CFD, Gust response, Unsteady coupled 11 simulations 12 ABSTRACT: 13 In order to make substantial progress in reducing the environmental impact of aircraft, a key 14 technology is the reduction of aircraft weight. This challenge requires the development and 15 the assessment of new technologies and methodologies of load prediction and control. To 16 achieve the investigation of the specific case of gust load, ONERA defined a dedicated 17 research program based on both wind tunnel test campaigns and high fidelity simulations. -
The Supercritical Airfoil
TF-2004-13 DFRC The Supercritical Airfoil Supercritical wings add a graceful appearance to the modified NASA F-8 test aircraft. NASA Photo E73-3468 An airfoil considered unconventional when tested in the early 1970s by NASA at the Dryden Flight Research Center is now universally recognized by the aviation industry as a wing design that increases flying efficiency and helps lower fuel costs. Called the supercritical airfoil, the design has led to development of the supercritical wings (SCW) now used worldwide on business jets, airliners and transports, and numerous military aircraft. Conventional wings are rounded on top and flat on the bottom. The SCW is flatter on the top, rounded on the bottom, and the upper trailing edge is accented with a downward curve to restore lift lost by flattening the upper surface. 1 At speeds in the transonic range -- just below vibrations. In rare cases, aircraft have also become and just above the speed of sound -- the SCW delays uncontrollable due to boundary layer separation. the formation of the supersonic shock wave on the upper wing surface and reduces its strength, allowing Supercritical wings have a flat-on-top "upside the aircraft to fly faster with less effort. down" look. As air moves across the top of a SCW it does not speed up nearly as much as over a curved NASA's test program validating the SCW upper surface. This delays the onset of the shock concept was conducted at the Dryden Flight wave and also reduces aerodynamic drag associated Research Center from March 1971 to May 1973 and with boundary layer separation. -
Drag Bookkeeping
Drag Drag Bookkeeping Drag may be divided into components in several ways: To highlight the change in drag with lift: Drag = Zero-Lift Drag + Lift-Dependent Drag + Compressibility Drag To emphasize the physical origins of the drag components: Drag = Skin Friction Drag + Viscous Pressure Drag + Inviscid (Vortex) Drag + Wave Drag The latter decomposition is stressed in these notes. There is sometimes some confusion in the terminology since several effects contribute to each of these terms. The definitions used here are as follows: Compressibility drag is the increment in drag associated with increases in Mach number from some reference condition. Generally, the reference condition is taken to be M = 0.5 since the effects of compressibility are known to be small here at typical conditions. Thus, compressibility drag contains a component at zero-lift and a lift-dependent component but includes only the increments due to Mach number (CL and Re are assumed to be constant.) Zero-lift drag is the drag at M=0.5 and CL = 0. It consists of several components, discussed on the following pages. These include viscous skin friction, vortex drag due to twist, added drag due to fuselage upsweep, control surface gaps, nacelle base drag, and miscellaneous items. The Lift-Dependent drag, sometimes called induced drag, includes the usual lift- dependent vortex drag together with lift-dependent components of skin friction and pressure drag. For the second method: Skin Friction drag arises from the shearing stresses at the surface of a body due to viscosity. It accounts for most of the drag of a transport aircraft in cruise. -
Postal Penguin an Unmanned Combat Air Vehicle for the Navy
Postal Penguin An Unmanned Combat Air Vehicle for the Navy Team 8-Ball Final Presentation April 22nd, 2003 1 Agenda Introduction Background Research Concept Overview, Selection Design Evolution, Weights Final Configuration Systems Overview Aero-Performance Control & Stability Structural Analysis Pelikan Tail Autonomy, Carrier Integration Cost Summary and Questions 2 Introduction Team Members and Positions Justin Hayes Greg Little Ben Smith David Andrews Chuhui Pak Alex Rich Nate Wright Jon Hirschauer Christina DeLorenzo 3 Introduction Request for Proposal Overview RFP Requirement Specification Effect of Specification Mission 1, Strike Range 500 nm High Fuel Requirements Mission 2, Endurance 10 Hrs Low TSFC, High Fuel Payload 4,600 lbs Internal Volume Cruise Speed > M 0.7 No Supersonic, Engine Ceiling > 40,000 ft Engine, Aero Performance Sensor Suite Global Hawk Volume, Integration Stealth Survivability Oblique Angles Carrier Ops Structural Loads 4 Introduction Project Drivers (Pictures Courtesy of Global Security) Carrier Operation Fuel Store Capacity Stealth Sensor Suite Flyaway Costs 5 Agenda Introduction Background Research Concept Overview, Selection Design Evolution, Weights Final Configuration Systems Overview Aero-Performance Control & Stability Structural Analysis Pelikan Tail Autonomy, Carrier Integration Cost Summary and Questions 6 Background Research Existing Aircraft (Pictures Courtesy of GlobalSecurity) 7 Background Research Advanced Technologies, VSTOL Harrier Review 14 Panel Study AV-8b Harrier -
Fluid Mechanics, Drag Reduction and Advanced Configuration Aeronautics
NASA/TM-2000-210646 Fluid Mechanics, Drag Reduction and Advanced Configuration Aeronautics Dennis M. Bushnell Langley Research Center, Hampton, Virginia December 2000 The NASA STI Program Office ... in Profile Since its founding, NASA has been dedicated to CONFERENCE PUBLICATION. Collected the advancement of aeronautics and space papers from scientific and technical science. The NASA Scientific and Technical conferences, symposia, seminars, or other Information (STI) Program Office plays a key meetings sponsored or co-sponsored by part in helping NASA maintain this important NASA. role. SPECIAL PUBLICATION. Scientific, The NASA STI Program Office is operated by technical, or historical information from Langley Research Center, the lead center for NASA programs, projects, and missions, NASA's scientific and technical information. The often concerned with subjects having NASA STI Program Office provides access to the substantial public interest. NASA STI Database, the largest collection of aeronautical and space science STI in the world. TECHNICAL TRANSLATION. English- The Program Office is also NASA's institutional language translations of foreign scientific mechanism for disseminating the results of its and technical material pertinent to NASA's research and development activities. These mission. results are published by NASA in the NASA STI Report Series, which includes the following Specialized services that complement the STI report types: Program Office's diverse offerings include creating custom thesauri, building customized TECHNICAL PUBLICATION. Reports of databases, organizing and publishing research completed research or a major significant results ... even providing videos. phase of research that present the results of NASA programs and include extensive For more information about the NASA STI data or theoretical analysis. -
10. Supersonic Aerodynamics
Grumman Tribody Concept featured on the 1978 company calendar. The basis for this idea will be explained below. 10. Supersonic Aerodynamics 10.1 Introduction There have actually only been a few truly supersonic airplanes. This means airplanes that can cruise supersonically. Before the F-22, classic “supersonic” fighters used brute force (afterburners) and had extremely limited duration. As an example, consider the two defined supersonic missions for the F-14A: F-14A Supersonic Missions CAP (Combat Air Patrol) • 150 miles subsonic cruise to station • Loiter • Accel, M = 0.7 to 1.35, then dash 25 nm - 4 1/2 minutes and 50 nm total • Then, must head home, or to a tanker! DLI (Deck Launch Intercept) • Energy climb to 35K ft, M = 1.5 (4 minutes) • 6 minutes at M = 1.5 (out 125-130 nm) • 2 minutes Combat (slows down fast) After 12 minutes, must head home or to a tanker. In this chapter we will explain the key supersonic aerodynamics issues facing the configuration aerodynamicist. We will start by reviewing the most significant airplanes that had substantial sustained supersonic capability. We will then examine the key physical underpinnings of supersonic gas dynamics and their implications for configuration design. Examples are presented showing applications of modern CFD and the application of MDO. We will see that developing a practical supersonic airplane is extremely demanding and requires careful integration of the various contributing technologies. Finally we discuss contemporary efforts to develop new supersonic airplanes. 10.2 Supersonic “Cruise” Airplanes The supersonic capability described above is typical of most of the so-called supersonic fighters, and obviously the supersonic performance is limited. -
7. Transonic Aerodynamics of Airfoils and Wings
W.H. Mason 7. Transonic Aerodynamics of Airfoils and Wings 7.1 Introduction Transonic flow occurs when there is mixed sub- and supersonic local flow in the same flowfield (typically with freestream Mach numbers from M = 0.6 or 0.7 to 1.2). Usually the supersonic region of the flow is terminated by a shock wave, allowing the flow to slow down to subsonic speeds. This complicates both computations and wind tunnel testing. It also means that there is very little analytic theory available for guidance in designing for transonic flow conditions. Importantly, not only is the outer inviscid portion of the flow governed by nonlinear flow equations, but the nonlinear flow features typically require that viscous effects be included immediately in the flowfield analysis for accurate design and analysis work. Note also that hypersonic vehicles with bow shocks necessarily have a region of subsonic flow behind the shock, so there is an element of transonic flow on those vehicles too. In the days of propeller airplanes the transonic flow limitations on the propeller mostly kept airplanes from flying fast enough to encounter transonic flow over the rest of the airplane. Here the propeller was moving much faster than the airplane, and adverse transonic aerodynamic problems appeared on the prop first, limiting the speed and thus transonic flow problems over the rest of the aircraft. However, WWII fighters could reach transonic speeds in a dive, and major problems often arose. One notable example was the Lockheed P-38 Lightning. Transonic effects prevented the airplane from readily recovering from dives, and during one flight test, Lockheed test pilot Ralph Virden had a fatal accident. -
SIMULATION of UNSTEADY ROTATIONAL FLOW OVER PROPFAN CONFIGURATION NASA GRANT No. NAG 3-730 FINAL REPORT for the Period JUNE 1986
SIMULATION OF UNSTEADY ROTATIONAL FLOW OVER PROPFAN CONFIGURATION NASA GRANT No. NAG 3-730 FINAL REPORT for the period JUNE 1986 - NOVEMBER 30, 1990 submitted to NASA LEWIS RESEARCH CENTER CLEVELAND, OHIO Attn: Mr. G. L. Stefko Project Monitor Prepared by: Rakesh Srivastava Post Doctoral Fellow L. N. Sankar Associate Professor School of Aerospace Engineering Georgia Institute of Technology Atlanta, Georgia 30332 INTRODUCTION During the past decade, aircraft engine manufacturers and scientists at NASA have worked on extending the high propulsive efficiency of a classical propeller to higher cruise Mach numbers. The resulting configurations use highly swept twisted and very thin blades to delay the drag divergence Mach number. Unfortunately, these blades are also susceptible to aeroelastic instabilities. This was observed for some advanced propeller configurations in wind tunnel tests at NASA Lewis Research Center, where the blades fluttered at cruise speeds. To address this problem and to understand the flow phenomena and the solid fluid interaction involved, a research effort was initiated at Georgia Institute of Technology in 1986, under the support of the Structural Dynamics Branch of the NASA Lewis Research Center. The objectives of this study are: a) Development of solution procedures and computer codes capable of predicting the aeroelastic characteristics of modern single and counter-rotation propellers, b) Use of these solution procedures to understand physical phenomena such as stall flutter, transonic flutter and divergence Towards this goal a two dimensional compressible Navier-Stokes solver and a three dimensional compressible Euler solver have been developed and documented in open literature. The two dimensional unsteady, compressible Navier-Stokes solver developed at Georgia Institute of Technology has been used to study a two dimensional propfan like airfoil operating in high speed transonic flow regime. -
ON the RANGE of APPLICABILITY of the TRANSONIC AREA RULE by John R. Spreiter Ames Aeronautical Laboratory Moffett Field, Calif
-1 TECHNICAL NOTE 3673 L 1 ON THE RANGE OF APPLICABILITY OF THE TRANSONIC AREA RULE By John R. Spreiter Ames Aeronautical Laboratory Moffett Field, Calif. Washington May 1956 I I t --- . .. .. .... .J TECH LIBRARY KAFB.—,NM----- NATIONAL ADVISORY COMMITTEE FOR -OilAUTICS ~ III!IIMIIMI!MI! 011bb3B3 . TECHNICAL NOTE 3673 ON THE RANGE OF APPLICAKCKHY OF THE TRANSONIC AREA RULE= By John R. Spreiter suMMARY Some insight into the range of applicability of the transonic area rule has been gained by’comparison with the appropriate similarity rule of transonic flow theory and with available experimental data for a large family of rectangular wings having NACA 6W#K profiles. In spite of the small number of geometric variables available for such a family, the range is sufficient that cases both compatible and incompatible with the area rule are included. INTRODUCTION A great deal of effort is presently being expended in correlating the zero-lift drag rise of wing-body combinations on the basis of their streamwise distribution of cross-section area. This work is based on the discovery and generalization announced by Whitconb in reference 1 that “near the speed of sound, the zero-lift drag rise of thin low-aspect-ratio wing-body combinations is primarily dependent on the axial distribution of cross-sectional area normal to the air stream.” It is further conjec- tured in reference 1 that this concept, bOTm = the transo~c area rulej is valid for wings with moderate twist and camber. Since an accurate pre- diction of drag is of vital importance to the designer, and since the use of such a simple rule is appealing, it is a matter of great and immediate concern to investigate the applicability of the transonic area rule to the widest possible variety of shapes of aerodynamic interest. -
Propfan Test Assessment Testbed Aircraft Stability and Controvperformance 1/9-Scale Wind Tunnel Tests
NASA Contractor Report 782727 Propfan Test Assessment Testbed Aircraft Stability and ControVPerformance 1/9-Scale Wind Tunnel Tests Bo HeLittle, Jr., K. H. Tomlin, A. S. Aljabri, and C. A. Mason 2 Lockheed Aeronautical Systems Company Marietta, Georgia May 1988 Prepared for Lewis Research Center Under Contract NAS3-24339 National Aeronauttcs and Space Administration 821 21) FROPPAilf TEST ~~~~SS~~~~~W 8 8- 263 6 2ESTBED AIBCRA ABILITY BFJD ~~~~~O~/~~~~~R BNCE 1/9-SCALE WIND TU^^^^ TESTS Final. Re at (Lockheed ~~~~~~a~~ic~~Uilnclas Systerns CO,) 4952 FOREWORD These tests were performed in three separate NASA wind tunnels and required the support and cooperation of many NASA personnel. Appreciation is expressed to the management and personnel of the Langley 16-Ft Transonic Aerodynamics Wind Tunnel for their forbearance through eight long months, to the management and personnel of the Langley 4M x 7M Subsonic Wind Tunnel for their interest in and support of the program, and to the management and personnel of the Lewis 8-Ft x 6-Ft Supersonic Wind Tunnel for an expeditious conclusion. This work was performed under Contract NAS3-24339 from NASA-Lewis Research Center. This report is submitted to satisfy the requirements of DRD 220-04 of that contract. It is also identified as Lockheed Report No. LG88ER0056. PREGEDING PAGE BLANK NOT FILMED iii TABLE OF C0NTEN"S Sect ion -Title Page FOREWORD iii LIST OF FIGURES ix 1.0 SUMMARY 1 2.0 INTRODUCTION 3 3.0 TEST APPARATUS 5 3.1 Wind Tunnel Models 5 3.1.1 High-speed Tests 5 3.1.2 Low-Speed Tests 8 3.1.3