Additive Manufacturing of Oral Tablets: Technologies, Materials and Printed Tablets

Total Page:16

File Type:pdf, Size:1020Kb

Additive Manufacturing of Oral Tablets: Technologies, Materials and Printed Tablets pharmaceutics Review Additive Manufacturing of Oral Tablets: Technologies, Materials and Printed Tablets Alperen Abaci 1,†, Christina Gedeon 1,†, Anna Kuna 1 and Murat Guvendiren 1,2,* 1 Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; [email protected] (A.A.); [email protected] (C.G.); [email protected] (A.K.) 2 Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA * Correspondence: [email protected]; Tel.: +973-596-2932 † These authors contributed to this work equally. Abstract: Additive manufacturing (AM), also known as three-dimensional (3D) printing, enables fabrication of custom-designed and personalized 3D constructs with high complexity in shape and composition. AM has a strong potential to fabricate oral tablets with enhanced customization and complexity as compared to tablets manufactured using conventional approaches. Despite these advantages, AM has not yet become the mainstream manufacturing approach for fabrication of oral solid dosage forms mainly due to limitations of AM technologies and lack of diverse printable drug formulations. In this review, AM of oral tablets are summarized with respect to AM technology. A detailed review of AM methods and materials used for the AM of oral tablets is presented. This article also reviews the challenges in AM of pharmaceutical formulations and potential strategies to overcome these challenges. Keywords: 3D printing; polymer; hydrogel; pharmaceutical; precision medicine; drug delivery Citation: Abaci, A.; Gedeon, C.; Kuna, A.; Guvendiren, M. Additive Manufacturing of Oral Tablets: Technologies, Materials and Printed 1. Introduction Tablets. Pharmaceutics 2021, 13, 156. The majority of the drugs are administered orally in the form of a solid dosage form. https://doi.org/10.3390/ Oral tablets offer dose precision, chemical and microbial stability, controlled drug release pharmaceutics13020156 profiles, and ease of administration [1–3]. Oral tables can easily be carried by the patient, making them available when needed (on-demand administration). Despite these advan- Academic Editor: Dimitrios tages, conventional tablet manufacturing methods include time- and labor consuming A. Lamprou procedures, including a multitude of steps: (i) bulk powder material handling and mixing Received: 29 December 2020 of excipients and active pharmaceutical ingredients (APIs), (ii) powder processing such as Accepted: 21 January 2021 compression and wet or dry granulation, (iii) tablet compression and testing, (iv) tablet Published: 25 January 2021 relaxation, (v) tablet coating, and (vi) tablet collection and handling [4–6]. Continuous (oral solid dosage) manufacturing (CM) enabled full integration of bulk powder handling to Publisher’s Note: MDPI stays neutral final tablet product, yet CM offers limited dose flexibility and tablet customizability [7,8]. with regard to jurisdictional claims in Additive manufacturing (AM) technology enables the fabrication of custom-designed oral published maps and institutional affil- tablets with high architectural, structural, and compositional complexity [9–11], and could iations. potentially lead to a paradigm shift in tablet manufacturing from a one fit all approach to personalized medicine. Additive manufacturing (AM), also known as 3D printing, is a layer-by-layer fabri- cation method utilizing a printable material, or ink, to create a 3D object from a digital Copyright: © 2021 by the authors. image developed via computer-aided design (CAD). Multi-material AM approaches enable Licensee MDPI, Basel, Switzerland. precise positioning of a multitude of distinct materials or combination of materials to This article is an open access article create compositional complexity, including multi-phasic 3D constructs with each phase distributed under the terms and constituting a distinct composition, as well as constructs with compositional gradients. conditions of the Creative Commons Attribution (CC BY) license (https:// Note that the printability of a material is directly determined by the AM technology, which creativecommons.org/licenses/by/ also dictates the form of the ink, including filament, solution, melt, slurry, or powder [12]. 4.0/). Pharmaceutics 2021, 13, 156. https://doi.org/10.3390/pharmaceutics13020156 https://www.mdpi.com/journal/pharmaceutics Pharmaceutics 2021, 13, 156 2 of 27 Overall, AM could offer significant design flexibility in oral tablet manufacturing by en- abling custom-designed tablets matching the target patient for personalized medicine. Tablets could be personalized by tailoring the target dose for single APIs or combination of APIs and their release profile according to the patient’s age and weight, and/or the severity of the disease [13]. In addition, AM could potentially be instrumental for early-phase drug development scenarios including evaluation of oral dosage forms for preclinical studies (including dose flexibility), exploration of custom designs (shape, porosity, and composi- tion), and on-demand manufacturing (at clinical site) as well as an overall reduction in utilization of resources. Despite these potential advantages, there is a big gap in additively manufactured oral tablets in the market after the first 3D-printed tablet in the market, Spritam®, was approved by the United States Food and Drug Administration (FDA) in 2016. In this review, we summarize AM technologies used in oral tablet fabrication, widely used materials in additively manufactured oral tablet formulations, and tablets printed for each AM technology. We also present the challenges in AM of pharmaceutical formulations and potential strategies to overcome these challenges. 2. AM Technologies In this review, the AM technologies used for oral tablet printing are classified under four main groups: extrusion-based, vat photopolymerization-based, droplet-based, and powder-based printing (Figure1). Figure 1. The additive manufacturing technologies used in oral tablet fabrication. Extrusion-based printing includes filament printing, commonly known under the trademark name fused deposition modeling (FDM), and direct ink writing (DIW). In extrusion-based printing, the ink, i.e., the printable material in the form of a viscous melt or liquid (or slurry), is extruded through a nozzle forming individual struts (or lines) that solidify onto the build substrate. The nozzle follows a custom-designed line path determined by the g-code (computer-aided design) to form a 3D object in a layer-by-layer manner. For FDM, the ink is a thermoplastic solid filament. This filament is pulled into a hot nozzle and extruded as a melt. For DIW, the ink is a viscous melt, liquid or slurry (30–6 × 107 mPa.s). When polymer solutions are used as an ink, low boiling point solvents (such as dichloromethane (DCM) or tetrahydrofuran (THF)) are preferred to ensure rapid evaporation of the extruded ink to form a solid polymer [14]. Powder-based printing technology includes selective laser sintering (SLS), which allows printing of powders (polymers, ceramics, and metals, as well as their composites). In SLS, a laser beam moves over the powder bath raising the temperature of the powder particles on its path to sinter or fuse the particles spatially. Once a single layer is formed, the build platform moves down and a fresh layer of powder is applied from the top, and Pharmaceutics 2021, 13, 156 3 of 27 the process is repeated. The ink is in the form of a fine powder (10 to 100 µm in diameter) with good flow properties within the bed system. SLS machines usually require a large amount of powder, and they are not readily available [15,16]. Droplet-based printing technologies include inkjet printing and binder jetting (BJ). The ink is a low viscosity solution (viscosity below 10 cP (mPa.s)), which is ejected as an individual droplet (25–100 µm in diameter; 1–100 picoliters) [17]. In inkjet printing, the droplet is required to be placed on the print substrate and coalesce with the adjacent droplets to form a solid line. Similar to extrusion-based printing, the nozzle follows a custom-designed line path to form a 3D object in a layer-by-layer manner. The ink is usually exposed to high shear rates (0.1–1 × 106 s−1), and the inks should have a surface tension in the range of 28–350 mN·m−1 to ensure proper ejection from the nozzle and shape of the droplet on the substrate [18–21]. Similar to the DIW process, the liquid-to-solid transformation is crucial to determine the final shape of the printed structure. When the ink is printed directly on a powder bath surface, the process is referred to as BJ. Note that BJ could also be considered as powder-based printing. In BJ, ink is a binding solution which binds the powder particles together. In this process, the ink droplets bind the powders to form a layer. The powder platform moves down and a fresh powder layer is brought on top, and the process repeats itself [22]. In vat photopolymerization-based printing, the ink is a photocurable viscous liquid (i.e., a prepolymer, macromer, or a monomer), and photocuring refers to light-induced poly- merization (photopolymerization) and/or crosslinking (photocrosslinking). In traditional stereolithography (SLA) printing, a beam of light (e.g., UV or laser) moves over the vat and cures ink spatially. The beam follows a pattern (defined by the g-code) to create a layer. After each layer is completed, the build stage moves down into the vat. Recent SLA printers are inverted, thus pulling the printed layer up, which significantly
Recommended publications
  • An Introduction to Fast Dissolving Oral Thin Film Drug Delivery Systems: a Review
    Muthadi Radhika Reddy /J. Pharm. Sci. & Res. Vol. 12(7), 2020, 925-940 An Introduction to Fast Dissolving Oral Thin Film Drug Delivery Systems: A Review Muthadi Radhika Reddy1* 1School of pharmacy, Gurunanak Institute of Technical Campus, Hyderabad, Telangana, India and Department of Pharmacy, Gandhi Institute of Technology and Management University, Vizag, Andhra Pradesh, India INTRODUCTION 2. Useful in situations where rapid onset of action Fast dissolving drug delivery systems were first developed required such as in motion sickness, allergic attack, in the late 1970s as an alternative to conventional dosage coughing or asthma forms. These systems consist of solid dosage forms that 3. Has wide range of applications in pharmaceuticals, Rx disintegrate and dissolve quickly in the oral cavity without Prescriptions and OTC medications for treating pain, the need of water [1]. Fast dissolving drug delivery cough/cold, gastro-esophageal reflux disease,erectile systems include orally disintegrating tablets (ODTs) and dysfunction, sleep disorders, dietary supplements, etc oral thin films (OTFs). The Centre for Drug Evaluation [4] and Research (CDER) defines ODTs as,“a solid dosage 4. No water is required for the administration and hence form containing medicinal substances which disintegrates suitable during travelling rapidly, usually within a matter of seconds, when placed 5. Some drugs are absorbed from the mouth, pharynx upon the tongue” [2]. USFDA defines OTFs as, “a thin, and esophagus as the saliva passes down into the flexible, non-friable polymeric film strip containing one or stomach, enhancing bioavailability of drugs more dispersed active pharmaceutical ingredients which is 6. May offer improved bioavailability for poorly water intended to be placed on the tongue for rapid soluble drugs by offering large surface area as it disintegration or dissolution in the saliva prior to disintegrates and dissolves rapidly swallowing for delivery into the gastrointestinal tract” [3].
    [Show full text]
  • The Toxicology of Glycol Ethers and Its Relevance to Man (Fourth Edition) Volume I
    The Toxicology of Glycol Ethers and its Relevance to Man (Fourth Edition) Volume I Technical Report No. 95 ISSN-0773-8072-95 Brussels, February 2005 The Toxicology of Glycol Ethers and its Relevance to Man ECETOC TECHNICAL REPORT No. 95 © Copyright – ECETOC AISBL European Centre for Ecotoxicology and Toxicology of Chemicals 4 Avenue E. Van Nieuwenhuyse (Bte 6), B-1160 Brussels, Belgium. All rights reserved. No part of this publication may be reproduced, copied, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the copyright holder. Applications to reproduce, store, copy or translate should be made to the Secretary General. ECETOC welcomes such applications. Reference to the document, its title and summary may be copied or abstracted in data retrieval systems without subsequent reference. The content of this document has been prepared and reviewed by experts on behalf of ECETOC with all possible care and from the available scientific information. It is provided for information only. ECETOC cannot accept any responsibility or liability and does not provide a warranty for any use or interpretation of the material contained in the publication. ECETOC TR No. 95 The Toxicology of Glycol Ethers and its Relevance to Man The Toxicology of Glycol Ethers and its Relevance to Man CONTENTS - VOLUMES I AND II EXECUTIVE SUMMARY 1 SUMMARY AND CONCLUSIONS 3 Recommendations for further work 13 1. INTRODUCTION 14 1.1 Conversion factors and physico-chemical properties 14 1.2 Production and use 14 1.2.1 Manufacture of ethylene-series glycol ethers 14 1.2.2 Manufacture of propylene-series glycol ethers 15 1.2.3 Uses 15 2.
    [Show full text]
  • An Overview On: Sublingual Route for Systemic Drug Delivery
    International Journal of Research in Pharmaceutical and Biomedical Sciences ISSN: 2229-3701 __________________________________________Review Article An Overview on: Sublingual Route for Systemic Drug Delivery K. Patel Nibha1 and SS. Pancholi2* 1Department of Pharmaceutics, BITS Institute of Pharmacy, Gujarat Technological university, Varnama, Vadodara, Gujarat, India 2BITS Institute of Pharmacy, Gujarat Technological University, Varnama, Vadodara, Gujarat, India. __________________________________________________________________________________ ABSTRACT Oral mucosal drug delivery is an alternative and promising method of systemic drug delivery which offers several advantages. Sublingual literally meaning is ''under the tongue'', administrating substance via mouth in such a way that the substance is rapidly absorbed via blood vessels under tongue. Sublingual route offers advantages such as bypasses hepatic first pass metabolic process which gives better bioavailability, rapid onset of action, patient compliance , self-medicated. Dysphagia (difficulty in swallowing) is common among in all ages of people and more in pediatric, geriatric, psychiatric patients. In terms of permeability, sublingual area of oral cavity is more permeable than buccal area which is in turn is more permeable than palatal area. Different techniques are used to formulate the sublingual dosage forms. Sublingual drug administration is applied in field of cardiovascular drugs, steroids, enzymes and some barbiturates. This review highlights advantages, disadvantages, different sublingual formulation such as tablets and films, evaluation. Key Words: Sublingual delivery, techniques, improved bioavailability, evaluation. INTRODUCTION and direct access to systemic circulation, the oral Drugs have been applied to the mucosa for topical mucosal route is suitable for drugs, which are application for many years. However, recently susceptible to acid hydrolysis in the stomach or there has been interest in exploiting the oral cavity which are extensively metabolized in the liver.
    [Show full text]
  • Liposome-Based Drug Delivery Systems in Cancer Immunotherapy
    pharmaceutics Review Liposome-Based Drug Delivery Systems in Cancer Immunotherapy Zili Gu 1 , Candido G. Da Silva 1 , Koen van der Maaden 2,3, Ferry Ossendorp 2 and Luis J. Cruz 1,* 1 Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands 2 Tumor Immunology Group, Department of Immunology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands 3 TECOdevelopment GmbH, 53359 Rheinbach, Germany Received: 1 October 2020; Accepted: 2 November 2020; Published: 4 November 2020 Abstract: Cancer immunotherapy has shown remarkable progress in recent years. Nanocarriers, such as liposomes, have favorable advantages with the potential to further improve cancer immunotherapy and even stronger immune responses by improving cell type-specific delivery and enhancing drug efficacy. Liposomes can offer solutions to common problems faced by several cancer immunotherapies, including the following: (1) Vaccination: Liposomes can improve the delivery of antigens and other stimulatory molecules to antigen-presenting cells or T cells; (2) Tumor normalization: Liposomes can deliver drugs selectively to the tumor microenvironment to overcome the immune-suppressive state; (3) Rewiring of tumor signaling: Liposomes can be used for the delivery of specific drugs to specific cell types to correct or modulate pathways to facilitate better anti-tumor immune responses; (4) Combinational therapy: Liposomes are ideal vehicles for the simultaneous delivery of drugs to be combined with other therapies, including chemotherapy, radiotherapy, and phototherapy. In this review, different liposomal systems specifically developed for immunomodulation in cancer are summarized and discussed. Keywords: liposome; drug delivery; cancer immunotherapy; immunomodulation 1. The Potential of Immunotherapy for the Treatment of Cancer Cancer immunotherapy has been widely explored because of its durable and robust effects [1].
    [Show full text]
  • Intra-Luminal Focused Ultrasound for Augmentation of Gastrointestinal Drug Delivery
    Editorial Page 1 of 2 Intra-luminal focused ultrasound for augmentation of gastrointestinal drug delivery Ezekiel Maloney1, Joo Ha Hwang2 1Department of Radiology, 2Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA Correspondence to: Joo Ha Hwang, MD, PhD. Division of Gastroenterology, Department of Medicine, University of Washington, Box 359773, 325 Ninth Avenue, Seattle, WA 98104, USA. Email: [email protected]. Provenance: This is a Guest Editorial commissioned by Section Editor Hui Kong, MD, PhD (Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China). Comment on: Schoellhammer CM, Schroeder A, Maa R, et al. Ultrasound-mediated gastrointestinal drug delivery. Sci Transl Med 2015;7:310ra168. Submitted Feb 01, 2017. Accepted for publication Feb 06, 2017. doi: 10.21037/atm.2017.03.42 View this article at: http://dx.doi.org/10.21037/atm.2017.03.42 The recent article by Schoellhammer et al., “Ultrasound- intensity ultrasound frequencies followed by quantification mediated gastrointestinal drug delivery” primarily of delivery of permeants (e.g., glucose, dextran, insulin). addresses practical limitations in drug delivery for medical Treated tissues showed enhanced transport. Similar management of inflammatory bowel disease (IBD), and findings were demonstrated in small and large bowel tissue presents pre-clinical data demonstrating that intra- for radiolabeled mesalamine and hydrocortisone. With 1 luminal, sub-ablative focused ultrasound (FUS), delivered minute of ultrasound treatment time, 3–5-fold improved via a trans-rectal transducer, can overcome some of these drug delivery was observed versus control. Additional limitations (1). The clinical application and benefit of such a ex vivo experiments utilizing variable FUS protocols to device is clear.
    [Show full text]
  • Chapter 1 Controlling Drug Delivery
    chapter 1 Controlling drug delivery Overview In this chapter we will: & differentiate drug delivery systems according to their physical state & differentiate drug delivery systems according to their route of administration & differentiate drug delivery systems according to their type of drug release & discuss drug transport across epithelial barriers. Introduction KeyPoints & Continued developments in Pharmacotherapy can be defined as the treatment chemistry, molecular biology and prevention of illness and disease by means of and genomics support the drugs of chemical or biological origin. It ranks discovery and developments among the most important methods of medical of new drugs and new drug treatment, together with surgery, physical targets. & treatment, radiation and psychotherapy. There The drug delivery system are many success stories concerning the use of employed can control the pharmacological action of a drugs and vaccines in the treatment, prevention drug, influencing its and in some cases even eradication of diseases pharmacokinetic and (e.g. smallpox, which is currently the only subsequent therapeutic human infectious disease completely profile. eradicated). Although it is almost impossible to estimate the exact extent of the impact of pharmacotherapy on human health, there can be no doubt that pharmacotherapy, together with improved sanitation, better diet and better housing, has improved people’s health, life expectancy and quality of life. Tip Unprecedented developments in genomics Combinatorial chemistry is a way to and molecular biology today offer a plethora of build a variety of structurally related new drug targets. The use of modern chemical drug compounds rapidly and synthetic methods (such as combinatorial systematically. These are assembled chemistry) enables the syntheses of a large from a range of molecular entities number of new drug candidates in shorter times which are put together in different ‘ ’ than ever before.
    [Show full text]
  • Mathematical Formulation and Parametric Analysis of In
    www.nature.com/scientificreports OPEN Mathematical formulation and parametric analysis of in vitro cell models in microfuidic devices: application to diferent stages of glioblastoma evolution Jacobo Ayensa‑Jiménez1,2, Marina Pérez‑Aliacar1,2, Teodora Randelovic1,2, Sara Oliván1,2, Luis Fernández1,2,3, José Antonio Sanz‑Herrera4, Ignacio Ochoa1,2,3, Mohamed H. Doweidar1,2,3 & Manuel Doblaré1,2,3* In silico models and computer simulation are invaluable tools to better understand complex biological processes such as cancer evolution. However, the complexity of the biological environment, with many cell mechanisms in response to changing physical and chemical external stimuli, makes the associated mathematical models highly non‑linear and multiparametric. One of the main problems of these models is the determination of the parameters’ values, which are usually ftted for specifc conditions, making the conclusions drawn difcult to generalise. We analyse here an important biological problem: the evolution of hypoxia‑driven migratory structures in Glioblastoma Multiforme (GBM), the most aggressive and lethal primary brain tumour. We establish a mathematical model considering the interaction of the tumour cells with oxygen concentration in what is called the go or grow paradigm. We reproduce in this work three diferent experiments, showing the main GBM structures (pseudopalisade and necrotic core formation), only changing the initial and boundary conditions. We prove that it is possible to obtain versatile mathematical tools which, together with a sound parametric analysis, allow to explain complex biological phenomena. We show the utility of this hybrid “biomimetic in vitro‑in silico” platform to help to elucidate the mechanisms involved in cancer processes, to better understand the role of the diferent phenomena, to test new scientifc hypotheses and to design new data‑driven experiments.
    [Show full text]
  • Dissolution Testing of Orally Disintegrating Tablets
    dx.doi.org/10.14227/DT100203P6 Dissolution Testing of Orally Disintegrating Tablets James Klancke Sr. Director, Analytical Development, CIMA LABS INC, Brooklyn Park, MN email correspondence: [email protected] Abstract Orally disintegrating tablets (ODT) are solid dosage forms that disintegrate in the oral cavity leaving an easy-to-swallow residue.The disintegration times are generally less than one minute.For orally disinte- grating tablets,taste-masking of bitter or objectional-tasting drug substances is critical.The taste-masking aspect plays a significant role in dissolution method development,specifications,and testing.The USP 2 paddle apparatus is the most suitable and common choice for orally disintegrating tablets.Discriminating, robust dissolution methods are extremely useful for monitoring process optimization and changes during scale-up of taste-masked bulk drug and tablet manufacture. Introduction rally disintegrating tablets contain a wide The development of dissolution methods for variety of pharmaceutical actives covering orally disintegrating tablets is comparable to the Omany therapeutic categories,and can be approach taken for conventional tablets,and is particularly good applications for pediatric and practically identical when the orally disintegrating geriatric treatments.The time for disintegration of tablet does not utilize taste masking.The reference orally disintegrating tablets is generally considered listed drug may have dissolution conditions in a to be less than one minute [1-4],although patients USP
    [Show full text]
  • Titration of Aspirin Tablets
    Bellevue College | CHEM& 161 Titration of Aspirin Tablets In this lab, you will determine the percent purity of two commercially available aspiring tablets using an acid-base titration. In general, an acid and a base react to produce a salt and water by transferring a proton (H+): HA (aq) + NaOH (aq) H2O (l) + NaA (aq) (1) acid base salt The active ingredient in aspirin, and the chemical for which aspirin is the common name, is acetylsalicylic acid. To determine the amount of aspirin (acetylsalicylic acid) in a sample, the precise volume and concentration of the NaOH, and the overall reaction, must be known. The NaOH serves as a secondary standard, because its concentration can change over time. To find the precise concentration of the NaOH, it must be titrated against a primary standard, an acid that dissolves completely in water, has a high molar mass, that remains pure upon standing, and is not hygroscopic (tending to attract water from the air). Because sodium hydroxide is hygroscopic, it draws water from its surroundings. This mean one cannot simply weigh out a sample of sodium hydroxide, dissolve it in water, and determine the number of moles of sodium hydroxide present using the mass recorded, since any sample of sodium hydroxide is likely to be a mixture of sodium hydroxide and water. Thus, the most common way to determine the concentration of any sodium hydroxide solution is by titration. Determining the precise concentration of NaOH using a primary standard is called standardization. You will first standardize your NaOH solution, and then use it to analyze aspirin tablets for their aspirin content and purity.
    [Show full text]
  • Lubricants in Pharmaceutical Solid Dosage Forms
    Lubricants 2014, 2, 21-43; doi:10.3390/lubricants2010021 OPEN ACCESS lubricants ISSN 2075-4442 www.mdpi.com/journal/lubricants Review Lubricants in Pharmaceutical Solid Dosage Forms Jinjiang Li * and Yongmei Wu Drug Product Science & Technology, Bristol-Myers Squibb Corporation, 1 Squibb Dr., New Brunswick, NJ 08903, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-732-227-6584; Fax: +1-732-227-3784. Received: 18 December 2013; in revised form: 21 January 2014 / Accepted: 24 January 2014 / Published: 25 February 2014 Abstract: Lubrication plays a key role in successful manufacturing of pharmaceutical solid dosage forms; lubricants are essential ingredients in robust formulations to achieve this. Although many failures in pharmaceutical manufacturing operations are caused by issues related to lubrication, in general, lubricants do not gain adequate attention in the development of pharmaceutical formulations. In this paper, the fundamental background on lubrication is introduced, in which the relationships between lubrication and friction/adhesion forces are discussed. Then, the application of lubrication in the development of pharmaceutical products and manufacturing processes is discussed with an emphasis on magnesium stearate. In particular, the effect of its hydration state (anhydrate, monohydrate, dihydrate, and trihydrate) and its powder characteristics on lubrication efficiency, as well as product and process performance is summarized. In addition, the impact of lubrication on the dynamics of compaction/compression processes and on the mechanical properties of compacts/tablets is presented. Furthermore, the online monitoring of magnesium stearate in a blending process is briefly mentioned. Finally, the chemical compatibility of active pharmaceutical ingredient (API) with magnesium stearate and its reactive impurities is reviewed with examples from the literature illustrating the various reaction mechanisms involved.
    [Show full text]
  • Review On: Sublingual Route for Systemic Drug Delivery
    IAJPS 2018, 05 (01), 453-462 Himanshi Rathaur and G.Gnanarajan ISSN 2349-7750 CODEN [USA]: IAJPBB ISSN: 2349-7750 INDO AMERICAN JOURNAL OF PHARMACEUTICAL SCIENCES http://doi.org/10.5281/zenodo.1161209 Available online at: http://www.iajps.com Review Article REVIEW ON: SUBLINGUAL ROUTE FOR SYSTEMIC DRUG DELIVERY Himanshi Rathaur*1and G.Gnanarajan2 *1Shri Guru Ram Rai Institute of Technology and Sciences, Department of Pharmaceutics, Uttarakhand Technical University, Dehradun,248001, Uttarakhand, India 2Shri Guru Ram Rai Institute of Technology and Sciences, Department of Pharmaceutics, Faculty of Pharmacy, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India. Abstract: Delivery of drug in the oral cavity through the oral mucosa is examined to be a promising alternative to the oral route. Sublingual means “under the tongue” which rapidly absorb the drug through the oral mucosa and enter into the systemic circulation. This route provides various advantages such as quick onset of action, patient compliance, hepatic first pass metabolism and increase bioavailability. Dysphagia is a common problem in pediatric, geriatric and psychiatric patients. In terms of permeability sublingual area of oral cavity is more permeable than buccal area which is in turn is more permeable than palatal area. Now a days most of the population need effective, faster and better relief within a short period of time. So, this route is the most appropriate route of administration and it rapidly dissolves in saliva. Many drugs like cardiovascular drugs, steroids,
    [Show full text]
  • Formulation and Evaluation of Bioadhesive Tablets of Metronidazole from Gellan Gum and Gelatin
    Sylvester Okhuelegbe Eraga et al. / Journal of Pharmacy Research 2014,8(8),1132-1139 Research Article Available online through ISSN: 0974-6943 http://jprsolutions.info Formulation and evaluation of bioadhesive tablets of Metronidazole from Gellan gum and gelatin Sylvester Okhuelegbe Eraga* and Magnus Amara Iwuagwu Department of Pharmaceutics and Pharmaceutical Technology,Faculty of Pharmacy, University of Benin, PMB 1154, Benin City, 300001, Nigeria. Received on:30-06-2014; Revised on: 19-07-2014; Accepted on:09-08-2014 ABSTRACT Background: The delivery of drugs using a combination of bio-polymers is gaining extensive grounds in the development of newer drug delivery systems. In this work the formulation, evaluation and release profiles of metronidazole bioadhesive tablets formulated with admix- tures of gellan gum and gelatin were investigated. Methods: Aqueous dispersions of gellan gum and gelatin in ratios of 1:1, 1:2, 2:1, 1:4, 1:0 and 0:1 were prepared in distilled water. Metronidazole tablets were prepared with the dispersions by wet granulation. The bioadhesive strengths of the dispersions and tablets were determined using the coated bead and tensiometric methods, respectively. Tablet parameters evaluated were weight uniformity, friability, hardness, disintegration time, content of active, swelling index and tablet erosion. Release studies were carried out in simulated intestinal and gastric fluid. Results: All batches of tablets met compendial specifications with regard to weight uniformity, friability, hardness and content of active except disintegration times. Tablets prepared with gelatin alone had the highest swelling index and bioadhesive strength (40 %, 5 h and 0.253 Nm-1) while those prepared with gellan gum alone had the highest percentage tablet erosion and least bioadhesive strength (15 % and 0.085 Nm-1).
    [Show full text]