Ubiquitous Distribution of Helmchrome in Phototactic Swarmers of the Stramenopiles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
BROWN ALGAE [147 Species] (
CHECKLIST of the SEAWEEDS OF IRELAND: BROWN ALGAE [147 species] (http://seaweed.ucg.ie/Ireland/Check-listPhIre.html) PHAEOPHYTA: PHAEOPHYCEAE ECTOCARPALES Ectocarpaceae Acinetospora Bornet Acinetospora crinita (Carmichael ex Harvey) Kornmann Dichosporangium Hauck Dichosporangium chordariae Wollny Ectocarpus Lyngbye Ectocarpus fasciculatus Harvey Ectocarpus siliculosus (Dillwyn) Lyngbye Feldmannia Hamel Feldmannia globifera (Kützing) Hamel Feldmannia simplex (P Crouan et H Crouan) Hamel Hincksia J E Gray - Formerly Giffordia; see Silva in Silva et al. (1987) Hincksia granulosa (J E Smith) P C Silva - Synonym: Giffordia granulosa (J E Smith) Hamel Hincksia hincksiae (Harvey) P C Silva - Synonym: Giffordia hincksiae (Harvey) Hamel Hincksia mitchelliae (Harvey) P C Silva - Synonym: Giffordia mitchelliae (Harvey) Hamel Hincksia ovata (Kjellman) P C Silva - Synonym: Giffordia ovata (Kjellman) Kylin - See Morton (1994, p.32) Hincksia sandriana (Zanardini) P C Silva - Synonym: Giffordia sandriana (Zanardini) Hamel - Only known from Co. Down; see Morton (1994, p.32) Hincksia secunda (Kützing) P C Silva - Synonym: Giffordia secunda (Kützing) Batters Herponema J Agardh Herponema solitarium (Sauvageau) Hamel Herponema velutinum (Greville) J Agardh Kuetzingiella Kornmann Kuetzingiella battersii (Bornet) Kornmann Kuetzingiella holmesii (Batters) Russell Laminariocolax Kylin Laminariocolax tomentosoides (Farlow) Kylin Mikrosyphar Kuckuck Mikrosyphar polysiphoniae Kuckuck Mikrosyphar porphyrae Kuckuck Phaeostroma Kuckuck Phaeostroma pustulosum Kuckuck -
Seaweeds of California Green Algae
PDF version Remove references Seaweeds of California (draft: Sun Nov 24 15:32:39 2019) This page provides current names for California seaweed species, including those whose names have changed since the publication of Marine Algae of California (Abbott & Hollenberg 1976). Both former names (1976) and current names are provided. This list is organized by group (green, brown, red algae); within each group are genera and species in alphabetical order. California seaweeds discovered or described since 1976 are indicated by an asterisk. This is a draft of an on-going project. If you have questions or comments, please contact Kathy Ann Miller, University Herbarium, University of California at Berkeley. [email protected] Green Algae Blidingia minima (Nägeli ex Kützing) Kylin Blidingia minima var. vexata (Setchell & N.L. Gardner) J.N. Norris Former name: Blidingia minima var. subsalsa (Kjellman) R.F. Scagel Current name: Blidingia subsalsa (Kjellman) R.F. Scagel et al. Kornmann, P. & Sahling, P.H. 1978. Die Blidingia-Arten von Helgoland (Ulvales, Chlorophyta). Helgoländer Wissenschaftliche Meeresuntersuchungen 31: 391-413. Scagel, R.F., Gabrielson, P.W., Garbary, D.J., Golden, L., Hawkes, M.W., Lindstrom, S.C., Oliveira, J.C. & Widdowson, T.B. 1989. A synopsis of the benthic marine algae of British Columbia, southeast Alaska, Washington and Oregon. Phycological Contributions, University of British Columbia 3: vi + 532. Bolbocoleon piliferum Pringsheim Bryopsis corticulans Setchell Bryopsis hypnoides Lamouroux Former name: Bryopsis pennatula J. Agardh Current name: Bryopsis pennata var. minor J. Agardh Silva, P.C., Basson, P.W. & Moe, R.L. 1996. Catalogue of the benthic marine algae of the Indian Ocean. -
Check List Lists of Species Check List 11(5): 1739, 15 September 2015 Doi: ISSN 1809-127X © 2015 Check List and Authors
11 5 1739 the journal of biodiversity data 15 September 2015 Check List LISTS OF SPECIES Check List 11(5): 1739, 15 September 2015 doi: http://dx.doi.org/10.15560/11.5.1739 ISSN 1809-127X © 2015 Check List and Authors Intertidal seaweeds from North Atlantic Patagonian coasts, Argentina M. Emilia Croce1, 2*, M. Cecilia Gauna2, Carolina Fernández2, 3 and Elisa R. Parodi2, 4 1 PLAPIQUI (Planta Piloto de Ingeniería Química), CONICET-UNS, Camino La Carrindanga Km 7. 5, B8000FWB Bahía Blanca, Argentina 2 IADO (Instituto Argentino de Oceanografía), CONICET-UNS, Camino La Carrindanga Km 7. 5, B8000FWB Bahía Blanca, Argentina 3 Universidad Nacional de Río Negro, Sede Atlántica, Departamento de Ciencias Exactas, Naturales y de Ingeniería, Av. Don Bosco y Leloir, R8500AEC Río Negro, Argentina 4 Universidad Nacional del Sur, Departamento de Biología, Bioquímica y Farmacia, San Juan 670, B8000ICN Bahía Blanca, Argentina * Corresponding author. E-mail: ecroce@criba. edu. ar Abstract: The coasts located between 39°S and 41°S of environmental characteristics of coastal habitats, in the Argentinean biogeographic province have been being used as ecological quality bioindicators under the described by impoverished seaweed assemblages, Water Framework Directive (Directive 2000/60/EC). however the floristic information about this region is Water temperature, salinity, light intensity, nutrient sparse. The aim of this study was to survey the intertidal availability, wave exposure and substrate composition seaweeds inhabiting three sites in the oceanographic are among the most influencing abiotic factors that system “El Rincon” (Buenos Aires, Argentina). A total of shape the communities of intertidal seaweeds (Dring 42 taxa were identified with a dominance of Rhodophyta 1992). -
I a FLORISTIC ANALYSIS of the MARINE ALGAE and SEAGRASSES BETWEEN CAPE MENDOCINO, CALIFORNIA and CAPE BLANCO, OREGON by Simona A
A FLORISTIC ANALYSIS OF THE MARINE ALGAE AND SEAGRASSES BETWEEN CAPE MENDOCINO, CALIFORNIA AND CAPE BLANCO, OREGON By Simona Augytė A Thesis Presented to the Faculty of Humboldt State University In Partial Fulfillment Of the Requirements for the Degree Master of Arts In Biology December, 2011 [Type a quote from the [Type a quotedocument from theor the document or the summarysummary ofi ofan aninteresting point. Youinteresting can position point. the text box anywhereYou can in theposition document. Use the Textthe textBox Toolsbox tab to change theanywhere formatting in the of the pull quote textdocument. box.] Use the Text Box A FLORISTIC ANALYSIS OF THE MARINE ALGAE AND SEAGRASSES BETWEEN CAPE MENDOCINO, CALIFORNIA AND CAPE BLANCO, OREGON By Simona Augytė We certify that we have read this study and that it conforms to acceptable standards of scholarly presentation and is fully acceptable, in scope and quality, as a thesis for the degree of Master of Arts. ________________________________________________________________________ Dr. Frank J. Shaughnessy, Major Professor Date ________________________________________________________________________ Dr. Erik S. Jules, Committee Member Date ________________________________________________________________________ Dr. Sarah Goldthwait, Committee Member Date ________________________________________________________________________ Dr. Michael R. Mesler, Committee Member Date ________________________________________________________________________ Dr. Michael R. Mesler, Graduate Coordinator Date -
DNA Variation in the Phenotypically-Diverse Brown Alga Saccharina Japonica
UC Irvine UC Irvine Previously Published Works Title DNA variation in the phenotypically-diverse brown alga Saccharina japonica Permalink https://escholarship.org/uc/item/5zg0s4gx Journal BMC Plant Biology, 12 Authors Balakirev, ES Krupnova, TN Ayala, FJ Publication Date 2012-07-11 DOI 10.1186/1471-2229-12-108 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Balakirev et al. BMC Plant Biology 2012, 12:108 http://www.biomedcentral.com/1471-2229/12/108 RESEARCH ARTICLE Open Access DNA variation in the phenotypically-diverse brown alga Saccharina japonica Evgeniy S Balakirev1,2*, Tatiana N Krupnova3 and Francisco J Ayala1 Abstract Background: Saccharina japonica (Areschoug) Lane, Mayes, Druehl et Saunders is an economically important and highly morphologically variable brown alga inhabiting the northwest Pacific marine waters. On the basis of nuclear (ITS), plastid (rbcLS) and mitochondrial (COI) DNA sequence data, we have analyzed the genetic composition of typical Saccharina japonica (TYP) and its two common morphological varieties, known as the “longipes” (LON) and “shallow-water” (SHA) forms seeking to clarify their taxonomical status and to evaluate the possibility of cryptic species within S. japonica. Results: The data show that the TYP and LON forms are very similar genetically in spite of drastic differences in morphology, life history traits, and ecological preferences. Both, however, are genetically quite different from the SHA form. The two Saccharina lineages are distinguished by 109 fixed single nucleotide differences as well as by seven fixed length polymorphisms (based on a 4,286 bp concatenated dataset that includes three gene regions). The GenBank database reveals a close affinity of the TYP and LON forms to S. -
Ballast-Mediated Introductions in Port Valdez/Prince William Sound, Alask
Chapt 9C1. Marine Plants, page 9C1- 1 Chapter 9C1. Focal Taxonomic Collections: Marine Plants in Prince William Sound, Alaska Gayle I. Hansen, Hatfield Marine Science Center, Oregon State University Background Several NIS marine plants with potential for invasion of Alaskan waters have been reported on the west coast of North America. For example, the pervasive algae Sargassum muticum, Lomentaria hakodatensis, and the Japanese eelgrass Zostera japonica are thought to have been introduced with the aquaculture of oysters by the importation of spat from Japan. At least 5 oyster farms occur in Prince William Sound, and all have imported spat. For the herring- roe-on-kelp (HROK) pound fishery, the giant kelp Macrocystis integrifolia is transported to Prince William Sound via plane from southeast Alaska (the northern limit of this species) to be used as a substrate for herring roe. Although the giant kelp cannot recruit in Prince William Sound, it seems likely that other species, accidentally co-transported with Macrocystis, could become established. Our Pilot Study (Ruiz and Hines 1997) also considered several NIS algal species reported from Alaskan waters, including a report of a cosmopolitan species Codium fragile tomentasoides from Green Island. Methods Sample Period. Marine benthic algae, seagrasses, and intertidal lichens were sampled as a part of the cruise aboard the F/V Kristina during 20-28 June 1998, described above for invertebrates. Site Information. A subset of 19 of the 46 sites selected for invertebrate sampling were chosen for the plant study, including 13 intertidal sites (4 within Port Valdez and 9 in Prince William Sound) and 6 off-shore float sites. -
An Annotated Bibliography of the Benthic Marine Algae of Alaska
ADF&G JECHN ICAL DATA REPORT NO. 31 STATE OF A.LAS KA (Lirn ited Distribution) Jay S. Hammond, Governor AN ANNOTATED BIBLIOGRAPHY OF THE BENTHIC MARINE ALGAE OF ALASKA By: Sandra C. Lindstrom ALASKA DEPARTMENT OF F ISH ATID GAME James W. Brooks Subport Building, Juneau, Alaska 99801 Commissioner ADF&G TECHNICAL DATA REPORTS This series of reports is designed to facilitate prompt reporting of data from studies conducted by the Alaska Department of Fish and Game, especially studies which may be of direct and immediate interest to scientists of other agencies. The primary purpose of these reports is presentation of data. Descri ption of programs and data col 1ecti on methods is included only to the extent required for interpretation of the data. Analysis is general 1y 1 imited to that neces- sary for clarification of data collection methods and interpretation of the basic data. No attempt is made in these reports to present analysis of the data relative to its ultimate or intended use. Data presented in these reports is intended to be final , however, some revisions may occasional ly be necessary. Minor revision will be made via errata sheets. Major revisions will be made in the form of revised reports. AN ANNOTATED BIBLIOGRAPHY OF THE BENTHIC MARINE ALGAE OF ALASKA Sandra C . Lindstrom Alaska Department of Fish and Game Division of Commercial Fisheries Juneau, Alaska TABLE OF CONTENTS Acknowledgments ...................................... .,. ................ 1 Introduction ............................................................. 1 -
Cladosiphon Takenoensis Sp. Nov. (Ectocarpales S.L., Phaeophyceae) from Japan
Phycological Research 2016; 64: 212–218 doi: 10.1111/pre.12140 ........................................................................................................................................................................................... Cladosiphon takenoensis sp. nov. (Ectocarpales s.l., Phaeophyceae) from Japan Hiroshi Kawai,1* Takeaki Hanyuda,1 Song-Ho Kim,1 Yuki Ichikawa,1 Shinya Uwai2 and Akira F. Peters3 1Kobe University Research Center for Inland Seas, Kobe and 2Department of Environmental Science, Faculty of Science, Niigata University, Niigata, Japan, and 3Bezhin Rosko, Santec, France ........................................................................................ celled) subcortical layer; simple (or branched only at the base) fi SUMMARY assimilatory laments; presence of hairs; and plurilocular zoi- dangia transformed from the terminal portion of assimilatory The new brown algal species Cladosiphon takenoensis H. filaments. This definition of the genus has generally been fol- Kawai (Chordariaceae, Ectocarpales s.l.) is described from lowed by later researchers (Inagaki 1958; Lindauer, Chap- Takeno, Hyogo, Japan based on morphology and DNA man, & Aiken 1961; Womersley & Bailey 1987 in Womersley sequences. The species is a spring annual, growing on subti- 1987; Ajisaka et al. 2007). dal rocks at more or less exposed sites. It resembles C. ume- zakii in its gross morphology, and the two often grow together, Currently, 13 species are described in the genus Cladosi- but is distinguishable from C. umezakii in having a more hairy phon (Guiry & Guiry 2016). Among them, only C. okamuranus appearance. Cladosiphon takenoensis has a slimy, cylindrical, Tokida (Tokida 1942) and the relatively recently described multiaxial and sympodial erect thallus, branching once to C. umezakii Ajisaka (Ajisaka et al. 2007) have been reported twice, and is provided with long assimilatory filaments (up to from Japan. In the present study, we propose the description 1.8 mm long, composed of up to 100 cells). -
Phylogenetic Position of Petrospongium Rugosum (Ectocarpales,Phaeophyceae): Insights from the Protein-Coding Plastid Rbcl and Psaa Gene Sequences1
Cryptogamie,Algol., 2006, 27 (1): 3-15 © 2006 Adac. Tous droits réservés Phylogenetic position of Petrospongium rugosum (Ectocarpales,Phaeophyceae): insights from the protein-coding plastid rbcL and psaA gene sequences1 Ga Youn CHO and Sung Min BOO* Department of Biology,Chungnam National University,Daejon 305-764,Korea (Received 19 May 2005,accepted 31 July 2005) Abstract — The spongy,crustose brown alga Petrospongium rugosum (Okamura) Setchell et Gardner occurs in Korea, Japan,Australia, New Zealand,and along the Pacific coast of North America. Although the species has been classified in the Chordariaceae of the Ectocarpales sensu lato or the family Leathesiaceaeof the Chordariales sensu stricto, the relationship of the species to other brown algal lineages is less studied in terms of the plastid ultrastructure and molecular phylogeny. We examined the morphology of P. rugosum and also determined protein-coding psaA and rbcL sequences from four samples of the species from different locations,comparing them with homologous positions of newly sequenced putative relatives (Leathesia difformis and Spermatochnus paradoxus) and with published sequences of other brown algae. The species occurs in the upper intertidal zone on the Korean south coast from November to June. Thalli are markedly rugose and are comprised of haplostichous filaments,arranged into cortical and medullary layers. Unilocular sporangia arise laterally on the lower cells of cortical layers. A large pedunculate pyrenoid, with a cap, is present in the parietal discoid plastids. The specimens from four different locations were almost identical in rbcL and psaA sequences,and were monophyletic. All phylogenetic analyses of both genes reveal that P. rugosum is clearly separated from Leathesia and other members of the Chordariaceae. -
Euphycophyta Phaeophyceae
Chapter VI EUPHYCOPHYTA PHAEOPHYCEAE ECTOCARPALES, SPHACELARIALES, TILOPTERIDALES CUTLERIALES, DICTYOTALES, CHORDARIALES, SPOROCHNALES * GENERAL The algae composing this class range from minute discs to 100 metres or more in length and are characterized by the presence of the brown pigment, fucoxanthin, which masks the green chloro- phyll that is also present. The class can be divided into a number of orders and families, which can be treated independently (Fritsch, 1945), or the families may be placed into three groups as proposed by Kylin (1933). These groups are based upon the type ofalterna- tion of generations, though the classification involves difficulties so far as one family (Cutleriaceae - see, however, p. 142) is concerned. (a) Isogeneratae: Plants with two morphologically similar but cytologically differ- ent generations in the life cycle (e.g. Ectocarpaceae, Sphacel- ariaceae, Dictyotaceae, Tilopteridaceae, Cutleriaceae). (b) Heterogeneratae: Plants with two morphologically and cytologically dissimilar generations in the life cycle: (i) Haplostichineae: Plants with branched threads, which are often interwoven, and usually with trichothallic growth (e.g. Chordariaceae, Mesogloiaceae, Elachistaceae, Sper- matochnaceae, Sporochnaceae, Desmarestiaceae). (ii) Polystichineae: Plants built up by intercalary growth into a parenchymatous thallus (e.g. Punctariaceae, Dictyosi- phonaceae, Laminariales). 122 V. J. Chapman, The Algae © V. J. Chapman 1962 EUPHYCOPHYTA 123 (c) Cyclosporeae: Plants possessing a diploid generation only, (e.g. Fucales). In any consideration of phylogenetic problems there is really very little difference between the two methods of classification. The Phaeophyceae are extremely widespread and are confined almost entirely to salt water, being most luxuriant in the colder waters, though the genera Heribaudiella, Pleurocladia and Bodan- ella, six species of Ectocarpus and Sphacelaria ftuviatilis occur in fresh water. -
Cryptic Haploid Stages in the Life Cycle of Leathesia Marina (Chordariaceae, Phaeophyceae) Under in Vitro Culture1 Ailen M
DR. AILEN MELISA POZA (Orcid ID : 0000-0003-2643-6315) DR. WILFRED JOHN E. SANTIAÑEZ (Orcid ID : 0000-0002-1994-4920) Article type : Regular Article Cryptic haploid stages in the life cycle of Leathesia marina (Chordariaceae, Phaeophyceae) under in vitro culture1 Ailen M. Poza 2 CONICET-Bahía Blanca, Instituto Argentino de Oceanografía (IADO), Camino Carrindanga 7.5 km, B8000FWB, Bahía Blanca, Argentina. Wilfred John E. Santiañez Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan. The Marine Science Institute, College of Science, University of the Philippines, Velasquez St., Diliman, Quezon City 1101, Philippines. M. Emilia Croce, M. Cecilia Gauna CONICET-Bahía Blanca, Instituto Argentino de Oceanografía (IADO), Camino Carrindanga 7.5 km, B8000FWB, Bahía Blanca, Argentina. Laboratorio de Ecología Acuática, Botánica Marina y Acuicultura, Depto. Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, B8000FTN, Bahía Blanca, Argentina. Kazuhiro Kogame Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan. and Elisa R. Parodi This article has been accepted for publication and undergone full peer review but has not been throughAccepted Article the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/JPY.13034 This article is protected by copyright. All rights reserved CONICET-Bahía Blanca, Instituto Argentino de Oceanografía (IADO), Camino Carrindanga 7.5 km, B8000FWB, Bahía Blanca, Argentina. 2 Corresponding author: [email protected]. Tel.: +54 291 4861112; fax: +54 291 4595130. Running Title: Life cycle of Leathesia marina. -
The Marine Algae of the Coos Bay-Cape Arago Region of Oregon
The Marine Algae of the Coos Bay-Cape Arago Region of Oregon By ETHEL I. SANBORN MAXWELL S. DOTY OREGON STATE COLLEGE CORVALLIS, OREGON. PRINTED AT THE COLLEGE PRESS. 1944. K1 OREGON STATE MONOGRAPHS Studies in Botany Number 8.December 1944.* Published by Oregon State College Oregon State System of Higher Education Corvallis, Oregon *Because of wartime conditions, printing of this monograph, started in 1944, was not completed until 1947, PREFACE The algae of the California coast and the Puget Sound region have been rather extensively studied by workers in the field of marine biology.Set- chell and Gardner of the University of California were among the first to make collections.Their publications include records of collections from Coos Bay, Oregon, particularly from Sunset Bay and from near North Bend and Empire within Coos Bay. Kylin, since 1925, has made studies of the marine forms, especially the Rhodophyceae in Puget Sound,1 and of the California coast in the vicinity of the Hopkins Marine Station? Others who have contributed to our knowledge of the marine algae of the Pacific coast of the United States are :DeAlton Saunders and Annie Mae Hurd, Vinnie Pease, George B. Rigg, T. C. Frye, and others who have been associated with the Puget Sound Biological Sta- tion at Friday Harbor, Washington. G. M. Smith has just completed a study of the marine algae of the Monterey Peninsula, California,3 and J. G. Hollenberg has contributed much to our knowledge of the life histories and distribution of certain of the Phaeophyceae and Rhodophyceae that are found in southern California.