Application of Cerimetric Methods for Determining the Metallic Aluminum Content in Ultrafine Aluminum Powders

Total Page:16

File Type:pdf, Size:1020Kb

Application of Cerimetric Methods for Determining the Metallic Aluminum Content in Ultrafine Aluminum Powders 160 Propellants, Explosives, Pyrotechnics 32, No. 2 (2007) Full Paper Application of Cerimetric Methods for Determining the Metallic Aluminum Content in Ultrafine Aluminum Powders Tatyana D. Fedotova* Novosibirsk State University, 630090 Novosibirsk (Russia) Oleg G. Glotov, Vladimir E. Zarko Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk (Russia) DOI: 10.1002/prep.200700017 * mixtures with gelled water as a promising non-toxic Abstract propellant for space applications [11 – 12]. Ultrafine (nano-sized) aluminum is a promising component for Brief reviews of the basic publications are presented in [1, solid propellants, gel propellants, explosives, etc. The work is 13 – 15]. In all cases, the use of nanoAl requires objective focused upon a problem of determining active (metallic) alumi- num content in nanoAl powders as one of the characteristics of characterization of its properties. One of the most important their reactivity. It is shown that the high reactivity, the presence of characteristics is the content of active (metal) aluminum. It either the gases adsorbed or coating matter on the particle surface is worth noting that the corresponding analysis methods are restricts the traditionally used permanganatometric and volumet- still under development, since conventional methods used ric analytic methods. A new technique determining the active for characterization of micron sized aluminum powders are aluminum content is presented. This is the adaptation of known cerimetric method based on the analytical reaction Ce4þ þ eÀ ¼ either often unsuitable for the analysis of nanoAl or require Ce3þ. The method can be applied for analysis of metallic substantial modification. In the present work, the problem aluminum in the probes of nanoAl (including ones with organic of the determination of metal aluminum in nanoAl particles coating), as well as micron sized aluminum, and their condensed by means of analytical chemistry is considered. combustion products. Keywords: Nanoaluminum, Metal Aluminum Content, Cerimetric Method, Combustion 2 The Difficulties of the Chemical Analysis of NanoAl 1 Introduction A decrease in particle size causes changes in the specific It is known [1] that a decrease in aluminum particle size surface of the powder, its structure, phase composition, and leads to an increase in specific surface area of powder and to relative thickness of the oxide shell. These parameters are the enhancement of its chemical activity. The development also affected by the method of powder production. As a of techniques for producing ultrafine aluminum (below result, the reactivity of nanopowders changes substantially, refer to as nanoAl) with particle size less than 200 nm, such and the oxidation and combustion of nanoAl proceed in a as vaporization/condensation (Gen-Miller method) [2 – 4], manner differing from that for the micrometric aluminum plasma recondensation [5 – 6], and electroexplosion of wire powders [1, 13 – 15]. A very indicative example is the [7 – 10] has initiated a number of works studying the interaction of nanoAl in the stoichiometric mixture with combustion of various propellant compositions containing gelled water in the regime of layer-by-layer self-sustaining nanoAl. combustion [16]. Moreover, nanoAl reacts with water even The possible areas of using nanoAl in chemical propulsion at room temperature [17]. The interaction between fine systems, i. e. in classical and hybrid rocket motors, are: aluminum particles and water is one of the factors adding complexity in the chemical analysis. * solid propellant formulations to change the burning rate Whatever the method of production, the nanoAl powders and vary its dependence on pressure, are subjected to passivation to ensure their stability. The * solid propellant formulations to reduce agglomeration, passivation involves the treatment of surface with either * mixtures with liquid hydrocarbon fuels for jet engines, gaseous or liquid reagents [9 – 10, 18 – 19] that form a protective layer. In the simplest case, this can be an oxide * Corresponding author; e-mail: [email protected] layer. In more complicated cases, a layer of special-purpose 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Application of Cerimetric Method for Determining the Metallic Aluminum Content in Ultrafine Aluminum Powders 161 substance is created on the surface in addition to the oxide The importance of controlling the nanoAl chemical layer. For example, some organic compounds form coatings composition dictates some additional requirements to that prevent particles from conglutination [18]. Others chemical analytical methods: they should be reproducible, render hydrophobic properties and stability against water convenient for multiple analyses, etc. [19]. The latter is important for the nanoAl/gelled H2O propellants [11 – 12]. From the viewpoint of chemical analysis, the presence of coatings other than oxide can be 3 Cerimetry as a Procedure to Solve the Problem a complicating factor to be taken into account. A gaseous “shell” is known to be formed on the surface of The use of redox reactions for analytical purposes implies particles when nanoAl is produced by the electroexplosion a definite difference in the oxidative-reductive potential of wire. The content of adsorbed gases can reach 7% [15]. (ORP) values for the corresponding semi-reactions which Here and below, mass percent values are used. It was shown provide their completeness. However, when calculating the [17] that the presence of adsorbed gases is a factor, which corresponding equilibrium constants for nanoAl powders may lead to overestimated aluminum content determined one cannot use the standard ORP values, because for the by means of gas volumetric analysis in the powder obtained nanopowders produced by electroexplosion method the by electroexplosion method. recorded ORP values are substantially lower than those for In order to eliminate a systematic error of the gas the bulk metal [15]. This is because the fine aluminum volumetric method, some specific preparation procedures behaves as stronger reducing agent than the coarse particles can be used for removing the particles gaseous shell in the or the bulk samples and readily interacts with the protons of tested sample through vacuumization or thermodesorption. acids and water. The finely divided state of the powder However, one cannot be quite sure that this would not lead results in accelerating the process macrokinetics. Thus, the to the partial oxidation of the surface, the changes in the hydrogen evolving at a high rate has not enough time to chemical composition of the sample under analysis and the reduce Fe3þ ions in solution in course of permanganato- distortion of the results of analysis. Therefore, the problem metric analysis. of the chemical analysis of nanoAl requires the application Based on these prerequisites, we decided to use a stronger of independent analysis methods followed by the compar- oxidizing agent than Fe3þ ion (whose standard ORP is ison of the results obtained. 0.77 V) to oxidize aluminum, in order to suppress the The permanganatometric method [21] has been success- participation of protons in this process and to avoid hydro- fully used to analyze both the virgin aluminum powders and gen evolution from the reaction mixture. This idea is the condensed combustion products (in general, consisting realized in cerimetric method, which is widely known [21 – of Al2O3 and unburned Al). Actually, in our practice this 22] but has never been used for systems under study. method, being more convenient and accurate, has com- The cerimetric procedure is based on the analytical pletely replaced the volumetric method. However, when it reaction Ce4þ þ eÀ ¼ Ce3þ, which proceeds in the strong was initially used to analyze a number of nanoAl powders, acid environment. The value of its potential depends on the first of all those with coatings, unsatisfactory results were nature and concentration of an acid. In a 1 M – 4 M solution obtained. The powders exhibited high chemical activity, of sulphuric acid it comprises 1.44 – 1.42 V. The large ORP which resulted in a competitive reaction accompanied with value, the absence of side reactions, the stability of the hydrogen evolution and, as a consequence, caused poor working solution of the titrant and the simplicity of fixing reproducibility and gave a negative systematic error. This the equivalence point are the advantages of this method. finding was confirmed by the results of chelatometric A direct titration by a cerium(IV) solution can be used in determination of the total aluminum content in these principle to determine the content of Fe2þ ions formed in the powders. The oxygen content, calculated as a difference, solution of ferric ammonium sulfate during the oxidation of allowed estimating the content of aluminum oxide as the metal aluminum, instead of potassium permanganate or main compound on the surface of metal particles. With dichromate according to the following reactions: respect to the mass balance, the obtained values indi- cated that the metal alumnium content determined by Al þ 3Fe3þ ¼ Al3þ þ 3Fe2þ permanganatometric procedure was underestimated, even taking into account that the nanoAl powders contain the Ce4þ þ Fe2þ ¼ Ce3þ þ Fe3þ admixtures of other metals and gases adsorbed on the surface. This was tested for the commercial grade Russian Actually, although the passivating coatings protect parti- aluminum powders PA-4 and ASD-6by both methods and ally
Recommended publications
  • Chemical Analysis of Extracting Transition Metal Oxides from Polymetallic Ore by Sulphate Process
    EPJ Web of Conferences 140, 13004 (2017) DOI: 10.1051/ epjconf/201714013004 Powders & Grains 2017 Chemical analysis of extracting transition metal oxides from polymetallic ore by sulphate process Otgon-Uul Enkh-Uyanga1, Baatar Munkhtsetseg 1*, Urtnasan Urangoo2, Enkhtur Tserendulam1 and Davaadorj Agiimaa1 1 Chemistry Department, Ulaanbaatar State University, 13343, U1aanbaatar , Mongolia 2 Charles Sturt University, Canberra 2602 ACT, Australia Abstract. In this research work we attempt to improve the purity of polymetallic ores in Mongolia whilst developing practical applications of its refinement processes and this paper presents the results of chemical research of extracting transition metal titanium oxides, ferrous oxide and rare earth oxides from polymetallic ore. Thereby, chemical and mineral analysis of polymetallic ore is carried out basis of responses to the support process at various degrees of water whereas transition metal sulphates solubility differ. As a result of sulphate and resulphurization process we have extracted anatase with 62.5 percent titanium dioxide and brookite mineral with 89.6 percent of titanium dioxide as well as mineral with 83.8 percent of ferrous oxide hematite and rare earth oxides with 57.6 percent of cerium oxide. These oxides are identified under various conditions in the thermal processing. The morphology structure and chemical content compound of the mineral has been verified as a result of the XRF, XRD, SEM-EDX analysis. Keywords: polymetallic ore, anatase, brookite, hematite, rare earth oxides Introduction: Mongolia is a country rich in process at various degrees of water whereas transition polymetallic ores. There is an increased demand for metal sulphates solubility differ. research of the processing polymetallic ores by removing There are certain solutes, which have independently fair impurities and forming refined minerals as transition degree of solubility to temperature change.
    [Show full text]
  • Semester –I Chapter 4: Redox Titrations
    Semester –I Chapter 4: Redox Titrations SHREE H. N. SHUKLA INSTITUTE OF PHARMACEUTICAL EDUCATION AND RESEARCH B.PHRAM (SEMESTER –I) SUBJECT NAME: PHARMACEUTICAL ANALYSIS -I SUBJECT CODE: BP102TP CHAPTER 4: REDOX TITRATIONS H.N. Shukla Institute of Pharmaceutical Education and Research Page 1 Semester –I Chapter 4: Redox Titrations Content Redox titrations: (a) Concepts of oxidation and reduction (b) Types of redox titrations (Principles and applications) Cerimetry, Iodimetry, Iodometry, Bromatometry, Dichrometry, Titration with potassium iodate INTRODUCTION Concept of oxidation and reduction As discussed before, in titrimetric analysis we can find out the quantity of pure component based on measurement of volume of standard solution that reacts completely with the analyte. This measurement of standard solution can be possible in different reactions, and if the reaction involved in this measurement is oxidation-reduction reaction, that method is called ns "oxidation reduction titration" or "Redox titration. In Redox titration oxidation & Reduction reaction occurs simultaneously. Oxidation Combination of the substance with oxygen is termed as oxidation. C (s) + O2 (g) CO2 (g) Removal of Hydrogen H2S + O S + H2O Loss of electron(s) is known as oxidation. By loosing electron positive valency of element increases and negative valency of element decreases. Fe2+ Fe3+ + e- Increase in oxidation number Reduction Removal of Oxygen from substance CuO + 2H Cu + H2O Additon of Hydrogen C2H2 + 2H C2H4 Gain of electron, by taking on electron positive valency is decreased and negative valency is increased. Fe3+ + e- Fe2+ Decrease in Oxidation number. H.N. Shukla Institute of Pharmaceutical Education and Research Page 2 Semester –I Chapter 4: Redox Titrations Oxidation-Reduction Reaction Oxidation-reduction reactions are the chemical processes in which a change in the valency of reacting elements or ions takes place.
    [Show full text]
  • Redox Titrations
    REDOX TITRATIONS Redox titration is used to determine the oxidizing agent or reducing agent in a solution. In a redox titration, either the reducing or oxidizing agent will be used as the titrant against the other agent. The purpose of this titration is to determine the transfer of electrons from one substance to the other, similar to that of a redox reactions, in order to determine the reducing agent or oxidizing agent. The end point of such titrations can be determined by either a colour changing indicator or a potentiometer. There are many applications of redox titrations in chemistry, pharmaceutical preparations, environmental analysis, agriculture and many more. Redox titrations are important in many areas, for example, in food, pharmaceutical, and general industrial analyses. Titration of sulfite in wine using iodine is a common example. Alcohol can be determined based on its oxidation by potassium dichromate. Examples in clinical analysis are rare since most analyses involve trace determinations, but these titrations are still extremely useful for standardizing reagents. A reducing agent is the reactant that loses electrons in an oxidation-reduction reaction: Fe2+ → Fe3+ + e– An oxidizing agent is the reactant that gains electrons in an oxidation-reduction reaction: Ce4+ + e– → Ce3+ We can split any oxidation/reduction equation into two half-reactions that show which species gains electrons and which loses them. Fe2+ + Ce4+ → Fe3+ + Ce3+ Above reaction can be shown as two half-reactions- Ce4+ + e– → Ce3+ (reduction of Ce4+) Fe2+ → Fe3+ + e– (oxidation of Fe2+) Hence, ferrous sulphate can be estimated quantitatively by its reaction with ceric sulphate.
    [Show full text]
  • The 12Th Pacific Rim Conference On
    Hilton Waikoloa Village | Waikoloa, Hawaii, USA rld of Scie o nc Scan for meeting app. W e A CONFERENCE PROGRAM PACRIM a nd gy Technolo The 12th Pacific Rim Conference on Ceramic and Glass Technology including – Glass & Optical Materials Division Annual Meeting (GOMD 2017) May 21 – 26, 2017 PACRIM Partner Societies: The American Ceramic Society The Australian Ceramic Society The Ceramic Society of Japan The Chinese Ceramic Society ceramics.org/pacrim12 The Korean Ceramic Society Join Wiley and The American Ceramic Society at the 12th Pacific Rim Conference Including the Glass & Optical Materials Division Meeting JACerS Throughout 2017, we are celebrating the 100th anniversary of Celebrating the Journal of the American Ceramic Society. The most 100 Years of highly-respected global source for scholarly articles on ceramic Excellence materials research is enjoying its Centennial year and you can in 2017! JACerS: 1918–2017... learn all about it at wileyonlinelibrary.com/jacers100. and beyond This year at PACRIM/GOMD, take advantage of all these great offerings, plus more: • “So You Want to Get Published: A workshop for graduate students and young professionals” - led by Bill Fahrenholtz, Editor-in-Chief, Journal of the American Ceramic Society. - Monday, May 22, 2017, noon to 1:15 pm • Special Centennial Issue of JACerS available with unique articles and features picked by the editors • FREE sample copies of all 3 journals of the American Ceramic Society • Enjoy a 35% discount on all purchases at the Wiley booth • Meet with Wiley and ACerS
    [Show full text]
  • Electroanalysis and Coulometric Analysis Allen J
    Review of Fundamental Developments in Analysis Electroanalysis and Coulometric Analysis Allen J. Bard Deparfment of Chemisfry, The University of Texas, Austin 72, Texas RIS review mainly surveys the ods. The application of coulometric ing irreversibility with time to “aging” Tliterature during 1960 and 1961, (and other electrochemical) methods to of the oxide film. Both papers (113, and is patterned closely after previous analytical problems in atomic energy 170) assume that the reduction of oxy- reviews in this series. Papers published work has been rebiewed (136). The gen proceeds via a direct chemical re- before 1960 which have not appeared in reviews by Barendrecht (14) (66 refer- action between oxygen and platinum, previous reviews have also been in- ences) and Morris (137) (161 references) followed by electrochemical reduction of cluded. Research has increasingly been on coulometry, as well as one by the platinum oxide(s). Apparently the concerned with a study of the funda- Meites (130) on the application of con- rate or extent of the platinum-oxygen mental electrochemical principles upon trolled potential electrolysis to electro- reaction in an acidic solution is suffi- which electroanalytical procedures are gravimetry, coulometry, and synthesis, ciently small that a prereduced electrode based. The discussion of these theo- deserve mention. Other reviews on in an oxygen-saturated solution will retical electrochemical developments various phases of coulometry have also maintain the characteristics of a re- has been limited to areas which have the appeared (39, 110, 146, 183). duced surface. most direct bearing on electroanalysis. Anson has recently found that the As a general trend of the past two years, ELECTROCHEMICAL THEORY reversibility of both the reduction of coulometry continues to enjoy increas- iron(II1) and the oxidation of iron(I1) ing development and application, while Platinum Oxide Films.
    [Show full text]
  • 1 DEPARTMENT of CHEMISTRY Program Specific Outcomes PSO1
    DEPARTMENT OF CHEMISTRY Program specific outcomes PSO1 Understand nature of bonding and hybridization of compounds. PSO2 Analyse the reaction mechanism and structure of transition metal complexes. PSO3 Understand the quantum mechanics, thermodynamics and Electrochemistry. PSO4 Analyse the bonding and stereochemistry of organic molecules. PSO5 Understand the various instrumental techniques for structural study of the Compounds. PSO6 Perform thermodynamic and surface studies of the liquid mixtures. PSO7 Understand nuclear, radio analytical techniques and corrosion technology. PSO8 Analyse the bioorganic, bioinorganic chemistry and heterocyclic chemistry and their applications. 1 M.Sc. Chemistry (Two years Course) CHOICE BASED CREDIT SYSTEM SCHEME OF EXAMINATION w.e.f. 2015-16 c. Ist Semester Paper No. Code Nomenclature Contact Credits Max. Marks hours (L+T+P) Paper-I 16CHE21C1 Inorganic Chemistry-1 4+0+0 = 04 04 80+20 Paper-II 16CHE21C2 Physical Chemistry-1 4+0+0 = 04 04 80+20 Paper-III 16CHE21C3 Organic Chemistry-1 4+0+0 = 04 04 80+20 Paper-IV 16CHE21CL1 Inorganic Chemistry 0+0+8 = 08 04 50 Practical-1 Paper-V 16CHE21CL2 Physical Chemistry 0+0+8 = 08 04 50 Practical-1 Paper-VI 16CHE21CL3 Organic Chemistry 0+0+8 = 08 04 50 Practical-1 Paper-VII 16CHE21F1 Computer for Chemists 2+0+0= 02 02 40 +10 OR A paper out of panel of papers for foundation course provided by the University Note: All the papers in M.Sc. 1st semester are core and mandatory for M.Sc. 1st semester students. Each theory paper will include 20% marks as internal assessment as per University rules. Each practical examination will be of 08 hours and will be conducted in two sessions (Morning & Evening) of 04 hours each.
    [Show full text]
  • Volumetric Analyisis
    Volumetric Analysis Dr.Asha Chacko Department of Chemistry St. Pius X College Rajapuram Volumetric Analysis -is a branch of quantitative analysis, which depends upon the methods involving accurate measurement of volumes of liquid . Titration also known as titrimetry ,-process of finding out the volumes of reagent required to bring out a definite reagent. A reagent, called the titrant or titrator is prepared as a standard solution. A known concentration and volume of titrant reacts with a solution of analyte or titrand to determine concentration. The volume of titrant reacted is called titre. • The word "titration" comes from the Latin word titulus, meaning inscription or title. • The French word titre, also from this origin, means rank. Volumetric analysis originated in late 18th-century France. Francois-Antoine-Henri Descroizilles developed the first burette (which was similar to a graduated cylinder) in 1791. • Joseph Louis Gay-Lussac developed an improved version of the burette that included a side arm, and coined the terms “ pipette" and “burette" in an 1824. Procedure • A typical titration begins with a beaker orErlenmeyer flask containing a very precise volume of the analyte and a small amount of indicator(such as phenolphthalein ) placed underneath a calibrated burette or chemistry pipetting syringe containing the titrant. • Small volumes of the titrant are then added to the analyte and indicator until the indicator changes color in reaction to the titrant saturation threshold, reflecting arrival at the endpoint of the titration. • Depending on the endpoint desired, single drops or less than a single drop of the titrant can make the difference between a permanent and temporary change in the indicator.
    [Show full text]
  • BP102T. PHARMACEUTICAL ANALYSIS (Theory) 45 Hours Scope
    BP102T. PHARMACEUTICAL ANALYSIS (Theory) 45 Hours Scope: This course deals with the fundamentals of analytical chemistry and principles of electrochemical analysis of drugs Objectives: Upon completion of the course student shall be able to understand the principles of volumetric and electro chemical analysis carryout various volumetric and electrochemical titrations develop analytical skills Course Content: UNIT-I 10 Hours (a) Pharmaceutical analysis- Definition and scope i) Different techniques of analysis ii) Methods of expressing concentration iii) Primary and secondary standards. iv) Preparation and standardization of various molar and normal solutions- Oxalic acid, sodium hydroxide, hydrochloric acid, sodium thiosulphate, sulphuric acid, potassium permanganate and ceric ammonium sulphate (b)Errors: Sources of errors, types of errors, methods of minimizing errors, accuracy, precision and significant figures (c)Pharmacopoeia, Sources of impurities in medicinal agents,limit tests. UNIT-II 10 Hours Acid base titration: Theories of acid base indicators, classification of acid base titrations and theory involved in titrations of strong, weak, and very weak acids and bases, neutralization curves Non aqueous titration: Solvents, acidimetry and alkalimetry titration and estimation of Sodium benzoate and Ephedrine HCl UNIT-III 10 Hours Precipitation titrations: Mohr’s method, Volhard’s, Modified Volhard’s, Fajans method, estimation of sodium chloride. Complexometric titration: Classification, metal ion indicators, masking and demasking
    [Show full text]
  • Graft Copolymerization of Methyl Acrylamide Onto Jute Fibers Initiated by Peroxydisulfate Catalyzed by Fe(L11)
    Polymer Journal, Vol. 21, No. 10, pp 821-828 (1989) Graft Copolymerization of Methyl Acrylamide onto Jute Fibers Initiated by Peroxydisulfate Catalyzed by Fe(l11) Rajani K. SAMAL,* Sabyasachi DASH, and Atish K. SWAIN Makromolecu/ar Research Laboratory, Department of Chemistry, Ravenshaw College, Cuttack-753003. Orissa. India (Received August 31, 1988) ABSTRACT: Graft copolymerization of methyl acrylamide [MAM] onto jute fiber has been studied in an aqueous medium using potassium persulfate as an initiator, under the catalytic influence of FeC13 in nitrogen atmosphere. Grafting is influenced by reaction time, temperature, concentration of monomer, initiator, catalyst, and base polymer. For comparative catalytic influence the reaction has also been carried out in presence of various salts and organic solvents. The maximum graft percent of 70.6 is obtained at 50°C for the following concentrations; monomer (0.8 M), K 2 S2O8 (0.03 M), catalyst Fe(III) (1.5 x 10- 3 M) and composition of acetic and formic acid of 2.5% (v/v). From the experimental results a mechanism for graft initiation and termination has been suggested. The extent of absorption of water and water vapors, the tensile properties and thermal behavior of the grafts have also been tested. KEY WORDS Graft Copolymerization / Methyl Acrylamide / Jute Fiber / Potassium Persulfate / FeCl 3 / Tensile Modulus / Primary Thermogram / Graft copolymerization of vinyl monomers mm1m1ze the import of synthetic fibers. Al­ onto cellulose, lignocellulose and their de­ though jute fiber possesses high dimensional rivatives has been the subject of extensive stability, certain unfavorable textile properties studies since 1946. 1 Graft copolymerization of like high stiffness, very low elasticity, suscepti­ preformed polymers both natural and syn­ bility towards sun light, etc.
    [Show full text]
  • 2 Electrochemistry in Equilibrium
    2 Electrochemistry in Equilibrium In electrochemistry an organizing criterion frequently employed is the flow of current: Experiments or - more generally - phenomena without current with the system under investigation naturally at equilibrium may be related both to the interior (bulk) of the elec- trolyte solution and to the electrochemical interface between elec- tron conducting material (e.g. metal, conveniently also incorrectly called electrode) and ionically conducting electrolyte solution. Both possibilities exist also in dynamic systems, in this case the flow of electronic current in the wires, metals etc. is coupled to the flow of ions in the ionically conducting phase (electrolyte solution). Both processes and fluxes are coupled at the electrochemical interface. In this chapter experiments without flow of current are described. Fundamental facts and relations of electrochemical and general thermodynamics, mixed phase and non-ideal thermodynamics and the relationships between electrochemical and thermodynamical data are discussed. Experiment 2.1: The electrochemical series Task A standard hydrogen electrode is prepared, it is used as a reference in the determination of the standard potentials of the nickel, copper and zinc electrode. The influence of the metal ion concentration as suggested by the Nernst-equation is examined. The temperature de- pendence of the voltage of a copper-silver cell is measured and used for the calculation of the entropy of reaction. Fundamentals Between the chemical elements and their compounds substantial differences exist in their tendency of being reduced (with associated uptake of electrons) or being oxidized (with respective removal of electrons). In electrochemistry the comparison between these prop- erties for two elements can be performed most easily by measuring a cell voltage.
    [Show full text]
  • Talanta 1958 V1 No4 Nov.Pdf
    296 JAMES B. HEADRIDGE Apparatus A commercial spectrophotometer is quickly adapted for photometric titrations. For example, Hunter and Miller8 have modified the Unicam SP 500 and Bricker and Sweetser9have converteq the Beckman DU for titrations. REVIEW OF RECENT WORK Apparatus Maher10 has discussed the development ofautomatic photometric titrimeters. The Beckman Model B spectrophotometer has been modified· for automatic titrations.ll An instrument for automatic derivative spectrophotometric titrations has been described,12 and Chalmers and Walley13 have constructed a recording titrimeter. Stolyarov14 has described an apparatus for titrations in ultra-violet light where a filter with maximum transmission at 365 m,u is used. Details have been given for the modification of the Beckman DU spectrophotometer for titrations.15 Wallraf16 has constructed a filter photometer for the titration of calcium and magnesium with ethylenediaminetetra-acetate. Review articles and theoretical considerations Goddu and Hume2 have discussed the principles of the photometric titration method and have reviewed previous work in the field up to the end of 1953. Underwood17 has described the advantages of photometric titrations and the applica­ tion of the method to acid-base, oxidation-reduction, turbidimetric and complexo­ metric reactions. Grunwald18 has reported a method for accurate end-point determination in photo­ metric titrations where the titration curves are rounded in the vicinity of the end­ point. Class I titrations Acid-base: Goddu and Hume19 have studied the photometric titration of a weak acid (or base) with a strong base (or acid) and have shown that a sharp inflexion ofthe graph of optical density plotted against volume of titrant is obtained only when the product of ionization constant and molarity of the weak component, is ::> 10-12 at concentrations of 10-5M and above.
    [Show full text]
  • Krok 2. Pharmacy
    Sample test questions Krok 2 Pharmacy () Фармацевтична хiмiя 2 1. An analyst of a chemical laboratory A. Ammonium oxalate had received a glucose substance for B. Magnesium sulfate analysis. To check its quality he used a C. Potassium chloride polarimeter. The analyst measured: D. Sodium nitrite E. Ammonium molybdate A. Angle of rotation B. Refractive index 7. Optical rotation angle of substances is C. Optical density determined under the temperature of 20oC, D. Melting point in 1-decimeter-thick layer, with wavelength E. Specificgravity of sodium spectrum D-lines (λ = 589.3 nm), and is calculated with reference to a solution 2. The analytical laboratory received containing 1 g of the substance per ml. It is calcium chloride. What volumetric called: solution should be used for quantitative determination of this medicinal substance? A. Specific optical rotation B. Optical density A. Sodium edetate C. Refractive index B. Potassium bromate D. Relative density C. Hydrochloric acid E. Distribution coefficient D. Potassium permanganate E. Sodium hydroxide 8. Which of the following antibiotics can be identified by means of maltol test? 3. An analytical chemist of a central industrial laboratory performs quantitative A. Streptomycin sulfate determination of penicillin sum in B. Doxycycline hydrochloride benzylpenicillin sodium salt by means of C. Amoxicillin iodometric method. What indicator is used? D. Lincomycin hydrochloride E. Kanamycin monosulfate A. Starch B. Phenolphthalein 9. A pharmaceutical analyst identifies C. Potassium chromate the substance of potassium acetate. What D. Methyl orange reagent confirms the presence of potassium E. Methyl red cation in the substance? 4. Paracetamol substance has been sent A.
    [Show full text]