TRAIP Modulates the IGFBP3/AKT Pathway to Enhance the Invasion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The HECT Domain Ubiquitin Ligase HUWE1 Targets Unassembled Soluble Proteins for Degradation
OPEN Citation: Cell Discovery (2016) 2, 16040; doi:10.1038/celldisc.2016.40 ARTICLE www.nature.com/celldisc The HECT domain ubiquitin ligase HUWE1 targets unassembled soluble proteins for degradation Yue Xu1, D Eric Anderson2, Yihong Ye1 1Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; 2Advanced Mass Spectrometry Core Facility, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA In eukaryotes, many proteins function in multi-subunit complexes that require proper assembly. To maintain complex stoichiometry, cells use the endoplasmic reticulum-associated degradation system to degrade unassembled membrane subunits, but how unassembled soluble proteins are eliminated is undefined. Here we show that degradation of unassembled soluble proteins (referred to as unassembled soluble protein degradation, USPD) requires the ubiquitin selective chaperone p97, its co-factor nuclear protein localization protein 4 (Npl4), and the proteasome. At the ubiquitin ligase level, the previously identified protein quality control ligase UBR1 (ubiquitin protein ligase E3 component n-recognin 1) and the related enzymes only process a subset of unassembled soluble proteins. We identify the homologous to the E6-AP carboxyl terminus (homologous to the E6-AP carboxyl terminus) domain-containing protein HUWE1 as a ubiquitin ligase for substrates bearing unshielded, hydrophobic segments. We used a stable isotope labeling with amino acids-based proteomic approach to identify endogenous HUWE1 substrates. Interestingly, many HUWE1 substrates form multi-protein com- plexes that function in the nucleus although HUWE1 itself is cytoplasmically localized. Inhibition of nuclear entry enhances HUWE1-mediated ubiquitination and degradation, suggesting that USPD occurs primarily in the cytoplasm. -
A Family of Mammalian E3 Ubiquitin Ligases That Contain the UBR Box Motif and Recognize N-Degrons Takafumi Tasaki,1 Lubbertus C
MOLECULAR AND CELLULAR BIOLOGY, Aug. 2005, p. 7120–7136 Vol. 25, No. 16 0270-7306/05/$08.00ϩ0 doi:10.1128/MCB.25.16.7120–7136.2005 Copyright © 2005, American Society for Microbiology. All Rights Reserved. A Family of Mammalian E3 Ubiquitin Ligases That Contain the UBR Box Motif and Recognize N-Degrons Takafumi Tasaki,1 Lubbertus C. F. Mulder,2 Akihiro Iwamatsu,3 Min Jae Lee,1 Ilia V. Davydov,4† Alexander Varshavsky,4 Mark Muesing,2 and Yong Tae Kwon1* Center for Pharmacogenetics and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 152611; Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York 100162; Protein Research Network, Inc., Yokohama, Kanagawa 236-0004, Japan3; and Division of Biology, California Institute of Technology, Pasadena, California 911254 Received 15 March 2005/Returned for modification 27 April 2005/Accepted 13 May 2005 A subset of proteins targeted by the N-end rule pathway bear degradation signals called N-degrons, whose determinants include destabilizing N-terminal residues. Our previous work identified mouse UBR1 and UBR2 as E3 ubiquitin ligases that recognize N-degrons. Such E3s are called N-recognins. We report here that while double-mutant UBR1؊/؊ UBR2؊/؊ mice die as early embryos, the rescued UBR1؊/؊ UBR2؊/؊ fibroblasts still retain the N-end rule pathway, albeit of lower activity than that of wild-type fibroblasts. An affinity assay for proteins that bind to destabilizing N-terminal residues has identified, in addition to UBR1 and UBR2, a huge (570 kDa) mouse protein, termed UBR4, and also the 300-kDa UBR5, a previously characterized mammalian E3 known as EDD/hHYD. -
The Ubiquitin Proteasome System and Its Involvement in Cell Death Pathways
Cell Death and Differentiation (2010) 17, 1–3 & 2010 Macmillan Publishers Limited All rights reserved 1350-9047/10 $32.00 www.nature.com/cdd Editorial The ubiquitin proteasome system and its involvement in cell death pathways F Bernassola1, A Ciechanover2 and G Melino1,3 Cell Death and Differentiation (2010) 17, 1–3; doi:10.1038/cdd.2009.189 Following the awarding of the 2004 Nobel Prize in Chemistry Inactivation of the proteasome following caspase-mediated to Aaron Ciechanover, Avram Hershko, and Irwin A Rose cleavage may disable the proteasome, interfering with its for the discovery of ubiquitin (Ub)-mediated degradation, role in the regulation of key cellular processes and thereby Cell Death and Differentiation has drawn the attention of facilitating induction of apoptosis. The noted recent develop- its readers to the Ub Proteasome System (UPS) and its ments show how understanding of these functions is just involvement in regulating cell death pathways.1–4 The current starting to emerge. For example, why does dIAP1 associate set of reviews is an update on this theme.5–16 with multiple E2s via its RING finger? Does dIAP1 also interact From previous review articles published in Cell Death and with the E3 – the F-box protein Morgue, which is a part of an Differentiation, it was apparent that the UPS has a major SCF E3 complex? Why does dIAP1, which is an E3, have to mechanistic role in regulating cell death via modification and interact with other ligases such as the N-end rule UBR1 and degradation of key regulatory proteins involved in -
RING-Type E3 Ligases: Master Manipulators of E2 Ubiquitin-Conjugating Enzymes and Ubiquitination☆
Biochimica et Biophysica Acta 1843 (2014) 47–60 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamcr Review RING-type E3 ligases: Master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination☆ Meredith B. Metzger a,1, Jonathan N. Pruneda b,1, Rachel E. Klevit b,⁎, Allan M. Weissman a,⁎⁎ a Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, 1050 Boyles Street, Frederick, MD 21702, USA b Department of Biochemistry, Box 357350, University of Washington, Seattle, WA 98195, USA article info abstract Article history: RING finger domain and RING finger-like ubiquitin ligases (E3s), such as U-box proteins, constitute the vast Received 5 March 2013 majority of known E3s. RING-type E3s function together with ubiquitin-conjugating enzymes (E2s) to medi- Received in revised form 23 May 2013 ate ubiquitination and are implicated in numerous cellular processes. In part because of their importance in Accepted 29 May 2013 human physiology and disease, these proteins and their cellular functions represent an intense area of study. Available online 6 June 2013 Here we review recent advances in RING-type E3 recognition of substrates, their cellular regulation, and their varied architecture. Additionally, recent structural insights into RING-type E3 function, with a focus on im- Keywords: RING finger portant interactions with E2s and ubiquitin, are reviewed. This article is part of a Special Issue entitled: U-box Ubiquitin–Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf. Ubiquitin ligase (E3) Published by Elsevier B.V. Ubiquitin-conjugating enzyme (E2) Protein degradation Catalysis 1. -
The Extremely Conserved Amino Terminus of RAD6 Ubiquitin-Conju: Atlng Enzyme Is Essential for Amino-Endgrule-Dependent Protein Degradation
Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press The extremely conserved amino terminus of RAD6 ubiquitin-conju: atlng enzyme is essential for amino-endgrule-dependent protein degradation John F. Watkins, Patrick Sung, 1 Satya Prakash, 1 and Louise Prakash Department of Biophysics, University of Rochester School of Medicine, Rochester, New York 14642 USA; ~Department of Biology, University of Rochester, Rochester, New York 14627 USA The RAD6 gene of Saccharomyces cererisiae encodes a ubiquitin-conjugating enzyme that is required for DNA repair, damage-induced mutagenesis, and sporulation. In addition, RAD6 mediates the multiubiquitination and degradation of amino-end rule protein substrates. The structure and function of RAD6 have been remarkably conserved during eukaryotic evolution. Here, we examine the role of the extremely conserved amino terminus, which has remained almost invariant among RAD6 homologs from yeast to human. We show that RAD6 is concentrated in the nucleus and that the amino-terminal deletion mutation, rad6al.9, does not alter the location of the protein. The amino-terminal domain, however, is essential for the multiubiquitination and degradation of amino-end rule substrates. In the rad6al_ 9 mutant, 13-galactosidase proteins bearing destabilizing amino-terminal residues become long lived, and purified rad6Al_9 protein is ineffective in ubiquitin-protein ligase (E3)-dependent protein degradation in the proteolytic system derived from rabbit reticulocytes. The amino terminus is required for physical interaction of RAD6 with the yeast UBRl-encoded E3 enzyme, as the rad6Al_9 protein is defective in this respect. The rad6al_9 mutant is defective in sporulation, shows reduced efficiency of DNA repair, but is proficient in UV mutagenesis. -
Supplementary Material Table of Contents
Supplementary M aterial Table of Contents 1 - Online S u pplementary Methods ………………………………………………...… . …2 1.1 Study population……………………………………………………………..2 1.2 Quality control and principal component analysis …………………………..2 1.3 Statistical analyses………………………………………… ………………...3 1.3.1 Disease - specific association testing ……………………………… ..3 1.3.2 Cross - phenotype meta - analysis …………………………………… .3 1.3.3 Model search ……………………………………………………… .4 1.3.4 Novelty of the variants …………………………………………… ..4 1.3.5 Functional Enrichment Analy sis ………………………………… ...4 1.3.6 Drug Target Enrichment Analysis ………………………………… 5 2 - Supplementary Figures………………………………………...………………… . …. 7 3 - Members of the Myositis Genetics Consortium (MYOGEN) ……………………. ..16 4 - Members of the Scleroderma Genetics Consortium ………………… ……………...17 5 - Supplementary References………………………………………………………… . .18 6 - Supplementary Tables………………………………………………………… . ……22 1 Online supplementary m ethods Study population This study was conducted using 12,132 affected subjects and 23 ,260 controls of European des cent population and all of them have been included in previously published GWAS as summarized in Table S1. [1 - 6] Briefly, a total of 3,255 SLE cases and 9,562 ancestry matched controls were included from six countrie s across Europe and North America (Spain, Germany, Netherlands, Italy, UK, and USA). All of the included patients were diagnosed based on the standard American College of Rheumatology (ACR) classification criteria. [7] Previously described GWAS data from 2,363 SSc cases and 5,181 ancestry -
Chaperoning Proteins for Destruction: Diverse Roles of Hsp70 Chaperones and Their Co-Chaperones in Targeting Misfolded Proteins to the Proteasome
Biomolecules 2014, 4, 704-724; doi:10.3390/biom4030704 OPEN ACCESS biomolecules ISSN 2218-273X www.mdpi.com/journal/biomolecules/ Review Chaperoning Proteins for Destruction: Diverse Roles of Hsp70 Chaperones and their Co-Chaperones in Targeting Misfolded Proteins to the Proteasome Ayala Shiber and Tommer Ravid * Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat-Ram, Jerusalem 91904, Israel; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +972-2-658-4349; Fax: +972-2-658-5449. Received: 28 March 2014; in revised form: 31 May 2014 / Accepted: 24 June 2014 / Published: 17 July 2014 Abstract: Molecular chaperones were originally discovered as heat shock-induced proteins that facilitate proper folding of proteins with non-native conformations. While the function of chaperones in protein folding has been well documented over the last four decades, more recent studies have shown that chaperones are also necessary for the clearance of terminally misfolded proteins by the Ub-proteasome system. In this capacity, chaperones protect misfolded degradation substrates from spontaneous aggregation, facilitate their recognition by the Ub ligation machinery and finally shuttle the ubiquitylated substrates to the proteasome. The physiological importance of these functions is manifested by inefficient proteasomal degradation and the accumulation of protein aggregates during ageing or in certain neurodegenerative diseases, when chaperone levels decline. In this review, we focus on the diverse roles of stress-induced chaperones in targeting misfolded proteins to the proteasome and the consequences of their compromised activity. -
The Proteasomal Deubiquitinating Enzyme PSMD14 Regulates Macroautophagy by Controlling Golgi-To-ER Retrograde Transport
Supplementary Materials The proteasomal deubiquitinating enzyme PSMD14 regulates macroautophagy by controlling Golgi-to-ER retrograde transport Bustamante HA., et al. Figure S1. siRNA sequences directed against human PSMD14 used for Validation Stage. Figure S2. Primer pairs sequences used for RT-qPCR. Figure S3. The PSMD14 DUB inhibitor CZM increases the Golgi apparatus area. Immunofluorescence microscopy analysis of the Golgi area in parental H4 cells treated for 4 h either with the vehicle (DMSO; Control) or CZM. The Golgi marker GM130 was used to determine the region of interest in each condition. Statistical significance was determined by Student's t-test. Bars represent the mean ± SEM (n =43 cells). ***P <0.001. Figure S4. CZM causes the accumulation of KDELR1-GFP at the Golgi apparatus. HeLa cells expressing KDELR1-GFP were either left untreated or treated with CZM for 30, 60 or 90 min. Cells were fixed and representative confocal images were acquired. Figure S5. Effect of CZM on proteasome activity. Parental H4 cells were treated either with the vehicle (DMSO; Control), CZM or MG132, for 90 min. Protein extracts were used to measure in vitro the Chymotrypsin-like peptidase activity of the proteasome. The enzymatic activity was quantified according to the cleavage of the fluorogenic substrate Suc-LLVY-AMC to AMC, and normalized to that of control cells. The statistical significance was determined by One-Way ANOVA, followed by Tukey’s test. Bars represent the mean ± SD of biological replicates (n=3). **P <0.01; n.s., not significant. Figure S6. Effect of CZM and MG132 on basal macroautophagy. (A) Immunofluorescence microscopy analysis of the subcellular localization of LC3 in parental H4 cells treated with either with the vehicle (DMSO; Control), CZM for 4 h or MG132 for 6 h. -
Aggresomal Sequestration and STUB1-Mediated Ubiquitylation During Mammalian Proteaphagy of Inhibited Proteasomes
Aggresomal sequestration and STUB1-mediated ubiquitylation during mammalian proteaphagy of inhibited proteasomes Won Hoon Choia,b, Yejin Yuna,b, Seoyoung Parka,c, Jun Hyoung Jeona,b, Jeeyoung Leea,b, Jung Hoon Leea,c, Su-A Yangd, Nak-Kyoon Kime, Chan Hoon Jungb, Yong Tae Kwonb, Dohyun Hanf, Sang Min Lime, and Min Jae Leea,b,c,1 aDepartment of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 03080 Seoul, Korea; bDepartment of Biomedical Sciences, Seoul National University Graduate School, 03080 Seoul, Korea; cNeuroscience Research Institute, Seoul National University College of Medicine, 03080 Seoul, Korea; dScience Division, Tomocube, 34109 Daejeon, Korea; eConvergence Research Center for Diagnosis, Korea Institute of Science and Technology, 02792 Seoul, Korea; and fProteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, 03080 Seoul, Korea Edited by Richard D. Vierstra, Washington University in St. Louis, St. Louis, MO, and approved July 1, 2020 (received for review November 18, 2019) The 26S proteasome, a self-compartmentalized protease complex, additional LC3-interacting region; the target cargoes can be plays a crucial role in protein quality control. Multiple levels of docked onto phosphatidylethanolamine-modified LC3 (LC3-II) regulatory systems modulate proteasomal activity for substrate on the expanding phagophore membrane, enveloped by an hydrolysis. However, the destruction mechanism of mammalian autophagosome, and eventually degraded in the autolysosomes. proteasomes is poorly understood. We found that inhibited pro- Notably, the enzymatic cascade attaching the lipid moiety at the teasomes are sequestered into the insoluble aggresome via C-terminal glycine of the cleaved LC3 protein in autophagy re- HDAC6- and dynein-mediated transport. -
Pairs of Dipeptides Synergistically Activate the Binding of Substrate by Ubiquitin Ligase Through Dissociation of Its Autoinhibitory Domain
Pairs of dipeptides synergistically activate the binding of substrate by ubiquitin ligase through dissociation of its autoinhibitory domain Fangyong Du*, Federico Navarro-Garcia†, Zanxian Xia, Takafumi Tasaki, and Alexander Varshavsky‡ Division of Biology, California Institute of Technology, Pasadena, CA 91125 Contributed by Alexander Varshavsky, August 29, 2002 Protein degradation by the ubiquitin (Ub) system controls the con- S. cerevisiae N-end rule pathway is the control of peptide import centrations of many regulatory proteins. The degradation signals through regulated degradation of the 35-kDa homeodomain pro- (degrons) of these proteins are recognized by the system’s Ub ligases tein CUP9, a transcriptional repressor of the di- and tripeptide (complexes of E2 and E3 enzymes). Two substrate-binding sites of transporter PTR2 (13, 24, 25). CUP9 contains an internal (C UBR1, the E3 of the N-end rule pathway in the yeast Saccharomyces terminus-proximal) degron which is recognized by a third substrate- cerevisiae, recognize basic (type 1) and bulky hydrophobic (type 2) binding site of UBR1. Previous work (13) has shown that the N-terminal residues of proteins or short peptides. A third substrate- UBR1-dependent degradation of CUP9 is allosterically activated by binding site of UBR1 targets CUP9, a transcriptional repressor of the dipeptides with destabilizing N-terminal residues. In the resulting peptide transporter PTR2, through an internal (non-N-terminal) de- positive feedback, imported dipeptides bind to UBR1 and accel- gron of CUP9. Previous work demonstrated that dipeptides with erate the UBR1-dependent degradation of CUP9, thereby dere- destabilizing N-terminal residues allosterically activate UBR1, leading pressing the expression of PTR2 and increasing the cell’s capacity to accelerated in vivo degradation of CUP9 and the induction of PTR2 to import peptides (13). -
Cascade Profiling of the Ubiquitin-Proteasome System in Cancer Anastasiia Rulina
Cascade profiling of the ubiquitin-proteasome system in cancer Anastasiia Rulina To cite this version: Anastasiia Rulina. Cascade profiling of the ubiquitin-proteasome system in cancer. Agricultural sciences. Université Grenoble Alpes, 2015. English. NNT : 2015GREAV028. tel-01321321 HAL Id: tel-01321321 https://tel.archives-ouvertes.fr/tel-01321321 Submitted on 25 May 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES Spécialité : Biodiversite du Developpement Oncogenese Arrêté ministériel : 7 août 2006 Présentée par Anastasiia Rulina Thèse dirigée par Maxim Balakirev préparée au sein du Laboratoire BIOMICS dans l'École Doctorale Chimie et Sciences du Vivant Profilage en cascade du système ubiquitine- protéasome dans le cancer Thèse soutenue publiquement le «17/12/2015», devant le jury composé de : M. Damien ARNOULT Docteur CR1, CNRS, Rapporteur M. Matthias NEES Professor Adjunct, University of Turku, Rapporteur M. Philippe SOUBEYRAN Docteur, INSERM, Membre Mme. Jadwiga CHROBOCZEK Directeur de recherche DR1, CNRS, Membre M. Xavier GIDROL Directeur de laboratoire, CEA, Président du jury M. Maxim BALAKIREV Docteur, CEA, Membre, Directeur de Thèse 2 Я посвящаю эту научную работу моей маме, Рулиной Людмиле Михайловне, с любовью и благодарностью. -
Cdc53/Cullin and the Essential Hrt1 RING–H2 Subunit of SCF Define a Ubiquitin Ligase Module That Activates the E2 Enzyme Cdc34
Downloaded from genesdev.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Cdc53/cullin and the essential Hrt1 RING–H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34 Jae Hong Seol,1,5 R.M. Renny Feldman,1,5 Wolfgang Zachariae,2,5 Anna Shevchenko,3 Craig C. Correll,1 Svetlana Lyapina,1 Yong Chi,1 Marta Galova,2 Jonathan Claypool,4 Suzanne Sandmeyer,4 Kim Nasmyth,2 Andrej Shevchenko,3 and Raymond J. Deshaies1,6 1Division of Biology, California Institute of Technology, Pasadena, California 91125 USA; 2Research Institute of Molecular Pathology, A-1030 Vienna, Austria; 3Peptide and Protein Group European Molecular Biology Laboratory, 69012 Heidelberg, Germany; 4Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, California 92697-4025 USA SCFCdc4 (Skp1, Cdc53/cullin, F-box protein) defines a family of modular ubiquitin ligases (E3s) that regulate diverse processes including cell cycle, immune response, and development. Mass spectrometric analysis of proteins copurifying with Cdc53 identified the RING–H2 finger protein Hrt1 as a subunit of SCF. Hrt1 shows striking similarity to the Apc11 subunit of anaphase-promoting complex. Conditional inactivation of hrt1ts Cdc4 results in stabilization of the SCF substrates Sic1 and Cln2 and cell cycle arrest at G1/S. Hrt1 assembles into recombinant SCF complexes and individually binds Cdc4, Cdc53 and Cdc34, but not Skp1. Hrt1 stimulates the E3 activity of recombinant SCF potently and enables the reconstitution of Cln2 ubiquitination by recombinant SCFGrr1. Surprisingly, SCF and the Cdc53/Hrt1 subcomplex activate autoubiquitination of Cdc34 E2 enzyme by a mechanism that does not appear to require a reactive thiol.