COMMENT Comment on Reply to Comment of Finger Et Al. (2013) On

Total Page:16

File Type:pdf, Size:1020Kb

COMMENT Comment on Reply to Comment of Finger Et Al. (2013) On Andean Geology 41 (3): 639-656. September, 2014 Andean Geology doi: 10.5027/andgeoV40n2-a07 formerly Revista Geológica de Chile www.andeangeology.cl COMMENT Comment on Reply to Comment of Finger et al. (2013) on: ‘Evidence for an Early-Middle Miocene age of the Navidad Formation (central Chile): Paleontological, paleoclimatic and tectonic implications’ of Gutiérrez et al. (2013, Andean Geology 40 (1): 66-78) Alfonso Encinas1, Kenneth L. Finger2, Sven N. Nielsen3, Ximena Contardo4 1 Departamento de Ciencias de la Tierra, Universidad de Concepción, Casilla 160-C, Concepción, Chile. [email protected] 2 University of California Museum of Paleontology, 1101 Valley Life Sciences Building, Berkeley, CA 94720-4780, USA. [email protected] 3 Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Casilla 567, Valdivia, Chile. [email protected] 4 Universidad Andrés Bello, Facultad de Ingeniería, Geología, Quillota 980, Viña del Mar, Chile. [email protected] In their answer to our Comment (Finger et al., discipline plays vital roles in geologic correlation 2013), Le Roux et al. (2013) misunderstand several and our understanding of earth history. of our remarks and present what we view as flawed We agree with some of the problems encoun- arguments, principally their case for a shallow-marine tered with biostratigraphy that were pointed out by environment for part of the Navidad Formation. Le Roux et al. (2013). Pitfalls of this science have We do not wish to see this exchange evolve into an been recognized for a long time, and they have endless discussion, but we feel obligated to clarify been described in detail in several texts (e.g., Miall, some points. We think this is necessary because of 1999). One of the problems is that a fossil species history and importance of the Navidad Formation is recognized according to its original description, as the reference for the marine Miocene of Chile. which is typically of the specimen designated and Here we also expound upon some concepts relevant illustrated as its holotype. Every paleontologist to the distinction between shallow-and deep-marine recognizes the subjectivity involved in identifying environments. a form that differs slightly from the holotype they most closely resemble. As with most uncertainties 1. Age of the Navidad Formation stemming from using a single approach to decipher a complex problem, they can often be recognized Finger et al. (2013) agrees with Le Roux et al. and possibly resolved when they are part of a mul- (2013) that at least part of the Navidad Formation tidisciplinary approach, and as relevant empirical was deposited during the Early Miocene, although data becomes available. For instance, imagining an we have some doubt about the reliability of younger example similar to that of the coelacanth presented radiometric ages derived from pumice clasts because by Le Roux et al. (2013), no geologist would give the isotopic signature could have been slightly altered credit to a Sr or K-Ar Miocene date obtained from a during transport (Finger et al., 2013). The negative sedimentary succession containing fossils of rudists in opinion of biostratigraphy expressed by Le Roux et living position, ammonites, and plesiosaurs because al. (2013), however, must be addressed because the an immense number of observations indicate that 640 COMMENT ON REPLY TO COMMENT OF FINGER ET AL. (2013 )... those taxa went extinct in the Cretaceous-Palogene (2013), principally the ages that defy the stratigraphic boundary. The results of other age-dating methods order of the samples (e.g., one of them being 3.3 My can orient the paleontologist toward published older than that from the underlying bed; figure 3 in faunas of the indicated age, which is particularly Gutiérrez et al., 2013). However, they contradict helpful in identifying species that may be difficult themselves when they admit that Gutiérrez et al. to distinguish among the collected specimens. In the (2013) did not mention the Sr date of 12.1±0.7 Ma (in case of the Navidad Formation, different methods Encinas, 2006), which was obtained from specimens produced inconsistent results that indicated Early, thought to be Neogloboquadrina acostaensis (Finger Middle, and Late Miocene or younger ages (Finger et al., 2007), because it was too old, even though the et al., 2013 and references therein), with all previous maximum global age for this species (10.9 Ma) is studies on the planktic foraminifera having identi- only 0.5 My younger. Their argument is even more fied species indicative of Late Miocene or younger illogical because they had considered that this and ages (Dremel, in Herm, 1969; Martínez-Pardo and other Navidad species of planktic foraminifers had Osorio, 1964; Cecioni, 1970; Ibaraki, 1992; Finger first appeared in the South East Pacific in the Early et al., 2007). Miocene (Gutiérrez et al., 2013). The global framework for planktic foraminiferal In summary, no geologic dating method is im- biostratigraphy, on the other hand, is based on ex- mune to pitfalls that can result in inaccurate age tensive data gathered over several decades from a determinations. Sr dates must be taken with caution countless number of outcrop and borehole sections, as diagenesis can modify the original 87Sr/86Sr ratio many millions of specimens, and integration with (DePaolo, 1986), which is a likely explanation for other microfossil biostratigraphies (e.g., calcareous the aberrant ages of 12.1±0.7 and 31.5±0.6 reported nannoplankton), magnetostratigraphy, and the absolute by Encinas (2006). The use of a scanning electron time scale. Those sequences, especially deep-sea cores, microscopy (SEM) to recognize diagenetic alteration, are often rich in planktic foraminifers, continuous, and additional means of age-dating are advisable. and span multiple ages, which is in stark contrast to the Navidad material. For these reasons, Finger 2. Sedimentary environment of the Navidad et al. (2013) dismissed the proposition by Gutiérrez Formation et al. (2013) that the planktic foraminifera reported by Finger et al. (2007) appeared 10 to 20 Myr Le Roux et al. (2013) discuss old and new data earlier in the Southeast Pacific than elsewhere in in favor of a shallow-marine environment for at least the global ocean. part of the Navidad Formation. Their arguments are Chronostratigraphic dating based on isotopic ratios based principally on the presence of shallow-marine is not immune to problematic results. For example, invertebrates and taphonomy. They also provide Wyss et al. (1996) emphasizes the problems of some new sedimentological data to support their overlapping radiometric ages between the Abanico interpretation. and Farellones formations, whereas Flynn et al. (2008) noted that ‘the Cura-Mallín and Trapa Trapa 2.1. Taphonomy formations radiometrically dated at Laguna del Laja are substantially younger (by more than ~10 million The most important arguments employed by and ~5-10 Myr, respectively) than the same formations Le Roux et al. (2013) to support a shallow marine in Argentina’. Le Roux et al. (2004) dated the marine environment for the Navidad Formation are derived Coquimbo Formation as Miocene to Pliocene and from taphonomic analysis, most notably the good noted some problems derived from the Sr ages. For preservation of some of the marine invertebrates and example, they obtained Sr dates of 7.3, 5.4, and 5.2 terrestrial leaves and insects. They interpret those Ma from the same bed and concluded that the older specimens as in situ and counter our interpretation age (7.3 Ma) must belong to a reworked fossil, which of displacement by turbidity currents by claiming also exemplifies that age-related assumptions are not that they are not conductive to good preservation exclusive to biostratigraphic studies. In the case of the because they have velocities ‘exceeding 120 km per Navidad Formation, Le Roux et al. (2013) recognize hour and extreme turbulence capable of breaking the problems with Sr dating indicated by Finger et al. telegraph cables’. Encinas et al. / Andean Geology 41 (3): 639-656, 2014 641 Not all of the Navidad Formation was deposited figure 3; this work, figure 1) all show abundant in deep water, as this unit includes some shallow- and well-preserved leaves but the Gutiérrez et al. marine facies (Encinas et al., 2008) and we have (2013) scheme has the Matanzas flora at the base doubts on our previous interpretation of some of of the Navidad Formation, whereas the other two the sections of this unit as deep-water sedimentary correspond to the upper part of this unit, which ac- facies (Finger et al., 2013). Regardless, we consider cording to these authors was deposited at the top of the taphonomic arguments of Le Roux et al. (2013) a deepening-upward succession. More importantly, ungrounded, as studies have reported well-preserved as noted by Finger et al. (2013) but not mentioned displaced fossils in gravity-flow deposits, such as by Le Roux et al. (2013), the leaf-rich successions molluscs (Walker, 2001), and even delicate leaves of the Navidad Formation include sedimentary fa- (Zavala et al., 2012), insects (Gaudant and Busquets, cies, ichnofacies, and microfossils typical of deep- 1996), and pterosaur wing bones (Hilton, 2003). Also, marine environments (Figs. 1 and 2). We therefore relatively slow turbidity current velocities of 3.6 to interpret the Navidad Formation leaf-bearing strata 10.8 km/h have been recorded, such as on the Amazon as deposited by E turbidity currents (sensu Zavala et Fan (Pirmez et al., 2000), and high-speed flows that al., 2012) that originated from hyperpycnical flows. can snap submarine cables are exceptional (e.g., Fine Decapod crustaceans inhabit all ocean depths et al., 2005). Sediment can also be transported to (Feldmann et al., 1991); thus, the presence of un- deep-water by other kinds of gravity flows, such as identified, articulated crabs in strata of the Navidad debris or sandy debris flows where grain movement Formation is not necessarily indicative of shallow- is minimum (e.g., Shanmungan, 2000).
Recommended publications
  • This Article Appeared in a Journal Published by Elsevier. the Attached
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Palaeogeography, Palaeoclimatology, Palaeoecology 280 (2009) 480–488 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Early Miocene subtropical water temperatures in the southeast Pacific Sven N. Nielsen ⁎,1, Johannes Glodny Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany article info abstract Article history: Cenozoic climate of western South America is strongly controlled by features like Andean uplift and the Received 14 May 2009 Humboldt Current. The first strontium isotope age data from central and southern Chile provide a latest Accepted 24 June 2009 Oligocene to late early Miocene age for classic warm-water mollusk faunas reaching as far south as 45°S. Available online 3 July 2009 Comparison with the biogeography of congeneric living species indicates that sea surface temperatures off central and southern Chile during that time were at least 5 °C higher than today; i.e., minimum annual mean Keywords: sea surface temperatures for Darwin's Navidad fauna at 34°S are estimated as 20 °C.
    [Show full text]
  • Redalyc.Depositional Environment of Stelloglyphus Llicoensis Isp. Nov
    Andean Geology ISSN: 0718-7092 [email protected] Servicio Nacional de Geología y Minería Chile Le Roux, Jacobus P.; Nielsen, Sven N.; Henríquez, Álvaro Depositional environment of Stelloglyphus llicoensis isp. nov.: a new radial trace fossil from the Neogene Ranquil Formation, south-central Chile Andean Geology, vol. 35, núm. 2, julio, 2008, pp. 307-319 Servicio Nacional de Geología y Minería Santiago, Chile Disponible en: http://www.redalyc.org/articulo.oa?id=173918441006 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Revista Geológica de Chile 35 (2): 307-319. July, 2008 Revista Geológica de Chile www.scielo.cl/rgch.htm Depositional environment of Stelloglyphus llicoensis isp. nov.: a new radial trace fossil from the Neogene Ranquil Formation, south-central Chile jacobus P. Le Roux1, Sven N. Nielsen2, álvaro Henríquez1 1 Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 13518, Correo 21, Santiago, Chile. [email protected]; [email protected] 2 Institut für Geowissenschaften, Christian-Albrechts-Universität, Ludewig-Meyn-Str.10, 24118 Kiel, Germany. [email protected] ABSTRACT. Stelloglyphus llicoensis isp. nov. is a large radial, discoidal to ellipsoidal trace fossil with a central shaft and single to bifurcating branches radiating from different levels. A 30 m thick measured section of the Ranquil For- mation at Punta Litre contains an associated trace fossil assemblage including Zoophycos, Chondrites, Phycosiphon, Nereites missouriensis, Lockeia siliquaria, Psammichnites(?), Parataenidium, Ophiomorpha, and Rhizocorallium, some of which reworked the Stelloglyphus traces.
    [Show full text]
  • PDF Linkchapter
    Index Page numbers in italic denote Figures. Page numbers in bold denote Tables. Abanico extensional basin 2, 4, 68, 70, 71, 72, 420 Andacollo Group 132, 133, 134 basin width analogue modelling 4, 84, 95, 99 Andean margin Abanico Formation 39, 40, 71, 163 kinematic model 67–68 accommodation systems tracts 226, 227, 228, 234, thermomechanical model 65, 67 235, 237 Andean Orogen accretionary prism, Choapa Metamorphic Complex development 1, 3 20–21, 25 deformation 1, 3, 4 Aconcagua fold and thrust belt 18, 41, 69, 70, 72, 96, tectonic and surface processes 1, 3 97–98 elevation 3 deformation 74, 76 geodynamics and evolution 3–5 out-of-sequence structures 99–100 tectonic cycles 13–43 Aconcagua mountain 3, 40, 348, 349 uplift and erosion 7–8 landslides 7, 331, 332, 333, 346–365 Andean tectonic cycle 14,29–43 as source of hummocky deposits 360–362 Cretaceous 32–36 TCN 36Cl dating 363 early period 30–35 aeolian deposits, Frontal Cordillera piedmont 299, Jurassic 29–32 302–303 late period 35–43 Aetostreon 206, 207, 209, 212 andesite aggradation 226, 227, 234, 236 Agrio Formation 205, 206, 207, 209, 210 cycles, Frontal Cordillera piedmont 296–300 Chachahue´n Group 214 Agrio fold and thrust belt 215, 216 Neuque´n Basin 161, 162 Agrio Formation 133, 134, 147–148, 203, Angualasto Group 20, 22, 23 205–213, 206 apatite ammonoids 205, 206–211 fission track dating 40, 71, 396, 438 stratigraphy 33, 205–211 (U–Th)/He thermochronology 40, 75, 387–397 Agua de la Mula Member 133, 134, 205, 211, 213 Ar/Ar age Agua de los Burros Fault 424, 435 Abanico Formation
    [Show full text]
  • A Review of Tertiary Climate Changes in Southern South America and the Antarctic Peninsula. Part 1: Oceanic Conditions
    Sedimentary Geology 247–248 (2012) 1–20 Contents lists available at SciVerse ScienceDirect Sedimentary Geology journal homepage: www.elsevier.com/locate/sedgeo Review A review of Tertiary climate changes in southern South America and the Antarctic Peninsula. Part 1: Oceanic conditions J.P. Le Roux Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile/Centro de Excelencia en Geotérmia de los Andes, Casilla 13518, Correo 21, Santiago, Chile article info abstract Article history: Oceanic conditions around southern South America and the Antarctic Peninsula have a major influence on cli- Received 11 July 2011 mate patterns in these subcontinents. During the Tertiary, changes in ocean water temperatures and currents Received in revised form 23 December 2011 also strongly affected the continental climates and seem to have been controlled in turn by global tectonic Accepted 24 December 2011 events and sea-level changes. During periods of accelerated sea-floor spreading, an increase in the mid- Available online 3 January 2012 ocean ridge volumes and the outpouring of basaltic lavas caused a rise in sea-level and mean ocean temper- ature, accompanied by the large-scale release of CO . The precursor of the South Equatorial Current would Keywords: 2 fi Climate change have crossed the East Paci c Rise twice before reaching the coast of southern South America, thus heating Tertiary up considerably during periods of ridge activity. The absence of the Antarctic Circumpolar Current before South America the opening of the Drake Passage suggests that the current flowing north along the present western seaboard Antarctic Peninsula of southern South American could have been temperate even during periods of ridge inactivity, which might Continental drift explain the generally warm temperatures recorded in the Southeast Pacific from the early Oligocene to mid- Ocean circulation dle Miocene.
    [Show full text]
  • Germination Studies Showed a Warm Day/Cold Night Regime to Be the Most Effective
    SOME STUDIES ON THE GENUS ACAENA A thesis presented to the Faculty of Science and Engineering in the University of Birmingham by DAVID WINSTON HARRIS WALTON in supplication for the degree of Doctor of Philosophy. September, 1974. University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. 09CC/.6 "The inner parts of the Country South Georgia was not less savage and horrible: the Wild rocks raised their lofty summits till they were lost in the Clouds and the Vallies laid buried in everlasting Snow. Not a tree or shrub was to be seen, no not even big enough to make a toothpick. I landed in three different places, displayed our Colours and took possession of the Country in his Majestys name under a descharge of small arms. Our Botanists found here only three plants, the one is a coarse strong bladed grass which grows in tufts, Wild Burnet and a Plant like Moss which grows on the rocks". The Journals of Captain Cook : vol. 2 - The Voyage of the Resolution and Adventure in 1772-1775. Cambridge University Press (1961).
    [Show full text]
  • New Decapods from the Navidad Formation (Miocene) of Chile
    JOURNAL OF CRUSTACEAN BIOLOGY, 25(3): 427–449, 2005 NEW DECAPODS FROM THE NAVIDAD FORMATION (MIOCENE) OF CHILE Rodney M. Feldmann, Carrie E. Schweitzer, and Alfonso Encinas (RMF, correspondence) Department of Geology, Kent State University, Kent, Ohio 44242, U.S.A. ([email protected]); (CES) Department of Geology, Kent State University Stark Campus, Canton, Ohio 44720, U.S.A. ([email protected]); (AE) Universidad de Chile, Departamento de Geologı´a, Casilla 13518, Correo 21, Santiago, Chile ([email protected]) ABSTRACT A new Miocene decapod fauna is described from the Navidad Formation of coastal Chile. The fauna includes five callianassoid taxa, none of which is preserved sufficiently to identify to species level. New species include Calappilia? chilensis, Hepatus spinimarginatus, Proterocarcinus navidad, Pilumnus cucaoensis, and Pinnixa navidadensis. A possible rhizopine member of the Pilumnidae Samouelle, 1819, is described. Trichopeltarion levis Casadı´o et al., 2004, previously known from the late Oligocene of western Argentina, was also recovered from these rocks. Calappa circularis Beurlen, from the lower Miocene Pirabas Formation in Brazil, is herein referred to Calappilia. This report greatly increases the known number of fossil decapods from Chile and sets the stage for paleobiogeographic comparison of the decapod faunas of Chile and Argentina. The Neogene rock sequence in Chile is largely confined to M.S. thesis, added Callianassa sp. and a new species of crab about seven basins along the modern Pacific Ocean to the list. That material along with the newly collected (Ceccioni, 1980). These basins have been subject to extreme specimens will be discussed herein. vertical motion during the Neogene (Martı´nez-Pardo, 1990) so that rocks have been deposited at depths ranging from GEOLOGICAL SETTING shallow, inner shelf to bathyal.
    [Show full text]
  • Consideraciones Acerca De Las Coníferas Del Mioceno De Chile Central Occidental*
    Bol. Mus. Nac. Hist. Nat. Chile, 44: 47-71 (1993) CONSIDERACIONES ACERCA DE LAS CONÍFERAS DEL MIOCENO DE CHILE CENTRAL OCCIDENTAL* ^ ALEJANDRO TRONCOSO A.” EDGARDO J. ROMERO**’ Departamento Ciencias Biológicas, Universidad de Talca. Casilla 747. Talca. Chile. Departamento Ciencias Biológicas, Universidad de Buenos Aires. Ciudad Universitaria — P2 — 4*P. Nuñez, Buenos Aires (C. F.). República Argentina. RESUMEN Se da cuenta del contenido en Coniferas de las tafofloras de la Formación Navidad, Mioceno, en el área de Matanzas (33° 57’ 30” S, 71° 52’ 15” W). Se discute las probables causas de su posterior extinción en el área. Palabras claves: Fitogeografía histórica, Mioceno, Chile central, Coniferas. ABSTRACT Conifers remains from Miocene Navidad Formation at Matanzas (33° 57’ 30” S, 71° 52’ 15” W) area are reported in this paper. The causes of their later extinction in the area are discussed. Key words: Historical phytogeography, Miocene, Central Chile, Conifers. INTRODUCCION Con posterioridad al estudio de la paleoflora de Matanzas por parte de uno de los autores (Troncoso, 1991), nuevos hallazgos de Coniferas en los mismos yacimientos nos han permitido orientar los análisis de la vegetación desde nuevas perspectivas. Los fósiles provienen de tres yacimientos en el cliff costero de los alrededores de la localidad de Matanzas (33° 57’ 30” lat. S, 71° 52’ 15” long. W), en la costa de Chile central. Los estratos portadores corresponden al miembro Navidad de la formación homónima, a la cual se atribuye una edad Burdigaliana-Tortoniana (Martínez-Pardo, 1990). Los tres yacimientos son: el de Punta Perro, Proyecto f o n d e c y t 89-030 y Proyecto Red Latinoamericana de Botánica 89-01.
    [Show full text]
  • Sr Isotope Stratigraphy
    Originally published as: Nielsen, S. N., Glodny, J. (2009): Early Miocene subtropical water temperatures in the southheast Pacific. - Palaeogeography Palaeoclimatology Palaeoecology, 280, 3-4, 480-488, DOI: 10.1016/j.palaeo.2009.06.035 Early Miocene subtropical water temperatures in the southeast Pacific Sven N. Nielsen*, Johannes Glodny Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany * Now at Institut für Geowissenschaften, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Str. 10, 24118 Kiel, Germany. Fax: +49 431 880 5557. E-mail address: [email protected]. ABSTRACT Cenozoic climate of western South America is strongly controlled by features like Andean uplift and the Humboldt Current. The first strontium isotope age data from central and southern Chile provide a latest Oligocene to late early Miocene age for classic warm-water mollusk faunas reaching as far south as 45°S. Comparison with the biogeography of congeneric living species indicates that sea surface temperatures off central and southern Chile during that time were at least 5°C higher than today; i.e., minimum annual mean sea surface temperatures for Darwin’s Navidad fauna at 34°S are estimated as 20°C. As expected, the number of tropical taxa decreases towards the south but several are still present as far south as 45°S. The ages scatter relatively broadly between ~24 and ~16 Ma, partly even within individual localities. Shallow water and deeper water faunas are revealed to have similar ages. When considered in light of convincing micropaleontological evidence for late Miocene to early Pliocene depositional ages, the Sr- isotope data support a hypothesis that the mollusk fauna is reworked.
    [Show full text]
  • Roessler Vs. Bird Hunters: “Passarinhada” and Ethnic
    98 ROESSLER VS. BIRD HUNTERS: “PASSARINHADA” AND ETHNIC CONFLICTS IN THE SOUTH OF BRAZIL Elenita Malta Pereira and Regina Weber ELENITA MALTA PEREIRA. Historian. Master’s degree in History from the Federal University of Rio Grande do Sul. History doctorate student at UFRGS. Member of the Working Group on the History of Ideas of Anpuh/RS, associated with the National History Association - Rio Grande do Sul Center. BRAZIL. [email protected] REGINA WEBER. Historian. Master’s degree from UNICAMP and a PhD in Social Anthropology from the National Museum at the Federal University of Rio de Janeiro. Professor at the Federal University of Rio Grande do Sul, in the History Department and in the Graduate History Program. Coordinator of the Working Group on Ethnic Studies associated with the National History Association - Rio Grande do Sul. BRAZIL. [email protected] DATE OF RECEPTION: 28/08/2011 DATE OF APROBATION: 01/10/2011 Abstract: Southern Brazil is a region characterized by an inter-ethnic framework, which originates from, among other factors, the European immigrants who colonized the area from the nineteenth century on. Henrique Luiz Roessler, a tax agent for hunting and fishing as well as a descendant of German immigrants, started repressing the “passarinhada”, a name used either for the hunting of wild birds or a gastronomic ritual. Roessler was sued by the hunters and became the target of a defamatory campaign by Italian immigrants and their descendants, who were the main practitioners of bird hunting. The MIRADAS EN MOVIMIENTO SPECIAL VOL. JANUARY 2012: (98-124) 99 E. PEREIRA- R.
    [Show full text]
  • Evidence for an Early-Middle Miocene Age of the Navidad Formation (Central Chile): Paleontological, Climatic and Tectonic Implications’ of Gutiérrez Et Al
    Andean Geology 41 (3): 657-669. September, 2014 Andean Geology doi: 10.5027/andgeoV41n3-a0810.5027/andgeoV40n2-a?? formerly Revista Geológica de Chile www.andeangeology.cl REPLY TO COMMENT Reply to Comment of Encinas et al. (2014) on: ‘Evidence for an Early-Middle Miocene age of the Navidad Formation (central Chile): Paleontological, climatic and tectonic implications’ of Gutiérrez et al. (2013, Andean Geology 40 (1): 66-78) Jacobus P. Le Roux1, Néstor M. Gutiérrez1, Luis F. Hinojosa2, Viviana Pedroza1, Juan Becerra1 1 Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile-Centro de Excelencia en Geotermia de los Andes, Plaza Ercilla 803, Santiago, Chile. [email protected]; [email protected]; [email protected]; [email protected] 2 Laboratorio de Paleoecología, Facultad de Ciencias-Instituto de Ecología y Biodiversidad (IEB), Universidad de Chile, Las Palmeras 3425, Santiago, Chile. [email protected] Debate in science is always good because it forces Encinas (2006) on a specimen of Neogloboquadrina both parties to re-examine the available evidence, acostaensis, but now Encinas et al. (2014) accuse which can often be interpreted in more than one way. us of contradicting ourselves when we ‘admit that In this case, it seems as if we are at least getting a Gutiérrez et al. (2013) did not mention the Sr date, little bit closer in our interpretation of paleowater because it was too old’. We never admitted anything depths for the Navidad Formation, as Encinas et al. of the sort, as our remark referred to Encinas (2006), (2014) now ‘suspect that some of the sandstone strata not ourselves.
    [Show full text]
  • Formation, Central Chile, South America
    Cainozoic Research, 3-18, 2006 4(1-2), pp. February An Early Miocene elasmobranch fauna from the Navidad Formation, Central Chile, South America ³* Mario+E. Suarez Alfonso Encinas² & David Ward ¹, 'Museo Paleontoldgico de Caldera, Cousino, 695, Caldera, Atacama, Chile, [email protected] 2 Departamento de Geologia. Universidad de Chile, Plaza Ercilla 803, Santiago Chile. [email protected] J David J. Kent ME4 4AW UK. Ward, School of Earth Sciences, University of Greenwich, Chatham Maritime, Address for correspon- dence: Crofton Court, 81 Crofton Lane, Orpington, Kent BR5 1HB, UK. E-mail: [email protected]. [* corresponding author] Received 5 March 2003; revised version accepted 12 January 2005 A rich elasmobranch assemblage is reported from the Early Neogenemarine sediments ofthe lower member of the NavidadFormation, Central Chile. The fauna comprise Squalus sp., Pristiophorus sp., Heterodontus sp., Megascyliorhinus trelewensis. Carcharias cuspi- data, Isurus hastalis, Carcharoides and Cal- Odontaspisferox, oxyirinchus,Isurus hastalis, Cosmopolitodus totuserratus, Myliobatis sp. for the the Miocene The of lorhinchus sp., all ofwhich are reported first time in Early ofChile. presence Carcharoides totuserratus sup- the Miocene for the lower ofthe basal Navidad Formation. The Chilean fossil elasmobranch fauna is ports Early age part representedby deep water and shallow water taxa, which probably were mixed in a submarine fan. Certain taxa suggest warm-temperate waters. The Early Miocene fauna from the Navidad Formation show affinities with other faunas previously reported from the Late Paleogene and Neogene of Argentina and New Zealand. Se describe rica asociacion de fosiles veniente de los sedimentos marines del Inferior de la Formación una elasmobranquios pro Neogeno central.
    [Show full text]
  • Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications: Second Edition
    Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications: Second Edition Edited by Manajit Sengupta,1 Aron Habte,1 Christian Gueymard,2 Stefan Wilbert,3 Dave Renné,4 and Thomas Stoffel5 1 National Renewable Energy Laboratory 2 Solar Consulting Services 3 German Aerospace Center (DLR) 4 Dave Renné Renewables, LLC 5 Solar Resource Solutions, LLC This update was prepared in collaboration with the International Energy Agency Solar Heating and Cooling Programme: Task 46 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Technical Report NREL/TP-5D00-68886 December 2017 Contract No. DE-AC36-08GO28308 Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications: Second Edition Edited by Manajit Sengupta,1 Aron Habte,1 Christian Gueymard,2 Stefan Wilbert,3 Dave Renné,4 and Thomas Stoffel5 1 National Renewable Energy Laboratory 2 Solar Consulting Services 3 German Aerospace Center (DLR) 4 Dave Renné Renewables, LLC 5 Solar Resource Solutions, LLC Prepared under Task No. SETP.10304.28.01.10 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. National Renewable Energy Laboratory Technical Report 15013 Denver West Parkway NREL/TP-5D00-68886 Golden, CO 80401 December 2017 303-275-3000 • www.nrel.gov Contract No.
    [Show full text]