Life History Characteristics of Wyeomyia Smithii from New Jersey

Total Page:16

File Type:pdf, Size:1020Kb

Life History Characteristics of Wyeomyia Smithii from New Jersey Journal ofVector Ecology 24(1): 70-77 1 799H4 Life History Characteristics of Wyeomyia smithii from New Jersey Farida Mahmood and Wayne J. Crans Department of Entomology, Rutgers the State University 180 Jones Avenue, New Brunswick NJ 08901-8536 Received 29 July 1998; Accepted 72 October 1998 ABSTRACT: We colonized Wyeomyia smithii (Coquillett) from southern New Jersey and studied life history characteristics in the laboratory. Males and females showed no significant difference in time spent from first to third instar, but female larvae remained in fourth instar 2.1 days longer than males. At 22+/-2C females emerged 22.6+/-3 days after egg hatch; males emerged approximately two days earlier. Male emergence peaked five hours after dawn; females showed a trend to emerge late in the day. Rotation of male terminalia was completed 9 to 11 hours after emergence. Females were capable of mating immediately after emergence. Wyeomyia smithii females laid their first egg batch four to six days after emergence. Females were capable of laying up to seven batches ofeggs, however the mean number ofeggs per oviposition decreased significantly as the number of oviposition cycles increased. Keyword Index: Wyeomyia smithii, larval development, emergence rhythms, sexual maturation, fecundity. INTRODUCTION rates of females and males, diel emergence rhythms, sexual maturation of both sexes, ovarian development, Wyeomyia smithii (Coquillett) is distributed in and fecundity of females. eastern North America from the Gulf of Mexico to Labrador and northeastern Saskatchewan (Bradshaw MATERIALS AND METHODS and Holzapel 1996). The mosquito completes its immature development in aquatic habitat offered by the Colony Maintenance leaves of the purple pitcher plant, Sarracenia purpurea A colony of Wy. smithii was established from third- L. Dodge (1947) felt that Wy. smithii was limited to instar larvae that were collected from a stand of S. the northern subspecies of the plant, S. p. gibbosa purpurea growing in the New Jersey pine barrens in (Rafinesque) and that Wyeomyia haynei followed the Ocean County, NJ (latitude 39 50'; longitude 74 15'). range of the southern subspecies, S. p. venosa Larvae were collected from the leaf liquor of plants in (Rafinesque). The two species are now believed to late March 1997 and reared in enamel pans containing represent a single species, Wy. smithii, that displays a deionized water and fed a mixture of 20 parts ground north-south geographic dine of morphological and life hamster food, 12 parts liver powder, and part brewer's history characteristics (Bradshaw and Lounibos 1977, yeast. We kept the adults in a 0.3 m3 cage at a 16L:8D Bradshaw and Holzapfel 1983). photoperiod that included 1.5 hours of dusk and hour Northern populations of Wy. smithii overwinter as of dawn provided by a 15 watt incandescent bulb. larvae, frozen within the leaves of the host plant (Smith Adults were given constant access to 10% sucrose 1902), and are obligatorily autogenous throughout their solution on cotton wicks as a source of carbohydrate and life span (O'Meara and Lounibos 1981). Southern were never offered blood. populations are autogenous for their first egg batch but generally require blood for subsequent batches Larval Development. (Bradshaw 1980). To quantify immature life history characteristics, We colonized Wy. smithii from southern New Jersey we reared 96 individual larvae at 22+/-2C in separate and used the F^ generation to study various aspects of wells of 24 well (2.0 ml each) Falcon(R) culture plates. its biology, such as differences in larval developmental We placed a single first-instar larva in each well with 1.5 June, 1999 Journal 'ijll^&f-toK^ology 71 ml of deionized water and placed covers on each unit rotation. Terminalia rotation was checked until all throughout the rearing process. The food mixture used of the males in remaining cohorts had terminalia to rear the colony was mixed in slurry, and 100 ml was rotated to 180. We also examined similar groups of added to each well. The wells of the rearing plates were males to determine whether the terminalia rotated skimmed daily with a paper towel to remove scum clockwise or counter clockwise. Direction was formed by bacterial growth. Deionized water was determined visually by noting the position ofthe heavily added after the skimming process to replace water lost scaled light pleuron of segment 8 in relation to the black to evaporation. Food was added to individual wells tergum and white sternum of segment 7 (Fig 1). We every other day. We daily recorded the number of dead calculated the percentage of males in each class of larvae and kept a record of exuviae to determine day of terminalia rotation by dividing the number of males in molting. No food was added after pupation and adults a rotation class by total number of males checked for emerged directly in the wells of the covered culture that time interval. plates. The date and sex ofeach indi vidual was recorded at emergence, labeled by well number, and frozen in Sexual Maturation of Females individual Wasserman tubes. Wing length of both sexes We placed 22 female pupae in a 250 ml beaker and was measured with an ocular micrometer (Mahmood et allowed them to emerge in a 3.8 liter canon with 20, al. 1997) and compared with a two tailed t-test (P < five-day-old virgin males to determine if newly emerged 0.05). females mate with sexually mature males. Similarly, we We calculated the mean duration for each larval allowed 46 female and 39 male pupae to emerge together instarby sex and compared differences in instar duration to determine if newly emerged adults were able to mate. for each sex a using two way ANOVA and Tukey's Both groups were provided with 10% sucrose solution. HSD test. Survivorship to the adult stage was calculated After 30 hours, we dissected the spermathecae of each as total number of adults divided by the total number of female in saline (Hayes 1953) for the presence of sperm. first-instar larvae at the onset of the experiment. To determine the effect of age on female mating ability, we allowed groups of female and male pupae to emerge Diel Emergence Rhythms in a series of separate 3.8 liter paper cartons. Individual We allowed females to oviposit on the water surface groups of virgin females were isolated from males for 1, of 26.5 x 15.5 cm white enamel pans placed in the 3,4, and 5 days. Virgin males used formating experiments colony for 24 cage hours. Larvae that hatched from were four days of age. Four to six replicates of 10 these eggs a 24-hour during period were transferred to females in each of the above age classes were kept with 36.0 x 23.0 cm enamel and pans reared to pupation. A 10 virgin males for 24 hours. The following day, we total of 600 that pupae were collected on six different dissected the spermathecae of all females and recorded days and placed in 500 ml beakers containing deionized the number of inseminated females. The percentage of water and covered with nylon netting was observed for inseminated females (number inseminated in the sample/ adult Time of emergence. emergence was recorded at total number dissected) in different age classes were one-hour intervals for 24 hours for each group. Cohorts compared by one way ANOVA after arcsine of adults that emerged during each hourly interval were transformation and significant differences in means placed in separate 0.5 liter cartons and later recorded by were compared by Tukey's HSD test. numberand sex. Diel emergence rhythms were calculated as percent of total adults of each sex emerging during a Ovarian Development one-hour interval divided by the total number of adults We kept 100 newly emerged females and 100 of that sex that emerged over a 24-hour period. newly emerged males together in a 3.8 liter carton for 72 hours and provided 10% sucrose solution as a source of Sexual Maturation of Males energy. From this group we examined follicular Groups of 10 to 24 males were isolated within one development in the ovaries of five mated females at 24, hour of emergence in separate 0.5 liter paper cartons. 48, and 72 hours from the time of emergence. In All of the insects were anesthetized with chloroform in addition, we examined the ovaries offive newly emerged individual cartons at intervals from 0 to 12 hours after females that had not been exposed to males. We emergence to record progression in rotation of their recorded length and width of five indi vidual ovarioles in terminalia. We followed the classification system of each female and the length of the area occupied by yolk Khan and Reisen (1977) and recognized four stages of using the methods ofMahmood et. al. (1991). Significant rotation (Fig. I): 0 to <45 1) rotation, 2) 45 to 90 changes in ovarian development over time were rotation, 3) 90 to 135 rotation, and 4) 135 to 180 determined by comparing changes in the length of 72 Journal of Vector Ecology June, 1999 STAGE STAGE 2 STAGE 3 STAGE 4 PIeuron Tergum 45 Clockwise 45 Counter Clockwise Rotation Rotation Figure 1. Stages of rotation in the male tenninalia of Wyeomyia smithii. ovarian follicles, width of ovarian follicles, and length RESULTS of the follicles occupied by yolk using a one way ANOVA and Tukey's HSD test (Sokal and Rholf Immature Development 1981). Wyeomyia smithii eggs hatched on the fifth day after oviposition at 22+/-2C. Times spent in different Oviposition Cycles immature instars differed significantly (F =432.263; df We kept 50 newly emerged mosquitoes of each 4, 420; P < 0.001) and the mean duration of instars sex together in a 3.8 liter carton and isolated 30 differed significantly between sexes (F 432.263, df= females on the fourth day in individual glass vials 1,4; P < 0.001).
Recommended publications
  • California Encephalitis Orthobunyaviruses in Northern Europe
    California encephalitis orthobunyaviruses in northern Europe NIINA PUTKURI Department of Virology Faculty of Medicine, University of Helsinki Doctoral Program in Biomedicine Doctoral School in Health Sciences Academic Dissertation To be presented for public examination with the permission of the Faculty of Medicine, University of Helsinki, in lecture hall 13 at the Main Building, Fabianinkatu 33, Helsinki, 23rd September 2016 at 12 noon. Helsinki 2016 Supervisors Professor Olli Vapalahti Department of Virology and Veterinary Biosciences, Faculty of Medicine and Veterinary Medicine, University of Helsinki and Department of Virology and Immunology, Hospital District of Helsinki and Uusimaa, Helsinki, Finland Professor Antti Vaheri Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland Reviewers Docent Heli Harvala Simmonds Unit for Laboratory surveillance of vaccine preventable diseases, Public Health Agency of Sweden, Solna, Sweden and European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden Docent Pamela Österlund Viral Infections Unit, National Institute for Health and Welfare, Helsinki, Finland Offical Opponent Professor Jonas Schmidt-Chanasit Bernhard Nocht Institute for Tropical Medicine WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research National Reference Centre for Tropical Infectious Disease Hamburg, Germany ISBN 978-951-51-2399-2 (PRINT) ISBN 978-951-51-2400-5 (PDF, available
    [Show full text]
  • Genetic Characterization of the Wyeomyia Group of Orthobunyaviruses and Their Phylogenetic Relationships
    Journal of General Virology (2012), 93, 1023–1034 DOI 10.1099/vir.0.039479-0 Genetic characterization of the Wyeomyia group of orthobunyaviruses and their phylogenetic relationships Rashmi Chowdhary,1 Craig Street,1 Amelia Travassos da Rosa,2 Marcio R. T. Nunes,3 Kok Keng Tee,1 Stephen K. Hutchison,4 Pedro F. C. Vasconcelos,5 Robert B. Tesh,2 W. Ian Lipkin1,6 and Thomas Briese1,7 Correspondence 1Center for Infection and Immunity, Columbia University, New York, NY, USA Thomas Briese 2Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA [email protected] 3Department of Arbovirology and Hemorrhagic Fevers, Instituto Evandro Chagas, Ananindeua, Para´, Brazil 4454 Roche Life Sciences, Branford, CT, USA 5Center for Technological Innovation, Instituto Evandro Chagas, Ananindeua, Para´, Brazil 6Department of Pathology and Neurology, College of Physicians and Surgeons, Mailman School of Public Health, Columbia University, New York, NY, USA 7Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA Phylogenetic analyses can give new insights into the evolutionary history of viruses, especially of viruses with segmented genomes. However, sequence information for many viral families or genera is still limited and phylogenies based on single or short genome fragments can be misleading. We report the first genetic analysis of all three genome segments of Wyeomyia group viruses Wyeomyia, Taiassui, Macaua, Sororoca, Anhembi and Cachoeira Porteira (BeAr328208) in the genus Orthobunyavirus of the family Bunyaviridae. In addition, Tucunduba and Iaco viruses were identified as members of the Wyeomyia group. Features of Wyeomyia group members that distinguish them from other viruses in the Bunyamwera serogroup and from other orthobunyaviruses, including truncated NSs sequences that may not counteract the host’s interferon response, were characterized.
    [Show full text]
  • Table of Contents
    Table of Contents Oral Presentation Abstracts ............................................................................................................................... 3 Plenary Session ............................................................................................................................................ 3 Adult Control I ............................................................................................................................................ 3 Mosquito Lightning Symposium ...................................................................................................................... 5 Student Paper Competition I .......................................................................................................................... 9 Post Regulatory approval SIT adoption ......................................................................................................... 10 16th Arthropod Vector Highlights Symposium ................................................................................................ 11 Adult Control II .......................................................................................................................................... 11 Management .............................................................................................................................................. 14 Student Paper Competition II ...................................................................................................................... 17 Trustee/Commissioner
    [Show full text]
  • Sandra J. Heinemann and John N. Belkin2 for General Information And
    Mosquito Systematics vol. lO(3) 1978 365 Collection Records of the Project “Mosquitoes of Middle America” 11. Venezuela (VZ); Guianas: French Guiana (FG, FGC), Guyana (GUY), Surinam (SUR)’ SandraJ. Heinemann and John N. Belkin2 For generalinformation and collectionsfrom the Dominican Republic (RDO) the first publication of this seriesshould be consulted(Belkin and Heinemann 1973). Any departurefrom the method in this publication is indicated below. Publications2-6 of the series(Belkin and Heinemann 1975a, 1975b, 1976a, 1976b, 1976~) recordeddata on collectionsfrom the remainderof the West Indies except Jama& ca (Belkin, Heinemann and Page 1970: 255-304) and the islandsadjacent to Venezuela as well asTrini- dad and Tobago (to be coveredlater). Publication7 on collectionsfrom Costa Rica (Heinemann and Belkin 1977a) begantreatment of Central America and publication 8 coveredthe rest of nuclearCentral America (Heinemann and Belkin 1977b). Publication9 was devoted to Mexico (Heinemann and Belkin 1977c), publication 10 dealt with the extensivecollections in Panama(including Canal Zone) (Heinemann and Belkin 1978) and the pre- sent publication beginscoverage of South America. The collectionsin Venezuelaand the Guianascould not have been made without the interest and assistanceof cooperatorsof the project. We are greatly indebted to theseindividuals and their organiza- tions for the facilities, transportationand assistanceas well as the donation of collectionsto the project. In Venezuelawe are indebted to Arnold0 Gabaldon, Lacenio Guerrero, Pablo Cova Garciaand Juan Pulido, all of Direction de Malariologiay SaneamientoAmbiental, Ministerio de Sanidady Asistencia Social;G. H. Bergoldand Octavia M. Suarez,Departamento de Virologia, Instituto Venezolano de Invest- igacionesCientificas (IVIC); and Felipe J. Martin, Departamentode Zoologia Agricola, Facultad de Agro- nomia, UniversidadCentral de Venezuela,Maracay.
    [Show full text]
  • A Five-Year Research Program Is Proposed to Expand the Theory of Community Assembly from Its Current Base of Correlative Inferen
    PROJECT SUMMARY A five-year research program is proposed to expand the theory of community assembly from its current base of correlative inferences to one grounded in process-based conclusions derived from controlled field and laboratory experiments. Northern pitcher plants, Sarracenia purpurea, and their community of inquiline arthropods and rotifers, will be used as the model system for the proposed experiments. There are three goals to the proposed research. (1) Inquiline assemblages that colonize pitcher plants will be developed as a model system for understanding community assembly and persistence. (2) Field and laboratory experiments will be used to elucidate causes of inquiline community colonization, assembly, and persistence, and the consequences of inquiline community dynamics for plant leaf allocation patterns, growth, and reproduction, as well as within-plant nutrient cycling. Reciprocal interactions of plant dynamics on inquiline community structure will also be investigated experimentally. (3) Matrix models will be developed to describe reciprocal interactions between inquiline community assembly and persistence, and inquilines’ living host habitats. As an integrated whole, the proposed experiments and models will provide a complete picture of linkages between pitcher-plant inquiline communities and their host plants, at individual leaf and whole-plant scales. This focus on measures of plant performance will fill an apparent lacuna in prior studies of pitcher plant microecosystems, which, with few exceptions, have focused almost exclusively on inquiline population dynamics and interspecific interactions. Plant demography of S. purpurea will be described and modeled for the first time. Complementary, multi-year field and greenhouse experiments will reveal effects of soil and pitcher nutrient composition on leaf allocation, plant growth, and reproduction.
    [Show full text]
  • "Evolutionary Responses to Climate Change". In: Encyclopedia of Life
    Evolutionary Responses to Advanced article Climate Change Article Contents . Introduction David K Skelly, Yale University, New Haven, Connecticut, USA . Observed Genetic Changes . Adaptations to Climate Change L Kealoha Freidenburg, Yale University, New Haven, Connecticut, USA . Changes in Selection Pressures . Rate of Evolution versus Rate of Climate Change . Extinction Risks . Future Prospects Online posting date: 15th September 2010 Biological responses to contemporary climate change are Everything from heat tolerance, body shape and size, and abundantly documented. We know that many species are water use physiology of plants is strongly related to the cli- shifting their geographic range and altering traits, mate conditions within a species range. From these obser- including the timing of critical life history events such as vations, a natural assumption would be that a great deal of research on the role of contemporary climate change in birth, flowering and diapause. We also know from com- driving evolutionary responses has taken place. Although parative studies of species found across the earth that a there has been an increasing amount of research very strong relationship exists between a species trait and the recently, in fact there is relatively little known about the links climatic conditions in which it is found. Together, these between contemporary climate change and evolution. The observations suggest that ongoing climate change may reasons for this are not hard to determine. There is abundant lead to evolutionary responses. Where examined, evo- documentation of biological responses to climate change lutionary responses have been uncovered in most cases. (Parmesan, 2006). Species distributions are moving pole- The effort needed to disentangle these genetic contri- ward, the timing of life history events are shifting to reflect butions to responses is substantial and so examples are lengthened growing seasons and traits such as body size are few.
    [Show full text]
  • Wyeomyia Smithii
    Commonwealth of Massachusetts State Reclamation and Mosquito Control Board NORTHEAST MASSACHUSETTS MOSQUITO CONTROL AND WETLANDS MANAGEMENT DISTRICT Wyeomyia smithii Kimberly Foss- Entomologist 118 Tenney Street Georgetown, MA 01833 Phone: (978) 352-2800 www.northeastmassmosquito.org Morphological Characteristics • Larvae • Antennal setae 1-A single • Single row of comb scales • Siphon w/ numerous long single setae • Saddle incomplete w/o median ventral brush • Only 2 anal gills (contribute to cutaneous respiration or length of time submerged?) • Adult • Size similar to Ur. sapphirina • Proboscis dark scaled, unbanded • Occiput dark w/ metallic blue-green scales • Scutum dark brownish-gray metallic scales, mesopostnotum with setae • Abdominal terga dark w/ metallic sheen, sides of sterna pale-scaled • Legs dark-scaled, unbanded Photos: Maryland Biodiversity Distribution/ Habitat • Gulf Coast to Northern Canada (post glacial range expansion) • Acidic sphagnum bogs and fens • Commensalistic w/ carnivorous host plant • Northern or Purple Pitcher Plant (Sarracenia pupurea) • Shared habitat 2 diptera sp. (midge, flesh fly) • Presence assists in nutrient absorption Photos: Wikipedia Bionomics • Autogenus • Multivoltine • 2x per year -late spring & early fall • Some larvae in a generation will develop at different times • Some larvae will not pupate for 10 months • Weak flyers (~15 meters), very prone to desiccation • Females rest, feed and fly (other species do not) with hind legs bent forward over head Photo: NJ Mosquito Control Association
    [Show full text]
  • Proteomic Characterization of the Major Arthropod Associates of the Carnivorous Pitcher Plant Sarracenia Purpurea
    2354 DOI 10.1002/pmic.201000256 Proteomics 2011, 11, 2354–2358 DATASET BRIEF Proteomic characterization of the major arthropod associates of the carnivorous pitcher plant Sarracenia purpurea Nicholas J. Gotelli1, Aidan M. Smith1, Aaron M. Ellison2 and Bryan A. Ballif1,3 1 Department of Biology, University of Vermont, Burlington, VT, USA 2 Harvard Forest, Harvard University, Petersham, MA, USA 3 Vermont Genetics Network Proteomics Facility, University of Vermont, Burlington, VT, USA The array of biomolecules generated by a functioning ecosystem represents both a potential Received: April 19, 2010 resource for sustainable harvest and a potential indicator of ecosystem health and function. Revised: January 10, 2011 The cupped leaves of the carnivorous pitcher plant, Sarracenia purpurea, harbor a dynamic Accepted: February 28, 2011 food web of aquatic invertebrates in a fully functional miniature ecosystem. The energetic base of this food web consists of insect prey, which is shredded by aquatic invertebrates and decomposed by microbes. Biomolecules and metabolites produced by this food web are actively exchanged with the photosynthesizing plant. In this report, we provide the first proteomic characterization of the sacrophagid fly (Fletcherimyia fletcheri), the pitcher plant mosquito (Wyeomyia smithii), and the pitcher-plant midge (Metriocnemus knabi). These three arthropods act as predators, filter feeders, and shredders at distinct trophic levels within the S. purpurea food web. More than 50 proteins from each species were identified, ten of which were predominantly or uniquely found in one species. Furthermore, 19 peptides unique to one of the three species were identified using an assembled database of 100 metazoan myosin heavy chain orthologs.
    [Show full text]
  • The Maryland Entomologist
    THE MARYLAND ENTOMOLOGIST Volume 5, Number 1 September 2009 September 2009 The Maryland Entomologist Volume 5, Number 1 MARYLAND ENTOMOLOGICAL SOCIETY Executive Committee: President Frederick Paras Vice President Philip J. Kean Secretary Richard H. Smith, Jr. Treasurer Edgar A. Cohen, Jr. Newsletter Editor Harold J. Harlan Journal Editor Eugene J. Scarpulla Historian Robert S. Bryant The Maryland Entomological Society (MES) was founded in November 1971, to promote the science of entomology in all its sub-disciplines; to provide a common meeting venue for professional and amateur entomologists residing in Maryland, the District of Columbia, and nearby areas; to issue a periodical and other publications dealing with entomology; and to facilitate the exchange of ideas and information through its meetings and publications. The MES logo features a drawing of a specimen of Euphydryas phaëton (Drury), the Baltimore Checkerspot, with its generic name above and its specific epithet below (both in capital letters), all on a pale green field; all these are within a yellow ring double-bordered by red, bearing the message “* Maryland Entomological Society * 1971 *”. All of this is positioned above the Shield of the State of Maryland. In 1973, the Baltimore Checkerspot was named the official insect of the State of Maryland through the efforts of many MES members. Membership in the MES is open to all persons interested in the study of entomology. All members receive the journal, The Maryland Entomologist, and the e-mailed newsletter, Phaëton. Institutions may subscribe to The Maryland Entomologist but may not become members. Prospective members should send to the Treasurer full dues for the current MES year, along with their full name, address, telephone number, entomological interests, and e-mail address.
    [Show full text]
  • The Genetic Architecture Underlying Biting in the Pitcher-Plant Mosquito, Wyeomyia Smithii
    The Genetic Architecture Underlying Biting in the Pitcher-Plant Mosquito, Wyeomyia smithii by NICOLE B. KINGSLEY A THESIS Presented to the Department of Biology and the Robert D. Clark Honors College in partial fulfillment of the requirements for the degree of Bachelor of Science June 2016 An Abstract of the Thesis of Nicole B. Kingsley for the degree of Bachelor of Science in the Department of Biology to be taken June 2016 Title: The Genetic Architecture Underlying Biting in the Pitcher-Plant Mosquito, Wyeomyia smithii Approved: t.k;t,,,a· ~#,IJ !.ll) Christina Holzapfel, PhD And William Bradshaw, PhD By taking multiple blood meals, a female mosquito is ideally suited as a vector for transmitting blood-borne diseases. With the ultimate goal of preventing pathogen transmission by mosquitoes, we determined the genetic architecture underlying blood feeding (biting) in Wyeomyia smilhii. We crossed an obligately non-biting northern population and a biting southern population of Wj,eomyia smithii and assayed the propensity to bite among the biting parent, Fl, F2, and backcross generations. A Joint­ Scaling test revealed that the evolutionary transformation from a southern, blood­ feeding population to a northern, obligate non-biting population involved additive and dominance, but not maternal or epistatic effects. This result contrasts markedly with earlier findings in other phenotypes that epistasis plays a consistent role in the evolution of seasonal adaptation in this species. i[ Acknowledgements I would like to thank Bill Bradshaw, PhD; Chris Holzapfel, PhD; and Rudy Borowczak (PhD candidate) for guiding me through this experiment and the thesis process. Their instructions, recommendations, and encouragement have been an invaluable part of this work and my future research.
    [Show full text]
  • Transcriptional Regulation of Mosquito Oogenesis Patrick David Jennings Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2011 Transcriptional regulation of mosquito oogenesis Patrick David Jennings Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Entomology Commons Recommended Citation Jennings, Patrick David, "Transcriptional regulation of mosquito oogenesis" (2011). Graduate Theses and Dissertations. 12181. https://lib.dr.iastate.edu/etd/12181 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Transcriptional regulation of mosquito oogenesis by Patrick David Jennings A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Entomology Program of Study Committee: Lyric C. Bartholomay, Major Professor Bryony C. Bonning Bradley J. Blitvich Iowa State University Ames, Iowa 2011 Copyright © Patrick David Jennings, 2011. All rights reserved. ii TABLE OF CONTENTS LIST OF FIGURES iv LIST OF TABLES vi ABSTRACT vii CHAPTER 1. GENERAL INTRODUCTION 1 Introduction 1 Thesis Organization 3 Literature Review 4 Figures/Tables 13 References 15 CHAPTER 2. MOLECULAR MECHANISMS OF NUTRITIONAL SIGNALING DURING OOGENESIS IN AEDES TRISERIATUS 22 Abstract 22 Introduction 22 Materials and Methods 26 Results 30 Discussion 32 Acknowledgments 34 Figures/Tables 35 References 41 CHAPTER 3. AEDENOVO: A PIPELINE FOR DE NOVO TRANSCRIPT ASSEMBLY USING ORTHOLOGOUS GENES 45 Abstract 45 Introduction 45 Materials and Methods 49 Results 51 Discussion 52 Acknowledgments 53 Figures 54 References 57 CHAPTER 4.
    [Show full text]
  • Descriptions of Two New Species of Wyeomyia and the Male of Sabethes Tarsopus Dyar and Knab (Dipt~.~, Culicidae)~.~
    86 PKO('. ENT. SO,C. WASH., VOL. 53, SO. ", APKIL, I%_,1 DESCRIPTIONS OF TWO NEW SPECIES OF WYEOMYIA AND THE MALE OF SABETHES TARSOPUS DYAR AND KNAB (DIPT~.~, CULICIDAE)~.~ Byv PE~DKOGALINIX~, STANLEY J. CARPE?;TEK~, AKD HAROLD TRAPI& In the course of a study of the forest mosquitoes of Panama, an endemic area of sylvan yellow feyer, a number of unde- scribed species have been found. In the present paper, which is the fourth in a series reporting the results of this work. we describe two new species of Wyeotilyia, and the hitherto un- known male of Xabethes tarsopm Dvar and Knab. Of the two species of Wyeonzyia, one belongs to the sub- genus Davisnzyia Lane and Cerqueira. The finding of a member of this peculiar group of sabethines in Panama is interesting, as only two species have been previously known, petrocchiae Shannon and Del Ponte from argentina, Brazil and Paraguay, and schn2bsei Martini, described without a tppe locality. The second species described in this paper be- longs to the subgenus Wyeomyia, and appears close to he))zi- sagnosfo Dyar and Knab. Wyeomyia (Davismyia) arborea, new species MBLE. Proboscis slightly shorter than fore femur, somewhat swollen toward tip, dark except for a line of yellowish scales on the underside of the apical fourth and a small light spot underneath the base. Palpi very short, barely longer than clypeus, dark. Antenna more than half the length of the proboscis, not plumose. Occiput clothed with dark greenish scales except for a triangular silvery spot on the vertex which is joined to a broad silvery patch below by an indistinct line of light scales behind the eyes.
    [Show full text]