The CLN3 Gene and Protein: What We Know

Total Page:16

File Type:pdf, Size:1020Kb

The CLN3 Gene and Protein: What We Know Received: 9 August 2018 | Revised: 30 May 2019 | Accepted: 31 May 2019 DOI: 10.1002/mgg3.859 REVIEW ARTICLE The CLN3 gene and protein: What we know Myriam Mirza1 | Anna Vainshtein2 | Alberto DiRonza3,4 | Uma Chandrachud5 | Luke J. Haslett6 | Michela Palmieri3,4 | Stephan Storch7 | Janos Groh8 | Niv Dobzinski9 | Gennaro Napolitano10 | Carolin Schmidtke7 | Danielle M. Kerkovich11 1Mila’s Miracle Foundation, Boulder, Colorado Abstract 2Craft Science Inc., Thornhill, Canada Background: One of the most important steps taken by Beyond Batten Disease 3Baylor College of Medicine, Houston, Foundation in our quest to cure juvenile Batten (CLN3) disease is to understand the Texas State of the Science. We believe that a strong understanding of where we are in our 4 Jan and Dan Duncan Neurological experimental understanding of the CLN3 gene, its regulation, gene product, protein Research Institute at Texas Children’s Hospital, Houston, Texas structure, tissue distribution, biomarker use, and pathological responses to its defi- 5Center for Genomic Medicine, ciency, lays the groundwork for determining therapeutic action plans. Massachusetts General Hospital/Harvard Objectives: To present an unbiased comprehensive reference tool of the experimen- Medical School, Boston, Massachusetts tal understanding of the CLN3 gene and gene product of the same name. 6School of Biosciences, Cardiff University, BBDF compiled all of the available CLN3 gene and protein data from Cardiff, UK Methods: 7Biochemistry, University Medical Center biological databases, repositories of federally and privately funded projects, patent Hamburg‐Eppendorf, Hamburg, Germany and trademark offices, science and technology journals, industrial drug and pipeline 8Neurology, University Hospital reports as well as clinical trial reports and with painstaking precision, validated the Wuerzburg, Wuerzburg, Germany information together with experts in Batten disease, lysosomal storage disease, lyso- 9Biochemistry and Biophysics, UCSF some/endosome biology. School of Medicine, San Francisco, California Results: The finished product is an indexed review of the CLN3 gene and protein 10Telethon Institute of Genetics and which is not limited in page size or number of references, references all available Medicine, Napoli, Italy primary experiments, and does not draw conclusions for the reader. 11Beyond Batten Disease Foundation, Conclusions: Revisiting the experimental history of a target gene and its product Austin, Texas ensures that inaccuracies and contradictions come to light, long‐held beliefs and as- Correspondence sumptions continue to be challenged, and information that was previously deemed Danielle M. Kerkovich, Principal Scientist, inconsequential gets a second look. Compiling the information into one manuscript Beyond Batten Disease Foundation, P.O. Box 50221, Austin, TX 78763. with all appropriate primary references provides quick clues to which studies have Email: [email protected] been completed under which conditions and what information has been reported. This compendium does not seek to replace original articles or subtopic reviews but Funding information Beyond Batten Disease Foundation provides an historical roadmap to completed works. KEYWORDS Batten, CLN3, JNCL, juvenile Batten, neuronal ceroid lipofuscinosis This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2019 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc. Mol Genet Genomic Med. 2019;7:e859. wileyonlinelibrary.com/journal/mgg3 | 1 of 41 https://doi.org/10.1002/mgg3.859 2 of 41 | MIRZA ET AL. 1 | INTRODUCTION distribution, co‐regulated gene expression, biomarker use, and pathological responses to CLN3 protein deficiencies in Basic knowledge of the expression, regulation, structure, yeast through humans. Supplementary materials include a list and function transmembrane‐bound and other proteins, en- of CLN3 research tools and their associated first‐published ables the discovery of compounds to modulate their behavior. reports. Along with analyses of disease‐causing mutations, investiga- The authors note that following data extraction from the tors pursue creative approaches to restore protein function(s) information systems mentioned above, the information gath- and their associated pathways. Therefore, it is critically im- ered here was verified and the associated primary literature portant that academicians, pharmaceutical investigators, and was cited along with the experimental methods used. We clinician scientists, be provided with a complete, easy‐to‐ believe bioinformatics databases such as those mentioned access, and an up‐to‐date State of the Science. Historically, above offer scientists the opportunity to access and cross‐ref- one relied on review articles designed to summarize current erence a wide variety of biologically relevant data providing thinking. However, an information explosion fueled by ad- new insights and further means to validate their discoveries. vances in molecular biology, genetic engineering, and new However, the authors would like to stress that the databases animal models, coupled with competing hypotheses of au- listed here were used only to provide a framework for the thors and size limits of review articles has resulted in the pro- document. The rapid release of new data from various –omics duction of irregular, nonsystematic review articles in disease and other programs annotated using computational analysis research leading to unintentional bias and widening knowl- sometimes leads to misinformation, which we found to be edge gaps. To combat this problem, investigators new to the the case for the CLN3 gene and protein. Therefore, the au- field must spend hundreds of hours sifting, reading, and eval- thors worked to provide their readership with direct access to uating original publications; defeating the purpose for which primary, experimentally proven data. Finally, the authors dil- review articles were created. igently tried to avoid summarizing the information herein in Beyond Batten Disease Foundation (BBDF) has taken support of one hypothesis over another or drawing any con- a lead to help support new and existing researchers in their clusions for the reader. This comprehensive agnostic presen- quest for experimentally proven, unbiased, information. This tation of experimental findings is meant to complement and manuscript is part of a larger strategic plan to advance re- not overlap investigator‐driven primary and review literature. search in Batten disease by fueling the creation of key physi- cal and informational resources. The foundation worked with Thomson Reuters to gather referenced CLN3 gene and CLN3 2 | GENERAL INFORMATION protein information and with painstaking attention to detail, CLN3 validated the information together with experts in CLN3 dis- 2.1 | Description of the gene ease, lysosomal storage disease, and lysosome/endosome bi- The official name of this gene is “ceroid‐lipofuscinosis, neu- ology. The resultant indexed review of CLN3 and CLN3 is ronal 3” and official symbol is CLN3. Less commonly used not limited in size, focuses on information from original arti- terms include BATTENIN, BTS, JNCL (Juvenile Neuronal cles, is reviewed by in‐area experts and inclusion in validated Ceroid Lipofuscinosis), and MGC102840. CLN3 was dis- databases, and does not draw conclusions. By collecting all covered using linkage analysis in search for the disease of the available information into a single, searchable refer- causing gene (mutation) in 48 children with progressive vi- ence manual, this review saves valuable time and ensures all sion loss, seizures, decline of intellect and loss of motor abil- topic areas are covered; however, readers will still need to ity (Eiberg, Gardiner, & Mohr, 1989). Researchers found a review original literature cited here. linkage between CLN3 disease and haptoglobin (140100) on The information found within this reference tool is cul- chromosome 16q22 revealing the location of the CLN3 gene tivated by: (a) MetaBase™ (version 6.20), a systems biol- (Eiberg et al., 1989; Gardiner et al., 1990). Linkage studies ogy database, a former product of GeneGo, IntegritySM, (b) in larger groups of families followed by physical mapping of a drug and pipeline information database, Cortellis™, and markers by mouse/human hybrid cell analysis and fluores- (c) a drug and clinical trial information database, Thomson cence in situ hybridization refined the coordinates of CLN3 Innovation™, including patent information from around the to the interval between D16S288 and D16S298 (see Figure world and public databases (December 2014 version), such as 1: LinkageMapping, (Callen et al., 1991, 1992; Järvelä, NCBI, Ensembl, dbSNP, UniProt, MGI and others. The infor- Mitchison, Callen, et al., 1995; Järvelä, Mitchison, O'rawe, et mation cultivated from these databases was then traced back al., 1995; Lerner et al., 1994; Mitchison, O'Rawe, Lerner, et al., its original source and rigorously reviewed. If the experiment 1995; Mitchison, O’Rawe, Taschner, et al., 1995; Mitchison was conducted more than once, all references were added. et al., 1994; Mitchison, Williams, et al., 1993; Mitchison, The manual includes a research history of the CLN3 Thompson, et al., 1993) The final pieces of the puzzle were gene, discussion of gene regulation, protein structure, tissue
Recommended publications
  • The CLN5 Disease
    Mia-Lisa Schmiedt Mia-Lisa Schmiedt Mia-Lisa Schmiedt The CLN5 disease − RESEARCH protein maturation, RESEARCH The CLN5 disease − protein maturation, trafficking and pathology trafficking and pathology The CLN5 disease −protein maturation, trafficking and pathology and trafficking maturation, The CLN5 disease −protein Neuronal ceroid lipofuscinoses (NCLs) are a group of hereditary neurode- generative disorders primarily affecting children. Characteristics for NCLs are accumulation of autofluorescent storage material, neuronal degenera- tion, motor disturbances, progressive loss of vision and premature death. One member of the NCL family is the CLN5 disease, a late infantile variant phenotype form, caused by mutations in the CLN5 gene. CLN5 encodes a lysosomal protein of unidentified function. This thesis work contributes to the basic understanding of the molecular and cell biological mechanisms underlying CLN5 disease. Real-time PCR studies indicated that Cln5 gene expression increases gradually in the mouse brain with age and its expres- sion is highest in microglia. This thesis project further presents that the CLN5 protein is cleaved in the ER, trimmed and finally traffics to lysosomes. CLN5 constructs carrying different disease causing mutations revealed that trafficking is disturbed with varying severity depending on the particular mutation. Also, this work provides novel aspects about the early events in the pathogenesis of CLN5 disease, late infantile variant, links Cln5 to lipid metabolism and strengthens the recently reported
    [Show full text]
  • An Interactive Web Application to Explore Regeneration-Associated Gene Expression and Chromatin Accessibility
    Supplementary Materials Regeneration Rosetta: An interactive web application to explore regeneration-associated gene expression and chromatin accessibility Andrea Rau, Sumona P. Dhara, Ava J. Udvadia, Paul L. Auer 1. Table S1. List of cholesterol metabolic genes from MGI database 2. Table S2. List of differentially expressed transcripts during optic nerve regeneration in zebrafish using the MGI cholesterol metabolic gene queries in the Regeneration Rosetta app 3. Table S3. List of transcription factor encoding genes from brain cell bodies following spinal cord injury in lamprey over a course of 12 weeKs 4. Table S4. List of transcription factor encoding genes from spinal cell bodies following spinal cord injury in lamprey over a course of 12 weeks Ensembl ID MGI Gene ID Symbol Name ENSMUSG00000015243 MGI:99607 Abca1 ATP-binding cassette, sub-family A (ABC1), member 1 ENSMUSG00000026944 MGI:99606 Abca2 ATP-binding cassette, sub-family A (ABC1), member 2 ENSMUSG00000024030 MGI:107704 Abcg1 ATP binding cassette subfamily G member 1 ENSMUSG00000026003 MGI:87866 Acadl acyl-Coenzyme A dehydrogenase, long-chain ENSMUSG00000018574 MGI:895149 Acadvl acyl-Coenzyme A dehydrogenase, very long chain ENSMUSG00000038641 MGI:2384785 Akr1d1 aldo-keto reductase family 1, member D1 ENSMUSG00000028553 MGI:1353627 Angptl3 angiopoietin-like 3 ENSMUSG00000031996 MGI:88047 Aplp2 amyloid beta (A4) precursor-like protein 2 ENSMUSG00000032083 MGI:88049 Apoa1 apolipoprotein A-I ENSMUSG00000005681 MGI:88050 Apoa2 apolipoprotein A-II ENSMUSG00000032080 MGI:88051 Apoa4
    [Show full text]
  • Identi Cation of Novel Biomarkers for Metabolic Syndrome Based On
    Identication of Novel Biomarkers for Metabolic Syndrome Based on Machine Learning Algorithms and Integrated Bioinformatics Analysis Guanzhi Liu Xi'an Jiaotong University Second Aliated Hospital https://orcid.org/0000-0003-1626-5006 Chen Chen Department of Cardiovascular Medicine, First Aliated Hospital of Xi’an Jiaotong University, Xi’an, China Ning Kong Bone and Joint Surgery Center, Second Aliated Hospital of Xi’an Jiaotong University, Xi’an, China Yutian Lei Bone and Joint Surgery Center, Second Aliated Hospital of Xi’an Jiaotong University, Xi’an, China Sen Luo Bone and Joint Surgery Center, Second Aliated Hospital of Xi’an Jiaotong University, Xi’an, China Zhuo Huang Bone and Joint Surgery Center, Second Aliated Hospital of Xi’an Jiaotong University, Xi’an, China Kunzheng Wang Bone and Joint Surgery Center, Second Aliated Hospital of Xi’an Jiaotong University, Xi’an, China Pei Yang Bone and Joint Surgery Center, Second Aliated Hospital of Xi’an Jiaotong University, Xi’an, China Xin Huang ( [email protected] ) Department of Cardiovascular Medicine, First Aliated Hospital of Xi’an Jiaotong University, Xi’an, China Research Keywords: metabolic syndrome, WGCNA, diagnostic biomarkers, bioinformatics, machine learning Posted Date: February 24th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-225591/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/20 Abstract Background: Metabolic syndrome is a common and complicated metabolic disorder and dened as a clustering of metabolic risk factors such as insulin resistance or diabetes, obesity, hypertension, and hyperlipidemia. However, its early diagnosis is limited because the lack of denitive clinical diagnostic biomarkers.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Palmitoyl-Protein Thioesterase 1 Deficiency in Drosophila Melanogaster Causes Accumulation
    Genetics: Published Articles Ahead of Print, published on February 1, 2006 as 10.1534/genetics.105.053306 Palmitoyl-protein thioesterase 1 deficiency in Drosophila melanogaster causes accumulation of abnormal storage material and reduced lifespan Anthony J. Hickey*,†,1, Heather L. Chotkowski*, Navjot Singh*, Jeffrey G. Ault*, Christopher A. Korey‡,2, Marcy E. MacDonald‡, and Robert L. Glaser*,†,3 * Wadsworth Center, New York State Department of Health, Albany, NY 12201-2002 † Department of Biomedical Sciences, State University of New York, Albany, NY 12201-0509 ‡ Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114 1 current address: Albany Medical College, Albany, NY 12208 2 current address: Department of Biology, College of Charleston, Charleston, SC 294243 3 corresponding author: Wadsworth Center, NYS Dept. Health, P. O. Box 22002, Albany, NY 12201-2002 E-mail: [email protected] 1 running title: Phenotypes of Ppt1-deficient Drosophila key words: Batten disease infantile neuronal ceroid lipofuscinosis palmitoyl-protein thioesterase CLN1 Drosophila corresponding author: Robert L. Glaser Wadsworth Center, NYS Dept. Health P. O. Box 22002 Albany, NY 12201-2002 E-mail: [email protected] phone: 518-473-4201 fax: 518-474-3181 2 ABSTRACT Human neuronal ceroid lipofuscinoses (NCLs) are a group of genetic neurodegenerative diseases characterized by progressive death of neurons in the central nervous system (CNS) and accumulation of abnormal lysosomal storage material. Infantile NCL (INCL), the most severe form of NCL, is caused by mutations in the Ppt1 gene, which encodes the lysosomal enzyme palmitoyl-protein thioesterase 1 (Ppt1). We generated mutations in the Ppt1 ortholog of Drosophila melanogaster in order to characterize phenotypes caused by Ppt1-deficiency in flies.
    [Show full text]
  • Novel Mutations Consolidate KCTD7 As a Progressive Myoclonus Epilepsy Gene
    Europe PMC Funders Group Author Manuscript J Med Genet. Author manuscript; available in PMC 2013 September 16. Published in final edited form as: J Med Genet. 2012 June ; 49(6): 391–399. doi:10.1136/jmedgenet-2012-100859. Europe PMC Funders Author Manuscripts Novel mutations consolidate KCTD7 as a progressive myoclonus epilepsy gene Maria Kousi1,2, Verneri Anttila3,4, Angela Schulz5, Stella Calafato3, Eveliina Jakkula4, Erik Riesch6, Liisa Myllykangas1,7, Hannu Kalimo7, Meral Topcu8, Sarenur Gokben9, Fusun Alehan10, Johannes R Lemke11, Michael Alber12, Aarno Palotie3,4,13,14, Outi Kopra1,2, and Anna-Elina Lehesjoki1,2 1Folkhälsan Institute of Genetics, Finland 2Haartman Institute, Department of Medical Genetics and Research Program’s Unit, Molecular Medicine, and Neuroscience Center, University of Helsinki, Finland 3Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK 4Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland 5Children’s Hospital, University Medical Center Hamburg Eppendorf, Hamburg, Germany 6CeGaT GmbH, Tübingen, Germany 7Department of Pathology, University of Helsinki, and Helsinki University Central Hospital, Helsinki, Finland 8Department of Pediatrics, Hacettepe University Faculty of Medicine, Section of Child Neurology, Ankara, Turkey 9Department of Pediatrics, Ege University Medical Faculty, Izmir, Turkey 10Baskent University Faculty of Medicine Division of Child Neurology, Baskent, Turkey 11University Children’s Hospital, Inselspital, Bern, Switzerland 12Department
    [Show full text]
  • Yeast Genome Gazetteer P35-65
    gazetteer Metabolism 35 tRNA modification mitochondrial transport amino-acid metabolism other tRNA-transcription activities vesicular transport (Golgi network, etc.) nitrogen and sulphur metabolism mRNA synthesis peroxisomal transport nucleotide metabolism mRNA processing (splicing) vacuolar transport phosphate metabolism mRNA processing (5’-end, 3’-end processing extracellular transport carbohydrate metabolism and mRNA degradation) cellular import lipid, fatty-acid and sterol metabolism other mRNA-transcription activities other intracellular-transport activities biosynthesis of vitamins, cofactors and RNA transport prosthetic groups other transcription activities Cellular organization and biogenesis 54 ionic homeostasis organization and biogenesis of cell wall and Protein synthesis 48 plasma membrane Energy 40 ribosomal proteins organization and biogenesis of glycolysis translation (initiation,elongation and cytoskeleton gluconeogenesis termination) organization and biogenesis of endoplasmic pentose-phosphate pathway translational control reticulum and Golgi tricarboxylic-acid pathway tRNA synthetases organization and biogenesis of chromosome respiration other protein-synthesis activities structure fermentation mitochondrial organization and biogenesis metabolism of energy reserves (glycogen Protein destination 49 peroxisomal organization and biogenesis and trehalose) protein folding and stabilization endosomal organization and biogenesis other energy-generation activities protein targeting, sorting and translocation vacuolar and lysosomal
    [Show full text]
  • CLN8 Mutations Presenting with a Phenotypic Continuum of Neuronal Ceroid Lipofuscinosis—Literature Review and Case Report
    G C A T T A C G G C A T genes Article CLN8 Mutations Presenting with a Phenotypic Continuum of Neuronal Ceroid Lipofuscinosis—Literature Review and Case Report Magdalena Badura-Stronka 1,*,†, Anna Winczewska-Wiktor 2,†, Anna Pietrzak 3,†, Adam Sebastian Hirschfeld 1, Tomasz Zemojtel 4, Katarzyna Woły ´nska 1, Katarzyna Bednarek-Rajewska 5, Monika Seget-Dubaniewicz 5, Agnieszka Matheisel 6, Anna Latos-Bielenska 1 and Barbara Steinborn 2 1 Chair and Department of Medical Genetics, Poznan University of Medical Sciences, 60-352 Poznan, Poland; [email protected] (A.S.H.); [email protected] (K.W.); [email protected] (A.L.-B.) 2 Chair and Department of Developmental Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland; [email protected] (A.W.-W.); [email protected] (B.S.) 3 Department of Neurology, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland; [email protected] 4 BIH Genomics Core Unit, Campus Mitte, Charite University Medicine, 13353 Berlin, Germany; [email protected] 5 Department of Clinical Pathology, Poznan University of Medical Sciences, 60-355 Poznan, Poland; [email protected] (K.B.-R.); [email protected] (M.S.-D.) 6 Citation: Badura-Stronka, M.; Department of Developmental Neurology, Gdansk Medical University, 80-307 Gdansk, Poland; Winczewska-Wiktor, A.; Pietrzak, A.; [email protected] * Correspondence: [email protected] Hirschfeld, A.S.; Zemojtel, T.; † These authors contributed equally to this work. Woły´nska,K.; Bednarek-Rajewska, K.; Seget-Dubaniewicz, M.; Matheisel, A.; Latos-Bielenska, A.; Steinborn, B. Abstract: CLN8 is a ubiquitously expressed membrane-spanning protein that localizes primarily CLN8 Mutations Presenting with a in the ER, with partial localization in the ER-Golgi intermediate compartment.
    [Show full text]
  • Perkinelmer Genomics to Request the Saliva Swab Collection Kit for Patients That Cannot Provide a Blood Sample As Whole Blood Is the Preferred Sample
    Progressive Myoclonic Epilepsy Panel Test Code D4004 Test Summary This test analyzes 18 genes that have been associated with Progressive Myoclonic Epilepsy Turn-Around-Time (TAT)* 3 - 5 weeks Acceptable Sample Types DNA, Isolated Dried Blood Spots Saliva Whole Blood (EDTA) Acceptable Billing Types Self (patient) Payment Institutional Billing Commercial Insurance Indications for Testing The early way to tell the difference is an EEG with background slowing. Symptoms like stimulus induced myoclonic jerks, cognitive decline and motor slowing, generalized tonic-clonic seizures, or visual/occipital seizures help narrow the diagnosis. Most importantly, the presence of slowing on the EEG should raise suspicion for PME and, if present, lead to further testing, including genetic and enzyme testing. Test Description This panel analyzes 18 genes that have been associated with Progressive Myoclonic Epilepsy and/or disorders associated with epilepsy. Both sequencing and deletion/duplication (CNV) analysis will be performed on the coding regions of all genes included (unless otherwise marked). All analysis is performed utilizing Next Generation Sequencing (NGS) technology. CNV analysis is designed to detect the majority of deletions and duplications of three exons or greater in size. Smaller CNV events may also be detected and reported, but additional follow-up testing is recommended if a smaller CNV is suspected. All variants are classified according to ACMG guidelines. Condition Description Progressive myoclonic epilepsies (PME) are a group of more than 10 rare types of epilepsy that are “progressive.” People with PME have a decline in motor skills, balance and cognitive function over time. Myoclonus indicates frequent muscle jerks, both spontaneous and often stimulus induced.
    [Show full text]
  • The KCTD Family of Proteins: Structure, Function, Disease Relevance Zhepeng Liu1†, Yaqian Xiang2† and Guihong Sun1*
    Liu et al. Cell & Bioscience 2013, 3:45 http://www.cellandbioscience.com/content/3/1/45 Cell & Bioscience REVIEW Open Access The KCTD family of proteins: structure, function, disease relevance Zhepeng Liu1†, Yaqian Xiang2† and Guihong Sun1* Abstract The family of potassium channel tetramerizationdomain (KCTD) proteins consists of 26 members with mostly unknown functions. The name of the protein family is due to the sequence similarity between the conserved N-terminal region of KCTD proteins and the tetramerization domain in some voltage-gated potassium channels. Dozens of publications suggest that KCTD proteins have roles in various biological processes and diseases. In this review, we summarize the character of Bric-a-brack,Tram-track, Broad complex(BTB) of KCTD proteins, their roles in the ubiquitination pathway, and the roles of KCTD mutants in diseases. Furthermore, we review potential downstream signaling pathways and discuss future studies that should be performed. Keywords: KCTD, BTB domain, Adaptor Introduction BTB domain and homology between KCTD family members The human potassium (K+) channel tetramerization The human genome includes approximately 400 BTB domain (KCTD)family of proteins consists of 26 mem- domain-containing proteins. The BTB domain is a highly bers that share sequence similarity with the cytoplasmic conserved motif of about 100 amino acids and can be + domain of voltage-gated K channels(Kv channels) [1-3]. found at the N-terminusof C2H2-type zinc-finger tran- The KCTD proteins have relatively conserved N-terminal scription factors and in some actin-binding proteins [11]. domains and variable C-termini. Comparative analyses of BTB domain-containing proteins include transcription the conserved N-terminal sequence suggest the presence factors, oncogenic proteins, ion channel proteins, and of a common Bric-a-brack,Tram-track, Broad complex KCTD proteins [2,12-14].
    [Show full text]
  • A Study of Neuronal Ceroid Lipofuscinosis Proteins Cln5 and Cln8
    A STUDY OF NEURONAL CEROID LIPOFUSCINOSIS PROTEINS CLN5 AND CLN8 By W A BHAGYA NILUKSHI DE SILVA B. S., University of Colombo, Sri Lanka, 2011 A THESIS Submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Biochemistry and Molecular Biophysics College of Arts and Sciences KANSAS STATE UNIVERSITY Manhattan, Kansas 2015 Approved by: Major Professor Dr. Stella Y. Lee ABSTRACT Neuronal ceroid lipofuscinoses (NCLs) are a group of neurodegenerative lysosomal storage disorders which is the most frequent group of inherited neurodegenerative disorders that affect children leading to severe pathological conditions such as progressive loss of motor neuron functions, loss of vision, mental retardation, epilepsy, ataxia and atrophy in cerebral, cerebella cortex and retina and eventually premature death. Among the many genes that cause NCL, mutations in CLN5 leads to different forms of NCL (infantile, late infantile, juvenile and adult) and mutations in CLN8 leads to progressive epilepsy with mental retardation (EPMR) and a variant late infantile form of NCL. The function(s) of both CLN5 and CLN8 proteins remain elusive. CLN5 is a glycosylated soluble protein that resides in the lysosome. We observed that endogenous CLN5 protein exist in two forms and identified a previously unknown C-terminal proteolytic processing event of CLN5. Using a cycloheximide chase experiment we demonstrated that the proteolytic processing of CLN5 is a post-translational modification. Furthermore treatment with chloroquine showed the processing occurs in low pH cellular compartments. After treatment with different protease inhibitors our results suggested the protease involved in the processing of CLN5 could be a cysteine protease.
    [Show full text]
  • Requisition for DNA Testing
    Requisition for DNA Testing Requisition for DNA Testing Reason for Referral: Patient Information: LAB USE ONLY PATIENT INFORMATION (INCOMPLETE REQUESTS WILL BE BANKED) INCOMPLETE REQUESTS WILL BE BANKED Diagnostic Testing: ReceivedAffected date: Name: Name: Unaffected Address: Notes:Carrier testing/Known Family Mutation Birthdate: Name of index case in the family (include copy of report): DateAddress: of Birth: YYYY/MM/DD Date of Birth: HealthSex: CardMale No.: Female Relationship to this patient: REASON FOR REFERRAL Sex:Health M Card Number: F Other Gene: Mutation: RefSeq:NM: Diagnostic Testing: TestTEST Requests:REQUESTS Prenatal Affected Diagnosis Use attached menu to select panels or individual genes. DNA Banking Unaffected Use attached menu to select panels or individual genes. Panels, RNA Carrier Banking testing/Known Family Mutation sub-Panels, panels sub-panels or individual or genesindividual may begenes selected may using be selected the checkbox adjacentusing the to checkboxthe item of adjacentinterest. to the item of interest. LHSCReferral MD#/Name to an outside of Index laboratory case in the (must family specify (include lab): copy of report): London Health Sciences Centre – Molecular Diagnostics Centre Sciences Health London London Health Sciences Centre – (Molecular Genetics) London Health Sciences Centre SampleDate of Collection:Birth: REQUEST FOR EXPEDITED RESULT Relationship to this patient: Date drawn: (YYYY/MM/DD) Request for Expedited Result: Gene:EDTA blood (lavender top)(min.RefSeq:NM: 2ml at room temp) Pregnancy
    [Show full text]