The Asakawas' Backyard
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Edible Garden Permaculture Design Project Report; Malvik, October 2017 Stephen Barstow
The Edible Garden Permaculture Design Project Report; Malvik, October 2017 Stephen Barstow The Edible Garden is a long term ongoing evolving project in Malvik, Trøndelag some 17 km east of the city of Trondheim with a view over the Trondheimsfjord (63°26'25"N, 10°39'15"E) at about 32m above sea level. When myself and my then wife and lifelong friend Eileen Stoupe were looking at a place to buy in 1984, the wish, as young vegetarians, was to be as self-sufficient as possible, and at that time this meant preferably flat land on which to grow traditional annual vegetables, as well as fruit and berries. We had rented a place nearby since autumn 1981 in the same climate zone. I was also very interested in birds and wild plants. The property we finally bought had a lot of trees in which the previous owners had set up around 25 nest boxes for birds. The house and garden were far from our perceived ideal as there was limited space suitable for growing traditional vegetables and the soil was shallow, but I had recently been introduced to the concept of raised bed gardening which could significantly improve the growing conditions (I had been a member of the UK based organic gardening organisation Henry Doubleday Research Association, HDRA since 1979). It was however a fantastic piece of land with a lot of interesting plants, notably Hazel, known to attract a good range of wild life, and Hepatica (blåveis), indicative of neutral to basic soil and an early spring was to be expected. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Australia Lacks Stem Succulents but Is It Depauperate in Plants With
Available online at www.sciencedirect.com ScienceDirect Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)? 1,2 3 3 Joseph AM Holtum , Lillian P Hancock , Erika J Edwards , 4 5 6 Michael D Crisp , Darren M Crayn , Rowan Sage and 2 Klaus Winter In the flora of Australia, the driest vegetated continent, [1,2,3]. Crassulacean acid metabolism (CAM), a water- crassulacean acid metabolism (CAM), the most water-use use efficient form of photosynthesis typically associated efficient form of photosynthesis, is documented in only 0.6% of with leaf and stem succulence, also appears poorly repre- native species. Most are epiphytes and only seven terrestrial. sented in Australia. If 6% of vascular plants worldwide However, much of Australia is unsurveyed, and carbon isotope exhibit CAM [4], Australia should host 1300 CAM signature, commonly used to assess photosynthetic pathway species [5]. At present CAM has been documented in diversity, does not distinguish between plants with low-levels of only 120 named species (Table 1). Most are epiphytes, a CAM and C3 plants. We provide the first census of CAM for the mere seven are terrestrial. Australian flora and suggest that the real frequency of CAM in the flora is double that currently known, with the number of Ellenberg [2] suggested that rainfall in arid Australia is too terrestrial CAM species probably 10-fold greater. Still unpredictable to support the massive water-storing suc- unresolved is the question why the large stem-succulent life — culent life-form found amongst cacti, agaves and form is absent from the native Australian flora even though euphorbs. -
OSU Gardening with Oregon Native Plants
GARDENING WITH OREGON NATIVE PLANTS WEST OF THE CASCADES EC 1577 • Reprinted March 2008 CONTENTS Benefi ts of growing native plants .......................................................................................................................1 Plant selection ....................................................................................................................................................2 Establishment and care ......................................................................................................................................3 Plant combinations ............................................................................................................................................5 Resources ............................................................................................................................................................5 Recommended native plants for home gardens in western Oregon .................................................................8 Trees ...........................................................................................................................................................9 Shrubs ......................................................................................................................................................12 Groundcovers ...........................................................................................................................................19 Herbaceous perennials and ferns ............................................................................................................21 -
CINDEX Index
Index 2000-Feb. 2019 Actaea Ahlgren, Kathy (rose gardener), May A cordifolia, Sep 12:28 09:42 Aarestad, Paul, Nov 16:37 fall bloomer, Sep 18:15 Air plants, Jan 17:18, Nov 14:31 Abies for foliage, Sep 09:14 Ajuga balsamea, Nov 07:12 matsumurae, Nov 15:14 perennial groundcover, Jan 07:17 as Christmas tree, Nov 02:31 pachypoda, Sep 07:12 reptans, Jan 12:11, May 07:24, Jul 18:35 concolor, Jun 03:16, Nov 06:40 for shade garden, Jan 19:35 Akebia quinata lasiocarpa var. arizonica, Nov 06:40 racemosa perennial vine, Jan 18:19 varieties for northern regions, May 11:32 'Atropurpurea,' Jan 16:37 plant profile, Oct 00:10 for winter landscape, Jan 02:31 'Chocoholic,' Mar 17:24 vine for shade, May 18:44 Aby, Katherine (Master Gardener), Nov fall bloomer, Sep 06:12, Sep 12:27 Alcea 13:20 giant, Jul 08:40 heirloom, May 04:31, Jul 15:37 Acer naturalizing, Jul 06:28 for midsummer, Jul 02:14 anthracnose on, May 14:24 plant profile, Sep 11:16 must-have plant, Nov 07:38 'Autumn Spire,' Jan 01:30 for shade, Jul 09:16 rosea, Jan 04:27, Mar 00:37, Jul 08:40, dissectum, Jan 13:19 rubra, Sep 07:12 Jul 15:37 for fall color, Sep 02:25 simplex, Sep 06:12 rust on, Jun 03:18 foliar diseases, Jan 08:18, Mar 00:12, Apr Actinidia Alchemilla 03:10 arguta, Jan 11:38, Mar 00:8 mollis, Jun 04:45 ginnala kolomikta, Jan 11:38 splendens, Jun 04:45 fall color, Sep 02:25 vine for sun or light shade, May 18:44 vulgaris, May 04:31 fall standout, Sep 17:36 Aculeate, Mar 08:8 Alder, Mar 17:24 for hedges, Mar 02:13 Ada Garden Club, Sep 11:10 Alderman, William Horace native replacement for, Nov 16:12 Addison, Betty Ann (horticulturist), Jul 16:12 small tree, big impact, Feb 02:9, Apr beating buckthorn, Jan 18:36 Alexandria Garden Club, Mar 09:12 03:26 elevate your garden, Mar 18:30 Alien plants. -
The NAT ION AL
The NAT ION A L HORTICUL TURAL MAGAZINE JANUARY -- - 1928 The American Horticultural Society A Union of The National Horticultural Society and The American Horticultural Society, at Washington, D. C. Devoted to the popularizing of all phases of Horticulture: Ornamental Gardening, including Landscape Gardening and Amateur Flower Gar:dening; Professional Flower Gardening or Floriculture; Vegetable Gardening; Fruit Growing and all activities allied with Horticulture. PRESENT ROLL OF OFFICERS AND DIRECTORS March 1, 1927 OFFICERS President, F. L. Mulford, 2552 Tunlaw Road, Washington, D. C. First Vice-President, Mrs. Fannie Mahood Heath, Grand Forks, N. D. Second Vice-President, H. A. Fiebing, Milwaukee, Wis. Secretary, D. Victor Lumsden, 1629 Columbia Road N. W., Washington, D. C. Treasurer, Otto Bauer, 1216 H Street N. W., Washington, D. C. DIRECTORS TERM EXPIRING IN 1928 Mrs. Pearl Frazer, Grand Forks, N. D. David Lumsden, Battery Park, Bethesda, Md. J. Marion Shull, 207 Raymond Street, Chevy Chase, Md. Hamilton Traub, University Farm, St. Paul, Minn. A. L. Truax, Crosby, N. D. TERM EXPIRING IN 1929 G. E. Anderson, Twin Oaks, Woodley Road, Washington, D. C. Mrs. L. H. Fowler, Kenilworth, D. C. V. E. Grotlisch, Woodside Park, Silver Spring, Md. Joseph J. Lane, 19 W. 44th Street, New York City. O. H. Schroeder, Faribault, Minn. Editorial Committee: B. Y. Morrison, Chairman; Sherman R. Duffy, V. E. Grotlisch, P. L. Ricker, J. Marion Shull, John P. Schumacher, Hamilton Traub. Entered as seoond-ola•• matter Maroh 22, 1927, at the Post Offioe a.t Washington, D. C" under the Act of August 24, 1912. 2 THE NATIONAL HORTICULTURAL MAGAZINE Jan. -
Synopsis of a New Taxonomic Synthesis Of
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2018 doi:10.20944/preprints201808.0496.v2 Hershkovitz Montiaceae Synopsis of a new taxonomic synthesis of Montiaceae (Portulacineae) based on rational metadata analysis, with critical new insights on historically poorly understood taxa and a review of ecological evolution and phylogeography Mark Alan HERSHKOVITZ1 1Santiago, Chile [email protected] Abstract: Montiaceae (Portulacineae) comprise a clade of at least 280 species and ca. 30 subspecific taxa primarily of western America and Australia. This work uses existing phylogenetic metadata to elaborate a new cladistic taxonomic synthesis, and clarifies morphological circumscriptions of several poorly known species. A total of 20 taxa are validated, seven new and 13 necessary nomenclatural recombinations. Hypotheses of Montiaceae historical biogeography and phenotypic evolution are evaluated in light of recent metadata. Key words: Montiaceae, taxonomy, phylogeny, ecology, phylogeography, evolution. 1. Introduction This work presents a new cladistic taxonomy of Montiaceae (Portulacineae) and several of its included taxa, along with notes on the diagnostics of certainly poorly known species and a summary of new interpretations of phylogeography and phenotypic and ecological evolution. The present work includes 20 nomenclatural novelties. However, the whole of the novelty is greater than the sum of these parts. The generic circumscriptions and diversity estimates are modified from Hernández-Ledesma et al. (2015).The suprageneric taxonomy is the first proposed since McNeill (1974) and the only phylogenetic one. Critical reevaluation of certain common and usually misidentified Chilean taxa is the first since Reiche (1898). Existing metadata are interpreted as evidence for a hybrid origin of a genus. -
Obbens, FJ a Review of the Tuberous Calandrinia Species (Section Tuberosae)
WESTERN AUSTRALIA’S JOURNAL OF SYSTEMATIC BOTANY ISSN 0085-4417 G Obbens, F.J. A review of the tuberous Calandrinia species (section Tuberosae), including three new species for Western Australia Nuytsia 16(1): 95–115 (2006) All enquiries and manuscripts should be directed to: The Editor – NUYTSIA Western Australian Herbarium Telephone: +61 8 9334 0500 Dept of Environment and Conservation Facsimile: +61 8 9334 0515 Locked Bag 104 Bentley Delivery Centre Email: [email protected] Western Australia 6983 Web: science.calm.wa.gov.au/nuytsia/ AUSTRALIA All material in this journal is copyright and may not be reproduced except with the written permission of the publishers. © Copyright Department of Environment and Conservation . F.Nuytsia J. Obbens, 16(1):95–115(2006) A review of the tuberous Calandrinia species (section Tuberosae) 95 A review of the tuberous Calandrinia species (section Tuberosae), including three new species for Western Australia Frank Obbens c/o Western Australian Herbarium, Department of Environment and Conservation, Locked Bag 104, Bentley Delivery Centre WA 6983 Abstract Obbens, F. J. A review of the tuberous Calandrinia species (section Tuberosae), including three new species for Western Australia. Nuytsia 16(1): 95–115 (2006). Background on the current systematic status of Australian Calandrinia is explained. Three new species of section Tuberosae von Poellnitz are described and illustrated: Calandrinia crispisepala Obbens, C. kalanniensis Obbens and C. translucens Obbens. A key to section Tuberosae is provided. Additional descriptive material for the previously named species is provided along with notes that explain the important differences and similarities between the six species now belonging to this section. -
Tabletop Rock Garden
LEARN FROM ROCK GARDEN HOME In Japan, gardening is seen as an art form used to balance and highlight the natural landscape. There are two major types of Japanese gardens: water gardens and rock gardens. Water gardens typically feature a waterfall or pond surrounded by flowers, grasses, and trees to create a lush and organic environment. Rock gardens involve— you guessed it—rocks! Long associated with Buddhist traditions, rock gardens provide a calming space often used to practice meditation. One of the most impressive features of rock gardens is their carefully raked and arranged patterns of sand or gravel. These wavy and undulating patterns mimic the movements of water. Surrounding, and sometimes inside, these raked patterns are larger rocks arranged in odd-number groupings. All these larger rocks also represent natural forms like islands, mountains, waterfalls, or trees. JAPANESE ROCK GARDEN DESIGN TECHNIQUES STANDARDS: Today, Japanese garden designers use some of the following VA.4.H.1.3 techniques in their rock garden design: VA.68.S.2.1 • Rocks are the backbone of rock garden composition • Triangular rocks and rock groupings are best, as the form of a triangle can represent the earth, man, and the divine • Odd-numbered groupings of rocks or objects are preferred • The total number of groupings should also be odd • The largest rock in each cluster is placed first, then smaller rocks can be placed in relation to that rock • Asymmetry in the design should be carefully considered and incorporated Discover more activities at ringling.org MATERIALS: ACTIVITY SAND/ROCKS/PEBBLES, FORK, CONTAINER DIFFICULTY LEVEL: (SHALLOW BOX, PLATE, OR DISH), CENTERPIECE MODERATE ROCK GARDEN (SMALL FAKE TREE, DINOSAUR TOY) BUILD A TABLETOP ROCK GARDEN The act of raking and creating designs in the gravel of a rock garden can help people relax and focus on the moment, which is one of the reasons these gardens are used to practice meditation. -
Molecular Phylogenetic Relationships Among Members of the Family Phytolaccaceae Sensu Lato Inferred from Internal Transcribed Sp
Molecular phylogenetic relationships among members of the family Phytolaccaceae sensu lato inferred from internal transcribed spacer sequences of nuclear ribosomal DNA J. Lee1, S.Y. Kim1, S.H. Park1 and M.A. Ali2 1International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, South Korea 2Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia Corresponding author: M.A. Ali E-mail: [email protected] Genet. Mol. Res. 12 (4): 4515-4525 (2013) Received August 6, 2012 Accepted November 21, 2012 Published February 28, 2013 DOI http://dx.doi.org/10.4238/2013.February.28.15 ABSTRACT. The phylogeny of a phylogenetically poorly known family, Phytolaccaceae sensu lato (s.l.), was constructed for resolving conflicts concerning taxonomic delimitations. Cladistic analyses were made based on 44 sequences of the internal transcribed spacer of nuclear ribosomal DNA from 11 families (Aizoaceae, Basellaceae, Didiereaceae, Molluginaceae, Nyctaginaceae, Phytolaccaceae s.l., Polygonaceae, Portulacaceae, Sarcobataceae, Tamaricaceae, and Nepenthaceae) of the order Caryophyllales. The maximum parsimony tree from the analysis resolved a monophyletic group of the order Caryophyllales; however, the members, Agdestis, Anisomeria, Gallesia, Gisekia, Hilleria, Ledenbergia, Microtea, Monococcus, Petiveria, Phytolacca, Rivinia, Genetics and Molecular Research 12 (4): 4515-4525 (2013) ©FUNPEC-RP www.funpecrp.com.br J. Lee et al. 4516 Schindleria, Seguieria, Stegnosperma, and Trichostigma, which belong to the family Phytolaccaceae s.l., did not cluster under a single clade, demonstrating that Phytolaccaceae is polyphyletic. Key words: Phytolaccaceae; Phylogenetic relationships; Internal transcribed spacer; Nuclear ribosomal DNA INTRODUCTION The Caryophyllales (part of the core eudicots), sometimes also called Centrospermae, include about 6% of dicotyledonous species and comprise 33 families, 692 genera and approxi- mately 11200 species. -
Visual Perception in Japanese Rock Garden Design
Axiomathes (2005) 15:353–371 Ó Springer 2005 DOI 10.1007/s10516-004-5448-8 GERT J. VAN TONDER and MICHAEL J. LYONS VISUAL PERCEPTION IN JAPANESE ROCK GARDEN DESIGN ABSTRACT. We present an investigation into the relation between design princi- ples in Japanese gardens, and their associated perceptual effects. This leads to the realization that a set of design principles described in a Japanese gardening text by Shingen (1466), shows many parallels to the visual effects of perceptual grouping, studied by the Gestalt school of psychology. Guidelines for composition of rock clusters closely relate to perception of visual figure. Garden design elements are arranged into patterns that simplify figure-ground segmentation, while seemingly balancing the visual salience of subparts and the global arrangement. Visual ‘ground’ is analyzed via medial axis transformation (MAT), often associated with shape perception in humans. MAT analysis reveals implicit structure in the visual ground of a quintessential rock garden design. The MAT structure enables formal com- parison of structure of figure and ground. They share some aesthetic qualities, with interesting differences. Both contain naturalistic asymmetric, self-similar, branching structures. While the branching pattern of the ground converges towards the viewer, that of the figure converges in the opposite direction. KEY WORDS: figure-ground, multi-scale, segmentation, tree structure, visual grouping ‘There is ... a basic issue that is only very seldomly discussed: What do we mean by ‘‘visual experience’’? Very often the problem of vision is oversimplified, and to ‘‘see’’ a scene is identified with the task of computing a verbal description of it. This problem is difficult enough, but it is important to recognize that there is much more in visual perception than assigning verbal labels to ‘‘objects’’.’ J.L. -
Descriptions of the Plant Types
APPENDIX A Descriptions of the plant types The plant life forms employed in the model are listed, with examples, in the main text (Table 2). They are described in this appendix in more detail, including environmental relations, physiognomic characters, prototypic and other characteristic taxa, and relevant literature. A list of the forms, with physiognomic characters, is included. Sources of vegetation data relevant to particular life forms are cited with the respective forms in the text of the appendix. General references, especially descriptions of regional vegetation, are listed by region at the end of the appendix. Plant form Plant size Leaf size Leaf (Stem) structure Trees (Broad-leaved) Evergreen I. Tropical Rainforest Trees (lowland. montane) tall, med. large-med. cor. 2. Tropical Evergreen Microphyll Trees medium small cor. 3. Tropical Evergreen Sclerophyll Trees med.-tall medium seier. 4. Temperate Broad-Evergreen Trees a. Warm-Temperate Evergreen med.-small med.-small seier. b. Mediterranean Evergreen med.-small small seier. c. Temperate Broad-Leaved Rainforest medium med.-Iarge scler. Deciduous 5. Raingreen Broad-Leaved Trees a. Monsoon mesomorphic (lowland. montane) medium med.-small mal. b. Woodland xeromorphic small-med. small mal. 6. Summergreen Broad-Leaved Trees a. typical-temperate mesophyllous medium medium mal. b. cool-summer microphyllous medium small mal. Trees (Narrow and needle-leaved) Evergreen 7. Tropical Linear-Leaved Trees tall-med. large cor. 8. Tropical Xeric Needle-Trees medium small-dwarf cor.-scler. 9. Temperate Rainforest Needle-Trees tall large-med. cor. 10. Temperate Needle-Leaved Trees a. Heliophilic Large-Needled medium large cor. b. Mediterranean med.-tall med.-dwarf cor.-scler.