WO 2015/030853 Al 5 March 2015 (05.03.2015) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2015/030853 Al 5 March 2015 (05.03.2015) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/030853 Al 5 March 2015 (05.03.2015) P O P C T (51) International Patent Classification: (74) Agents: TANNER, Lorna, L. et al; Sheppard Mullin A61K 9/16 (2006.01) A61K 31/4188 (2006.01) Richter & Hampton LLP, 379 Lytton Avenue, Palo Alto, A61K 9/20 (2006.01) A61K 31/513 (2006.01) CA 94301-1479 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US2014/013930 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (22) Date: International Filing BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 30 January 2014 (30.01 .2014) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (26) Publication Language: English MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (30) Priority Data: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 61/870,712 27 August 2013 (27.08.2013) US SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, 61/898,690 1 November 2013 (01. 11.2013) US TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, 61/907,308 2 1 November 2013 (21. 11.2013) US ZW. (71) Applicant: GILEAD PHARMASSET LLC [US/US]; (84) Designated States (unless otherwise indicated, for every 333 Lakeside Drive, Foster City, CA 94404 (US). kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (72) Inventors: GORMAN, Eric; c/o Gilead Pharmasset LLC, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 333 Lakeside Drive, Foster City, CA 94404 (US). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, MOGALIAN, Erik; c/o Gilead Pharmasset LLC, 333 EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, Lakeside Drive, Foster City, CA 94404 (US). OLIYAI, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, Reza; c/o Gilead Pharmasset LLC, 333 Lakeside Drive, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Foster City, CA 94404 (US). STEFANIDIS, Dimitrios; KM, ML, MR, NE, SN, TD, TG). c/o Gilead Pharmasset LLC, 333 Lakeside Drive, Foster City, CA 94404 (US). WISER, Lauren; c/o Gilead Declarations under Rule 4.17 : Pharmasset LLC, 333 Lakeside Drive, Foster City, CA — of inventorship (Rule 4.17(iv)) 94404 (US). ZIA, Vahid; c/o Gilead Pharmasset LLC, 333 Lakeside Drive, Foster City, CA 94404 (US). Published: — with international search report (Art. 21(3)) (54) Title: COMBINATION FORMULATION OF TWO ANTIVIRAL COMPOUNDS o (I) © (57) Abstract: Disclosed are pharmaceutical compositions comprising Compound I, having the formula (I): and an effective amount o of sofosbuvir wherein the sofosbuvir is substantially crystalline. Also disclosed are methods of use for the pharmaceutical composi o tion. COMBINATION FORMULATION OF TWO ANTIVIRAL COMPOUNDS CROSS-REFERENCE TO RELATED APPLICATION [0001] This application claims the benefit under 35 U.S.C. § 119(e) to U.S. Provisional Application Number 61/870,712, filed on August 27, 2013, U.S. Provisional Application Number 61/898,690, filed on November 1, 2013, and U.S. Provisional Application Number 61/907,308, filed on November 21, 2013, the entirety of which are incorporated herein by reference. BACKGROUND [0002] Hepatitis C is recognized as a chronic viral disease of the liver which is characterized by liver disease. Although drugs targeting the liver are in wide use and have shown effectiveness, toxicity and other side effects have limited their usefulness. Inhibitors of hepatitis C virus (HCV) are useful to limit the establishment and progression of infection by HCV as well as in diagnostic assays for HCV. [0003] The compounds methyl {(2S)-l-[(2S,5S)-2-(9-{2-[(2S,4S)-l-{(2R)-2- [(methoxycarbonyl)amino]-2-phenylacetyl}-4-(methoxymethyl)pyrrolidin-2-yl]-lH- imidazol-5-yl} -1,1 1-dihydroisochromeno[4',3':6,7]naphtho[ 1,2-d]imidazol-2-yl)-5- methylpyrrolidin-l-yl]-3-methyl-l-oxobutan-2-yl} carbamate, designated herein as Compound I and (S)-isopropyl 2-(((S)-(((2R,3R,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin- 1(2H)-yl)-4-fluoro-3 -hydroxy-4-methyltetrahydrofuran-2- yl)methoxy)(phenoxy)phosphoryl)amino) propanoate, designated herein as sofosbuvir, are known to be an effective anti-HCV agents, as described for example in U.S. Patent Nos. 7,964,580 and 8,575,135. However, the therapeutic benefits of the administration of Compound I and crystalline sofosbuvir were not heretofore known. SUMMARY [0004] Compound I (see, for example, WO 2013/075029 and U.S. Patent No. 8,575,135) has the following chemical structure: I. [0005] Sofosbuvir is a selective inhibitor of non-structural protein 5B (NS5B) (see, for example, WO 2010/132601 and U.S. Patent No. 7,964,580). The chemical name of sofosbuvir is (S)-isopropyl 2-(((S)-(((2R,3R,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin- 1(2H)-yl)-4-fluoro-3-hydroxy-4-methyltetrahydrofuran-2- yl)methoxy)(phenoxy)phosphoryl)amino)propanoate: [0006] Aspects of the disclosure relate to pharmaceutical composition comprising: a) an effective amount of Compound I, wherein the Compound I is substantially amorphous; and b) an effective amount of sofosbuvir, wherein the sofosbuvir is substantially crystalline. [0007] Further aspects of the disclosure relate to pharmaceutical dosage forms and tablets. The disclosure also provides methods for using the combination in the treatment of hepatitis C. [0008] It is contemplated that the solid dispersions disclosed herein would demonstrate one or more of increased bioavailability, elimination of or reduced food-effect, reduced negative drug-drug interaction with acid suppressive therapies, reduced variability across patient populations, and/or improved dose linearity at higher doses when compared with administration of Compound I and/or sofosbuvir alone. DETAILED DESCRIPTION 1. Definitions [0009] As used in the present specification, the following words and phrases are generally intended to have the meanings as set forth below, except to the extent that the context in which they are used indicates otherwise. [0010] As used herein, the term "about" used in the context of quantitative measurements means the indicated amount ± 10%. For example, "about 2:8" would mean 1.8-2.2:7.2-8.8. [0011] The term "amorphous" refers to a state in which the material lacks long range order at the molecular level and, depending upon temperature, may exhibit the physical properties of a solid or a liquid. Typically such materials do not give distinctive X-ray diffraction patterns and, while exhibiting the properties of a solid, are more formally described as a liquid. Upon heating, a change from solid to liquid properties occurs which is characterized by a change of state, typically second order (glass transition). [0012] The term "crystalline" refers to a solid phase in which the material has a regular ordered internal structure at the molecular level and gives a distinctive X-ray diffraction pattern with defined peaks. Such materials when heated sufficiently will also exhibit the properties of a liquid, but the change from solid to liquid is characterized by a phase change, typically first order (melting point). [0013] The term "substantially amorphous" as used herein is intended to mean that greater than 50%; or greater than 55%; or greater than 60%; or greater than 65%; or greater than 70%; or greater than 75%; or greater than 80%; or greater than 85%; or greater than 90%; or greater than 95%, or greater than 99% of the compound present in a composition is in amorphous form. "Substantially amorphous" can also refer to material which has no more than about 20% crystallimty, or no more than about 10% crystallimty, or no more than about 5% crystallimty, or no more than about 2% crystallimty. [0014] The term "substantially crystalline" as used herein is intended to mean that greater than 50%; or greater than 55%; or greater than 60%; or greater than 65%; or greater than 70%; or greater than 75%; or greater than 80%; or greater than 85%; or greater than 90%; or greater than 95%, or greater than 99% of the compound present in a composition is in crystalline form. "Substantially crystalline" can also refer to material which has no more than about 20%, or no more than about 10%, or no more than about 5%, or no more than about 2% in the amorphous form. [0015] The term "polymer matrix" as used herein is defined to mean compositions comprising one or more polymers in which the active agent is dispersed or included within the matrix. [0016] The term "solid dispersion" refers to the dispersion of one or more active agents in a polymer matrix at solid state prepared by a variety of methods, including spray drying, the melting (fusion), solvent, or the melting-solvent method. [0017] The term "amorphous solid dispersion" as used herein, refers to stable solid dispersions comprising an amorphous active agent and a polymer. By "amorphous active agent," it is meant that the amorphous solid dispersion contains active agent in a substantially amorphous solid state form. [0018] The term "pharmaceutically acceptable" indicates that the material does not have properties that would cause a reasonably prudent medical practitioner to avoid administration of the material to a patient, taking into consideration the disease or conditions to be treated and the respective route of administration.
Recommended publications
  • UNO Template
    26 November 2013 Americas/United States Equity Research Biotechnology Global Biotech & Pharma: The HCV Revolution - Edition 2 Research Analysts COMMENT Ravi Mehrotra PhD 212 325 3487 [email protected] What Is The N Number: Keeping An Eye On Vamil Divan, MD 212 538 5394 Potential Longer Term Pricing Disruption [email protected] Koon Ching PhD ■ No pricing disruption expected in the near-term, but potential exists in 212 325 6286 the medium- to long-term. OK this is somewhat obvious, but bear with us: [email protected] Value/NPV = Price x Mkt Share x Mkt Size x Mkt Longevity. This is the Bruce Nudell PhD second note in our "The HCV Revolution" series. HCV is clearly a highly 212 325 9122 competitive therapeutic area with many players vying for their share of the [email protected] potentially >$15B/year HCV market. We previously addressed immediate- European Pharma Team 44 207 888 0304 term pricing of next-generation regimens, specifically for Sofosbuvir (LINK). [email protected] In this note, we simply highlight the potential number of competing all-oral, Ronak H. Shah, Pharm.D., CFA IFN-free regimens, and timing of key data, in HCV (Exhibits 1-7). The 212 325 9799 number of ultimate competitors has important implications for the HCV [email protected] market. In our view, in a HCV market with up to 4−5 players, we expect Lee Kalowski "normal drug rules" to apply: i.e. the order to market, overall clinical profile of 212 325 9683 drug, and commercial prowess will primarily dictate market share, with price [email protected] used as a tool but not in a "disruptive" way.
    [Show full text]
  • HCV Eradication with Direct Acting Antivirals (Daas)?
    HCV eradication with direct acting antivirals (DAAs)? Emilie Estrabaud Service d’Hépatologie et INSERM UMR1149, AP-HP Hôpital Beaujon, Paris, France. [email protected] HCV eradication with direct acting antivirals (DAAs)? HCV replication HCV genome and DAAs targets NS3 inhibitors NS5A inhibitors NS5B inhibitors Take home messages HCV viral cycle Asselah et al. Liver Int. 2015;35 S1:56-64. Direct acting antivirals 5’NTR Structural proteins Nonstructural proteins 3’NTR Metalloprotease Envelope Serine protease Glycoproteins RNA Capsid RNA helicase Cofactors Polymerase C E1 E2 NS1 NS2 NS3 NS4A NS4B NS5A NS5B Protease Inhibitors NS5A Inhibitors Polymerase Inhibitors Telaprevir Daclatasvir Nucs Non-Nucs Boceprevir Ledipasvir Simeprevir ABT-267 Sofosbuvir ABT-333 Faldaprevir GS-5816 VX-135 Deleobuvir Asunaprevir Direct Acting Antivirals: 2015 Asselah et al. Liver Int. 2015;35 S1:56-64. Genetic barrier for HCV direct acting antivirals High Nucleos(t)ide 1 mutation= high cost to Analog Inhibitors fitness, 2-3 additional mutations to increase fitness 2 st generation Protease Inhibitors n Non Nucleos(t)ide Analog Inhibitors : NS5 A Inhibitors 1 st generation Protease Inhibitors 1 mutation= low cost to fitness Low Halfon et al. J Hepatol 2011. Vol 55(1):192-206. HCV protease inhibitors (PI) Inhibit NS3/NS4A serine protease responsible for the processing of the polyprotein 1st generation 1st generation, 2nd wave 2nd generation Resistance low low high barrier Genotype activity 1: 1 a< 1b All except 3 all Drug drug Important Less Less interaction Drugs Boceprevir Simeprevir (Janssen) MK-5172 Telaprevir Faldaprevir (BI) ACH-2684 Paritaprevir (ABT-450)/r (AbbVie) Vedroprevir (Gilead) Vaniprevir (Merck) Sovaprevir (Achillion) Asunaprevir (BMS) NS3/NS4A structure Repositioning of helicase domain Self cleavage Lipid Bilayer Inactive Insertion of the Active carboxy-terminal tail Bartenschlager et al.
    [Show full text]
  • Diapositiva 1
    Resistencias & Epidemiología Eva Poveda Division of Clinical Virology INIBIC-Complexo Hospitalario Universitario de A Coruña Rapid Evolution of HCV Regimens: Easier to take/tolerate, Short Duration, Pangenotypic, Higher SVR, Eventually Oral for all patients SVR: 70-80% ≥ 90% ≥ 90% 2013 2014 2015 Genotype 2&3 Genotype 2 Genotypes 1-6 P/R SOF+RBV 12 weeks SOF+LPV ± RBV Genotypes 1 Genotype 3 ABT-450+ABT-267+ Telaprevir + P/R SOF+RBV 24 weeks ABT- 333 +RBV Boceprevir + P/R Genotypes 1-4 DCV+ASU SOF+ P/R SOF+DCV Genotypes 1&4 SMV+ P/R HCV Resistance to DAA During DAA-based treatment: ■ Rapid selection of resistance mutation may occur, eventually leading to viral break-through. Kieffer et al. Hepatology 2007; 46:631-9 Pilot-Matias et al. 46th EASL 2011, Abs1107 ■ Several changes at different positions at the NS3 protease, NS5B polymerase, and NS5A protein have been associated with loss of susceptibility to DAAs. Sarrazin et al. Gastroenterology 2010;138:447-62 MainTable 2. Main characteristics characteristics of the genotype of theactivity genotypeand resistance of DAA activity classes. and resistance of DAA classes. Genotype activity Resistance Key resistance mutations NS3 ■ First PI generation: genotypes 1 (1b >1a) Low genetic barrier First PI generation: protease (Telaprevir & Boceprevir) High cross-resistance G1a: R155K, V36M inhibitors G1b: V36M, T54A/S, A156T ■ Second wave and second PI generation: across all but genotype 3 (D168Q) Second wave and second PI generation: (Simeprevir, faldaprevir, vaniprevir, F43S, Q80K, R155K, D168A/E/H/T/V asunaprevir, sovaprevir, MK-5172, ACH-2684) NS5 Across all genotypes High genetic barrier Sofosbuvir*: nucleos(ti)de High cross-resistance G1a: S282T+(I434M) Sofosbuvir displays less antiviral activity G1b: S282T analogues againts genotypes 3 (treatment duration 24 G2a: S282T+(T179A, M289L, I293L, inhibitors weeks of sofosbuvir+RBV).
    [Show full text]
  • Twelve-Week Ravidasvir Plus Ritonavir-Boosted Danoprevir And
    bs_bs_banner doi:10.1111/jgh.14096 HEPATOLOGY Twelve-week ravidasvir plus ritonavir-boosted danoprevir and ribavirin for non-cirrhotic HCV genotype 1 patients: A phase 2 study Jia-Horng Kao,* Min-Lung Yu,† Chi-Yi Chen,‡ Cheng-Yuan Peng,§ Ming-Yao Chen,¶ Huoling Tang,** Qiaoqiao Chen** and Jinzi J Wu** *Graduate Institute of Clinical Medicine and Hepatitis Research Center, National Taiwan University College of Medicine and Hospital, ¶Division of Gastroenterology, Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, Taipei, †Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, ‡Division of Gastroenterology, Department of Internal Medicine, Chia-Yi Christian Hospital, Chiayi, and §Division of Hepatogastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; and **Ascletis BioScience Co., Ltd., Hangzhou, China Key words Abstract danoprevir, efficacy, hepatitis C, interferon free, ravidasvir. Background and Aim: The need for all-oral hepatitis C virus (HCV) treatments with higher response rates, improved tolerability, and lower pill burden compared with Accepted for publication 9 January 2018. interferon-inclusive regimen has led to the development of new direct-acting antiviral agents. Ravidasvir (RDV) is a second-generation, pan-genotypic NS5A inhibitor with high Correspondence barrier to resistance. The aim of this phase 2 study (EVEREST study) was to assess the ef- Jia-Horng Kao, Graduate Institute of Clinical ficacy and safety of interferon-free, 12-week RDV plus ritonavir-boosted danoprevir Medicine and Hepatitis Research Center, (DNVr) and ribavirin (RBV) regimen for treatment-naïve Asian HCV genotype 1 (GT1) National Taiwan University College of Medicine patients without cirrhosis. and Hospital, 7 Chung-Shan South Road, Taipei Methods: A total of 38 treatment-naïve, non-cirrhotic adult HCV GT1 patients were en- 10002, Taiwan.
    [Show full text]
  • Caracterización Molecular Del Perfil De Resistencias Del Virus De La
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Programa de doctorado en Medicina Departamento de Medicina Facultad de Medicina Universidad Autónoma de Barcelona TESIS DOCTORAL Caracterización molecular del perfil de resistencias del virus de la hepatitis C después del fallo terapéutico a antivirales de acción directa mediante secuenciación masiva Tesis para optar al grado de doctor de Qian Chen Directores de la Tesis Dr. Josep Quer Sivila Dra. Celia Perales Viejo Dr. Josep Gregori i Font Laboratorio de Enfermedades Hepáticas - Hepatitis Víricas Vall d’Hebron Institut de Recerca (VHIR) Barcelona, 2018 ABREVIACIONES Abreviaciones ADN: Ácido desoxirribonucleico AK: Adenosina quinasa ALT: Alanina aminotransferasa ARN: Ácido ribonucleico ASV: Asunaprevir BOC: Boceprevir CCD: Charge Coupled Device CLDN1: Claudina-1 CHC: Carcinoma hepatocelular DAA: Antiviral de acción directa DC-SIGN: Dendritic cell-specific ICAM-3 grabbing non-integrin DCV: Daclatasvir DSV: Dasabuvir
    [Show full text]
  • Stamp-V3 1..249
    23 March 2016 Volume 23 Supplement 1 S1 Volume 23 Volume Supplement 1 P ages A1–A262 ages EUROPEAN JOURNAL OF HOSPITAL PHARMACY OF HOSPITAL JOURNAL EUROPEAN ABSTRACT BOOK 21st Congress of the EAHP 16-18 March 2016 Vienna, Austria March 2016 March Contents Volume 23 Supplement 1 | EJHP March 2016 Abstracts from the EAHP 2016 Congress A1 Clinical pharmacy A172 Other hospital pharmacy topics A104 Drug distribution A178 Pharmacokinetics and pharmacodynamics A118 Drug information and pharmacotherapy A195 Production and preparation A158 General management A214 Patient safety and risk management A167 International posters A250 Author index POSTER AWARD NOMINEES Presentations on Wednesday, 16 March, 14:00–15:30, Room 93 Time Poster number Poster nominee oral presentations Author 14:00 DD-021 Medicine supply chain of a central pharmacy: risk mapping F Charra shortage 14:10 PP-001 Contamination with cytotoxic drugs in the workplace – E Korczowska ESOP pilot study 14:20 PP-039 Double checking manipulations for complex and/or high A Alcobia Martins risk preparations 14:30 CP-055 The clinical pharmacist resolves medication related E Tudela-Lopez problems in cranio, maxillofacial and oral surgery patients 14:40 CP-085 The impact of pharmacist interventions on safety M Tovar Pozo and cost savings 14:50 CP-219 Effectiveness and safety of switching to dual antiretroviral J Luis Revuelta therapy in a treatment experienced HIV cohort 15:00 DD-027 Implementation and evaluation of an appointment based F J Alvarez Manceñido model for outpatients attended in
    [Show full text]
  • Synthesis and Evaluation of New HCV NS3/4A Protease Inhibitors
    Synthesis and Evaluation of New HCV NS3/4A Protease Inhibitors A Major Qualifying Project Report: Submitted to the Faculty Of WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Bachelor of Science By: ______________________ Evangelos Koumbaros Advisor Destin Heilman In Cooperation with Akbar Ali, Ph.D. UMass Medical School Table of Contents Acknowledgments ..................................................................................................................................... 4 Abstract ..................................................................................................................................................... 5 Background ............................................................................................................................................... 6 Protease Inhibitors ................................................................................................................................ 8 Telaprevir .............................................................................................................................................. 8 Boceprevir ............................................................................................................................................. 9 MK-5172 ............................................................................................................................................... 9 Methods .................................................................................................................................................
    [Show full text]
  • WO 2014/120981 Al 7 August 2014 (07.08.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/120981 Al 7 August 2014 (07.08.2014) P O P C T (51) International Patent Classification: Gilead Pharmasset LLC, 333 Lakeside Drive, Foster City, A61K 9/16 (2006.01) A61K 31/501 (2006.01) California 94404 (US). A61K 9/20 (2006.01) A61K 31/513 (2006.01) (74) Agents: TANNER, Lorna L. et al; Sheppard Mullin (21) International Application Number: Richter & Hampton Lip, 379 Lytton Avenue, Palo Alto, PCT/US2014/013953 California 94301-1479 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 30 January 2014 (30.01 .2014) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (25) Filing Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (26) Publication Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/759,320 31 January 2013 (3 1.01.2013) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/772,292 4 March 2013 (04.03.2013) US OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 61/828,899 30 May 2013 (30.05.2013) US SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, 61/870,729 27 August 2013 (27.08.2013) US TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, 61/897,793 30 October 20 13 (30.
    [Show full text]
  • Daclatasvir in Combination with Asunaprevir and Beclabuvir for Hepatitis C Virus Genotype 1 Infection with Compensated Cirrhosis
    Supplementary Online Content Muir AJ, Poordad F, Lalezare J; et al. Daclatasvir in combination with asunaprevir and beclabuvir for hepatitis C virus genotype 1 infection with compensated cirrhosis. JAMA. doi:10.1001/jama.2015.3868. eAppendix This supplementary material has been provided by the authors to give readers additional information about their work. © 2015 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 eAppendix The historical threshold SVR was derived from a combined analysis in subjects treated with peg- interferon/ribavirin in combination with either sofosbuvir or simeprevir. The final historical threshold based on these SVR rates is: Cirrhotic Treatment-naive 69% Treatment-experienced 45% The treatment-naïve data is from the NEUTRINO trial for sofosbuvir, which demonstrated SVR rate of 91% (95% confidence interval 87-94%) in non-cirrhotic subjects [FDA antiviral drugs advisory committee, NDA 204671, 25 October, 2013]. Using a non-inferiority margin of 15% (in consideration for an IFN-free regimen), the threshold for non-cirrhotic subjects was calculated by subtracting the non-inferiority margin from the upper bound of the 95% confidence interval of the point estimate (94% - 15%), which is 79%. In the NEUTRINO trial, the SVR for cirrhotic subjects was 10% lower than for non-cirrhotic subjects (81% vs. 91%). Therefore, the historical threshold for cirrhotic subjects in AI443113 was determined by subtracting 10% from the historical threshold for non-cirrhotic subjects, which is 79%-10% = 69%. The prior relapse data is from trial HPC3007 for simeprevir [Forns et al Gastroenterology 2014;146:1669- 1679], and the non-responder data is from C206 study for simeprevir [FDA antiviral drugs advisory committee, NDA 205123, 24 October, 2013].
    [Show full text]
  • Original Article Randomized Study of Asunaprevir Plus Pegylated Interferon-Α and Ribavirin for Previously Untreated Genotype 1 Chronic Hepatitis C
    Antiviral Therapy 2013; 18:885–893 (doi: 10.3851/IMP2660) Original article Randomized study of asunaprevir plus pegylated interferon-α and ribavirin for previously untreated genotype 1 chronic hepatitis C Jean-Pierre Bronowicki1*, Stanislas Pol2, Paul J Thuluvath3, Dominique Larrey4, Claudia T Martorell5, Vinod K Rustgi6, David W Morris7, Ziad Younes8, Michael W Fried9, Marc Bourlière10, Christophe Hézode11, K Rajender Reddy12, Omar Massoud13, Gary A Abrams14, Vlad Ratziu15, Bing He16, Timothy Eley16, Alaa Ahmad17, David Cohen18, Robert Hindes19, Fiona McPhee18, Bridget Reilly16, Patricia Mendez16, Eric Hughes16 1INSERM 954, Centre Hospitalier Universitaire de Nancy, Université de Lorraine, Vandoeuvre les Nancy, France 2Université Paris Descartes, INSERM U1610 and Liver Unit, Hôpital Cochin, Paris, France 3Mercy Medical Center, Baltimore, MD, USA 4Hôpital Saint Eloi, Service d’Hépato-Gastroentérologie et Transplantation, INSERM 1040-IRB, Montpellier, France 5The Research Institute, Springfield, MA, USA 6Metropolitan Research, Fairfax, VA, USA 7Healthcare Research Consultants, Tulsa, OK, USA 8Gastro One, Germantown, TN, USA 9Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, NC, USA 10Hôpital Saint Joseph, Service d’Hépato-Gastroentérologie, Marseille, France 11CHU Henri Mondor, Service d’Hépato-Gastroentérologie, Créteil, France 12Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA, USA 13Division of Gastroenterology and Hepatology, University of Alabama at
    [Show full text]
  • ABT-450/R (Abbott) – GS-9451 (Gilead) • Second Generation (Pan-Genotype, High Barrier to Resistance) – MK-5172 (Merck) – ACH-2684 (Achillion)
    Paris Hepatitis Conference New Therapeutic Strategies Second Generation Protease inhibitors David R Nelson MD Professor and Associate Dean Director, Clinical and Translational Science Institute University of Florida Gainesville, USA Outline • HCV protease structure and drug targeting • First generation PIs – Major step forward – Major limitations • PIs in development – Second wave – Second generation • Clinical trial data – IFN-containing PI regimens – IFN-free PI containing regimens • Timelines and treatment paradigms NS3 protease targeting active site “catalytic triad” NS4A TARGETING . Substrate- and product analogs . Tri-peptides . Serine-trap inhibitors subdomain . Ketoamides (boceprevir, telaprevir) boundary . Macrocyclic inhibitors (e.g. Simeprevir, Danoprevir, Vaniprevir, etc.) zinc-finger . NS4A inhibitors Lorenz et al., Nature 2006 Kronenberger et al., Clin Liver Dis 2008 Welsch et al. Gut in press A Major Step Forward: First Generation PIs PegIFN/RBV BOC or TVR + pegIFN/RBV 100 69-83 80 63-75 40-59 60 38-44 29-40 SVR SVR (%) 40 24-29 20 7-15 5 0 Naive[1,2] Relapsers[3,4] Partial Null Responders[3,4] Responders[3,4] 1. Poordad F, et al. N Engl J Med. 2011;364:1195-1206. 2. Jacobson IM, et al. N Engl J Med. 2011;364:2405-2416. 3. Bacon BR, et al. N Engl J Med. 2011;364:1207-1217. 4. Zeuzem S, et al. N Engl J Med. 2011;364:2417-2428. 3. Bronowicki JP, et al. EASL 2012. Abstract 11. Limitations of First Generation PI-Based Therapy • Efficacy – Very dependent on the IFN response – Limited to gen 1 (1b>1a) • Low genetic barrier to
    [Show full text]
  • Documents Numérisés Par Onetouch
    19 ORGANISATION AFRICAINE DE LA PROPRIETE INTELLECTUELLE 51 8 Inter. CI. C07D 471/04 (2018.01) 11 A61K 31/519 (2018.01) N° 18435 A61P 29/00 (2018.01) A61P 31/12 (2018.01) A61P 35/00 (2018.01) FASCICULE DE BREVET D'INVENTION A61P 37/00 (2018.01) 21 Numéro de dépôt : 1201700355 73 Titulaire(s): PCT/US2016/020499 GILEAD SCIENCES, INC., 333 Lakeside Drive, 22 Date de dépôt : 02/03/2016 FOSTER CITY, CA 94404 (US) 30 Priorité(s): Inventeur(s): 72 US n° 62/128,397 du 04/03/2015 CHIN Gregory (US) US n° 62/250,403 du 03/11/2015 METOBO Samuel E. (US) ZABLOCKI Jeff (US) MACKMAN Richard L. (US) MISH Michael R. (US) AKTOUDIANAKIS Evangelos (US) PYUN Hyung-jung (US) 24 Délivré le : 27/09/2018 74 Mandataire: GAD CONSULTANTS SCP, B.P. 13448, YAOUNDE (CM). 45 Publié le : 15.11.2018 54 Titre: Toll like receptor modulator compounds. 57 Abrégé : The present disclosure relates generally to toll like receptor modulator compounds, such as diamino pyrido [3,2 D] pyrimidine compounds and pharmaceutical compositions which, among other things, modulate toll-like receptors (e.g. TLR-8), and methods of making and using them. O.A.P.I. – B.P. 887, YAOUNDE (Cameroun) – Tel. (237) 222 20 57 00 – Site web: http:/www.oapi.int – Email: [email protected] 18435 TOLL LIKE RECEPTOR MODULATOR COMPOUNDS CROSS REFERENCE TO RELATED APPLICATIONS [0001] This application claims priority to U.S. Provisional Application Nos. 62/128397, filed March 4, 2015, and 62/250403, filed November 3, 2015, both of which are incorporated herein in their entireties for all purposes.
    [Show full text]