Identification of Selected Monogeneans Using Image Processing, Artificial Neural Network and K-Nearest Neighbor

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Selected Monogeneans Using Image Processing, Artificial Neural Network and K-Nearest Neighbor Identification of selected monogeneans using image processing, artificial neural network and K-nearest neighbor Item Type article Authors Yousef Kalafi, E.; Wooi Boon, T.; Town, C.; Kaur Dhillon, S. Download date 02/10/2021 11:21:57 Link to Item http://hdl.handle.net/1834/40338 Iranian Journal of Fisheries Sciences 17(4) 805-820 2018 DOI:10.22092/ijfs.2018.117017 Identification of selected monogeneans using image processing, artificial neural network and K-nearest neighbor ٭Yousef Kalafi E.¹; Wooi Boon T.¹; Town C.²; Kaur Dhillon S.¹ Received: June 2017 Accepted: August 2017 Abstract Over the last two decades, improvements in developing computational tools have made significant contributions to the classification of images of biological specimens to their corresponding species. These days, identification of biological species is much easier for taxonomists and even non-taxonomists due to the development of automated computer techniques and systems. In this study, we developed a fully automated identification model for monogenean images based on the shape characters of the haptoral organs of eight species: Sinodiplectanotrema malayanum, Diplectanum jaculator, Trianchoratus pahangensis, Trianchoratus lonianchoratus, Trianchoratus malayensis, Metahaliotrema ypsilocleithru, Metahaliotrema mizellei and Metahaliotrema similis. Linear Discriminant Analysis (LDA) method was used to reduce the dimension of extracted feature vectors which were then used in the classification with K-Nearest Neighbor (KNN) and Artificial Neural Network (ANN) classifiers for the identification of monogenean specimens of eight species. The need for the discovery of new characters for identification of species has been Downloaded from jifro.ir at 12:07 +0330 on Saturday October 6th 2018 acknowledged for log by systematic parasitology. Using the overall form of anchors and bars for extraction of features led to acceptable results in automated classification of monogeneans. To date, this is the first fully automated identification model for monogeneans with an accuracy of 86.25% using KNN and 93.1% using ANN. Keywords: Monogenean, Morphology, Fish parasite, Artificial neural networks, K- nearest neighbor 1-Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia 2-Computer Laboratory, University of Cambridge, Cambridge CB3 0FD, UK *Corresponding author's Email: [email protected] 806 Yousef Kalafi et al., Identification of selected monogeneans using image… Introduction morphology and ecology and with Monogeneans are platyhelminthes respect to the variation of structural which are characterized by having a designs in the attachment organs proper body and haptor with sizes (Kearn, 1994), which are usually used ranging from 0.5mm to 1-2cm in length for species identification. The haptoral live on lower aquatic invertebrates or attachment organs of monogeneans are the gills, skin or fins of fishes as hosts. sclerotized structures of anchors, bars Their appendage attachments in their and marginal hooks. In particular, the anterior and posterior (haptoral) regions morphology of each of these organsis are used to prevent physical unique to monogenean species (Boeger dislodgement from the host (Fig. 1). and Kritsky, 1993) and is used as a diagnostic feature in their taxonomical classification (Vignon, 2011). Earlier, Active Shape Models (ASM) (Ali et al., 2012) were used to classify several Gyrodactylus species according to attachment hooks. ASM were applied to extract diagnostic information from hook images as features. Extracted features were used as input data to Linear Discriminant Analysis (LDA) , K-Nearest Neighbor (KNN), Multilayer Perceptron (MLP) and Support Vector Machine (SVM) classifiers. According to Khang et al. (2016), data from size Downloaded from jifro.ir at 12:07 +0330 on Saturday October 6th 2018 and shape of anchors were generated using geometric morphometrics. They used principal components and cluster analysis to classify 13 species of Ligophorus. Innovations in the area of computer vision have significantly contributed to the development of automated taxonomic identification systems such Figure 1: Illustration of a monogenean worm as an automated identification system consisting of three main parts: head, body which estimates densities of whiteflies, and haptor. aphids and thrips in a greenhouse (CHO Monogeneans are a diverse group, with et al., 2008), automatic image several thousand species described in recognition and diagnosis of protozoan the world (Poulin, 2002). The diversity parasites (Castañón et al., 2007), of monogeneans is not only in terms of automatic recognition of biological numbers but also in terms of their particles in microscopic images Iranian Journal of Fisheries Sciences 17(4) 2018 807 (Ranzato et al., 2007), automatic methods are performed on every single detection of malaria parasites for image (specimen) which substantially estimating parasitemia (Savkare and slows down the process of Narote, 2011), automated identification identification and classification. Hence, of copepods using digital image we propose a fully automated processing and artificial neural identification model for monogeneans networks (Leow et al., 2015), which is robust with respect to variable automated identification of fish species imaging conditions and damaged based on otolith contour using short- specimens. time Fourier transform and discriminant analysis (STFT-DA) (Salimi et al., Materials and methods 2016), and other systems (Larios et al., Recognition of monogeneans is based 2008; Vogt et al., 2009; Mansoor et al., on morphometric features of their hard 2011; Feng et al., 2016; Perre et al., parts (Lim and Gibson, 2010). For this 2016). study, images of the hard haptoral Many classification methods such as organs such as anchors and bars were Artificial Neural Network (ANN) captured using a Leica digital camera (Yang et al., 2001; Cho et al., 2008; DFC 320 attached to Leica DMRB Mansoor et al., 2011), KNN (Keller et microscope at 40× magnification. The al., 1985; Parisi-Baradad et al., 2010), resolution of the images was 1044×772 SVM (Thiel et al., 1996; Pronobis et pixels and they were saved in Tagged al., 2010), Discriminant Analysis (DA) Image File format (TIF). (Thiel et al., 1996; Salimi et al., 2016), Our database consists of 160 images Decision trees (Jalba et al., 2005), from 8 species (20 images of each Semantically-Related Visual (SRV) species): Sinodiplectanotrema Downloaded from jifro.ir at 12:07 +0330 on Saturday October 6th 2018 (Feng and Bhanu, 2013), and malayanum, Diplectanum jaculator, Convolutional Neural Networks Trianchoratus pahangensis, (Gomez et al., 2016), etc. have been Trianchoratus lonianchoratus, utilized for developing automated Trianchoratus malayensis, identification systems. Metahaliotrema ypsilocleithru, Automated classification of images Metahaliotrema mizellei and of specimens requires development of Metahaliotrema similis. Fig. 2 models and methods that are able to illustrates the flowchart for the characterize species images based on development of automated the texture or shape of objects to extract identification for monogeneans. important visual information for classification. Current approaches in monogenean identification rely heavily on manual input during image processing and feature extraction such as specifying morphological landmark features. These manual identification 808 Yousef Kalafi et al., Identification of selected monogeneans using image… features for the next process in feature extraction. Preprocessing started with converting RGB images to intensity images. Then intensity images were filtered and edges of anchors and bars were detected (Fig. 4). Figure 4: The process of detecting edges from intensity image. Figure 2: Flowchart for development of proposed model for monogenean identification. Since the segmented images contained negative and positive values, the images Preprocessing were binarized with a threshold of zero. Monogenean specimen images are very Then the borders were cleared and complex due to their messy background objects smaller than 1000 pixels were and overlapping of anchors and bars. removed (Fig. 5). Coordinates of Despite consistent efforts to acquire contour pixels for species` anchors clear images, some overlapping and were calculated. Features were clutter were unavoidable (Fig. 3). extracted either from all anchors and Downloaded from jifro.ir at 12:07 +0330 on Saturday October 6th 2018 bars as a consolidated object or from individual anchors. Figure 3: The illustration of anchors and bars of Metahaliotrema ypsilocleithrum. a) The illustration of dorsal and ventral Figure 5: The process of converting binary anchors and bars. b) The microscopic image image to segmented image. of anchors and bars and their overlapping. Feature extraction Hence, preprocessing played an Binary images were used two times for important role to omit redundant feature extraction; (i) firstly using all information and to highlight reliable Iranian Journal of Fisheries Sciences 17(4) 2018 809 anchors and bars as a consolidated of 160×7 feature vector. object and (ii) secondly by calculating coordinates of one anchor and then Classification extracting the features from that anchor. The features that were extracted and Features extracted consisted of: length selected in the previous stage were used of bounding box, width of bounding as inputs to KNN and ANN classifiers box, center of bounding box, to train the system based on a training orientation
Recommended publications
  • Monogenea: Diplectanidae), a Parasite Cambridge.Org/Jhl of Pacific White Snook Centropomus Viridis
    Journal of Helminthology Mitochondrial genome of Rhabdosynochus viridisi (Monogenea: Diplectanidae), a parasite cambridge.org/jhl of Pacific white snook Centropomus viridis 1 2 1 1,2 Short Communication V. Caña-Bozada , R. Llera-Herrera , E.J. Fajer-Ávila and F.N. Morales-Serna 1 2 Cite this article: Caña-Bozada V, Llera-Herrera Centro de Investigación en Alimentación y Desarrollo, A.C., Mazatlán 82112, Sinaloa, Mexico and Instituto de R, Fajer-Ávila EJ, Morales-Serna FN (2021). Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán 82040, Sinaloa, Mexico Mitochondrial genome of Rhabdosynochus viridisi (Monogenea: Diplectanidae), a parasite Abstract of Pacific white snook Centropomus viridis. Journal of Helminthology 95,e21,1–5. https:// We report the nearly complete mitochondrial genome of Rhabdosynochus viridisi – the first doi.org/10.1017/S0022149X21000146 for this genus – achieved by combining shotgun sequencing of genomic and cDNA libraries prepared using low-input protocols. This integration of genomic information leads us to cor- Received: 7 February 2021 Accepted: 20 March 2021 rect the annotation of the gene features. The mitochondrial genome consists of 13,863 bp. Annotation resulted in the identification of 12 protein-encoding genes, 22 tRNA genes and Keywords: two rRNA genes. Three non-coding regions, delimited by three tRNAs, were found between Platyhelminthes; Monopisthocotylea; the genes nad5 and cox3. A phylogenetic analysis grouped R. viridisi with three other species monogenean; mitogenome; fish parasite; marine water of diplectanid monogeneans for which mitochondrial genomes are available. Author for correspondence: V. Caña-Bozada, E-mail: victorcana1991@ hotmail.com Introduction Monogeneans are parasitic flatworms (Platyhelminthes) found mostly on freshwater and mar- ine fish, although some species can infect aquatic or semi-aquatic sarcopterygians such as lungfish, and amphibians, freshwater turtles and hippopotamuses.
    [Show full text]
  • Are All Species of Pseudorhabdosynochus Strictly Host Specific? – a Molecular Study
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by HAL-CEA Are all species of Pseudorhabdosynochus strictly host specific? - a molecular study Charlotte Schoelinck, Corinne Cruaud, Jean-Lou Justine To cite this version: Charlotte Schoelinck, Corinne Cruaud, Jean-Lou Justine. Are all species of Pseudorhabdosyn- ochus strictly host specific? - a molecular study. Parasitology International, Elsevier, 2012, 61, 10.1016/j.parint.2012.01.009. <10.1016/j.parint.2012.01.009>. <mnhn-00673113> HAL Id: mnhn-00673113 https://hal-mnhn.archives-ouvertes.fr/mnhn-00673113 Submitted on 22 Feb 2012 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. Parasitology International, in press 2012 – DOI: 10.1016/j.parint.2012.01.009 Are all species of Pseudorhabdosynochus strictly host specific? – a molecular study Charlotte Schoelinck (a, b) Corinne Cruaud (c), Jean-Lou Justine (a) (a) UMR 7138 Systématique, Adaptation, Évolution, Muséum National d’Histoire Naturelle, Département Systématique et Évolution, CP 51, 55 Rue Buffon, 75231 Paris cedex 05, France. (b) Service de Systématique moléculaire (CNRS-MNHN, UMS2700), Muséum National d'Histoire Naturelle, Département Systématique et Évolution, CP 26, 43 Rue Cuvier, 75231 Paris Cedex 05, France.
    [Show full text]
  • Parasites of Coral Reef Fish: How Much Do We Know? with a Bibliography of Fish Parasites in New Caledonia
    Belg. J. Zool., 140 (Suppl.): 155-190 July 2010 Parasites of coral reef fish: how much do we know? With a bibliography of fish parasites in New Caledonia Jean-Lou Justine (1) UMR 7138 Systématique, Adaptation, Évolution, Muséum National d’Histoire Naturelle, 57, rue Cuvier, F-75321 Paris Cedex 05, France (2) Aquarium des lagons, B.P. 8185, 98807 Nouméa, Nouvelle-Calédonie Corresponding author: Jean-Lou Justine; e-mail: [email protected] ABSTRACT. A compilation of 107 references dealing with fish parasites in New Caledonia permitted the production of a parasite-host list and a host-parasite list. The lists include Turbellaria, Monopisthocotylea, Polyopisthocotylea, Digenea, Cestoda, Nematoda, Copepoda, Isopoda, Acanthocephala and Hirudinea, with 580 host-parasite combinations, corresponding with more than 370 species of parasites. Protozoa are not included. Platyhelminthes are the major group, with 239 species, including 98 monopisthocotylean monogeneans and 105 digeneans. Copepods include 61 records, and nematodes include 41 records. The list of fish recorded with parasites includes 195 species, in which most (ca. 170 species) are coral reef associated, the rest being a few deep-sea, pelagic or freshwater fishes. The serranids, lethrinids and lutjanids are the most commonly represented fish families. Although a list of published records does not provide a reliable estimate of biodiversity because of the important bias in publications being mainly in the domain of interest of the authors, it provides a basis to compare parasite biodiversity with other localities, and especially with other coral reefs. The present list is probably the most complete published account of parasite biodiversity of coral reef fishes.
    [Show full text]
  • Monopisthocotylean Monogeneans) Inferred from 28S Rdna Sequences
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 2002 Phylogenetic Positions of the Bothitrematidae and Neocalceostomatidae (Monopisthocotylean Monogeneans) Inferred from 28S rDNA Sequences Jean-Lou Justine Richard Jovelin Lassâd Neifar Isabelle Mollaret L.H. Susan Lim See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Jean-Lou Justine, Richard Jovelin, Lassâd Neifar, Isabelle Mollaret, L.H. Susan Lim, Sherman S. Hendrix, and Louis Euzet Comp. Parasitol. 69(1), 2002, pp. 20–25 Phylogenetic Positions of the Bothitrematidae and Neocalceostomatidae (Monopisthocotylean Monogeneans) Inferred from 28S rDNA Sequences JEAN-LOU JUSTINE,1,8 RICHARD JOVELIN,1,2 LASSAˆ D NEIFAR,3 ISABELLE MOLLARET,1,4 L. H. SUSAN LIM,5 SHERMAN S. HENDRIX,6 AND LOUIS EUZET7 1 Laboratoire de Biologie Parasitaire, Protistologie, Helminthologie, Muse´um National d’Histoire Naturelle, 61 rue Buffon, F-75231 Paris Cedex 05, France (e-mail: [email protected]), 2 Service
    [Show full text]
  • Species of Pseudorhabdosynochus (Monogenea, Diplectanidae) From
    RESEARCH ARTICLE Species of Pseudorhabdosynochus (Monogenea, Diplectanidae) from Groupers (Mycteroperca spp., Epinephelidae) in the Mediterranean and Eastern Atlantic Ocean, with Special Reference to the ‘ ’ a11111 Beverleyburtonae Group and Description of Two New Species Amira Chaabane1*, Lassad Neifar1, Delphine Gey2, Jean-Lou Justine3 1 Laboratoire de Biodiversité et Écosystèmes Aquatiques, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia, 2 UMS 2700 Service de Systématique moléculaire, Muséum National d'Histoire Naturelle, OPEN ACCESS Sorbonne Universités, Paris, France, 3 ISYEB, Institut Systématique, Évolution, Biodiversité, UMR7205 (CNRS, EPHE, MNHN, UPMC), Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France Citation: Chaabane A, Neifar L, Gey D, Justine J-L (2016) Species of Pseudorhabdosynochus * [email protected] (Monogenea, Diplectanidae) from Groupers (Mycteroperca spp., Epinephelidae) in the Mediterranean and Eastern Atlantic Ocean, with Special Reference to the ‘Beverleyburtonae Group’ Abstract and Description of Two New Species. PLoS ONE 11 (8): e0159886. doi:10.1371/journal.pone.0159886 Pseudorhabdosynochus Yamaguti, 1958 is a species-rich diplectanid genus, mainly restricted to the gills of groupers (Epinephelidae) and especially abundant in warm seas. Editor: Gordon Langsley, Institut national de la santé et de la recherche médicale - Institut Cochin, Species from the Mediterranean are not fully documented. Two new and two previously FRANCE known species from the gills of Mycteroperca spp. (M. costae, M. rubra, and M. marginata) Received: April 28, 2016 in the Mediterranean and Eastern Atlantic Ocean are described here from new material and slides kept in collections. Identifications of newly collected fish were ascertained by barcod- Accepted: July 8, 2016 ing of cytochrome c oxidase subunit I (COI) sequences.
    [Show full text]
  • A Parasite of Deep-Sea Groupers (Serranidae) Occurs Transatlantic
    Pseudorhabdosynochus sulamericanus (Monogenea, Diplectanidae), a parasite of deep-sea groupers (Serranidae) occurs transatlantically on three congeneric hosts ( Hyporthodus spp.), one from the Mediterranean Sea and two from the western Atlantic Amira Chaabane, Jean-Lou Justine, Delphine Gey, Micah Bakenhaster, Lassad Neifar To cite this version: Amira Chaabane, Jean-Lou Justine, Delphine Gey, Micah Bakenhaster, Lassad Neifar. Pseudorhab- dosynochus sulamericanus (Monogenea, Diplectanidae), a parasite of deep-sea groupers (Serranidae) occurs transatlantically on three congeneric hosts ( Hyporthodus spp.), one from the Mediterranean Sea and two from the western Atlantic. PeerJ, PeerJ, 2016, 4, pp.e2233. 10.7717/peerj.2233. hal- 02557717 HAL Id: hal-02557717 https://hal.archives-ouvertes.fr/hal-02557717 Submitted on 16 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Pseudorhabdosynochus sulamericanus (Monogenea, Diplectanidae), a parasite of deep-sea groupers (Serranidae) occurs transatlantically on three congeneric hosts (Hyporthodus spp.),
    [Show full text]
  • From Gills of Acanthopagrus Arabicus (Teleostei: Sparidae) from Iraqi Marine Waters
    Jassim & Al-Salim Vol. 4 (1): 1-6, 2020 Lamellodiscus iraqensis Sp. Nov. (Monogenea: Diplectanidae) from Gills of Acanthopagrus arabicus (Teleostei: Sparidae) from Iraqi Marine Waters Abdul-Amer R. Jassim¹ & Nadirah K. Al-Salim² ¹Department of Biological Evaluation in the Shatt Al-Arab River and North-West of the Arabian Gulf, Marine Science Centre, University of Basrah, Basrah, Iraq ²Department of Fisheries and Marine Resources, College of Agriculture, University of Basrah, Basrah, Iraq *Corresponding author: [email protected] Abstract: Lamellodiscus iraqensis sp. nov. is described from the gills of Arabian yellowfin seabream Acanthopagrus arabicus Iwatsuki (Sparidae) captured from marine waters of Iraq. The new species belongs to the "elegans" group within the genus Lamellodiscus and it is distinguished from other species of this genus by some morphological features, especially the shape of the male copulatory organ (MCO). With the present new species (L. iraqensis) a total of 61 valid Lamellodiscus species are so far known in the World. Keywords: Monogenea, Diplectanidae, Lamellodiscus iraqensis, Acanthopagrus arabicus, Iraqi marine waters. Introduction Fishes of the family Sparidae have been considered as of great commercial and marketing table fishes (Froese & Pauly, 2019). Ali et al. (2018) mentioned there are 11 valid species of sparids in Iraq. Acanthopagrus arabicus is one of the most important fishes in Iraq. The genus Lamellodiscus Johnston et Tiegs, 1922 (Monogenea: Diplectanidae) is composed of 61 described species (Ogawa & Egusa, 1978; Kritsky et al., 2000; Neifar et al., 2004; Amine et al., 2006a, b, 2007a, b; Neifar, 2008; Boudaya et al., 2009; Justine & Briand, 2010; Diamanka et al., 2011a, b; Machkewskyi et al., 2014; Kritsky & Bakenhaster, 2019), that have been mainly studied in sparids.
    [Show full text]
  • Parasite Fauna of White-Streaked Grouper, Epinephelus Ongus (Bloch, 1790) (Epinephelidae) from Karimunjawa, Indonesia
    1 Parasite fauna of white-streaked grouper, Epinephelus ongus (Bloch, 1790) (Epinephelidae) from Karimunjawa, Indonesia KILIAN NEUBERT1*, IRFAN YULIANTO1,2, SONJA KLEINERTZ1, STEFAN THEISEN1, BUDY WIRYAWAN3 and HARRY W. PALM1 1 Aquaculture and Sea-Ranching, Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von- Liebig-Weg 6, 18059 Rostock, Germany 2 Wildlife Conservation Society-Indonesia Program, Jl. Atletik No. 8, Bogor, Indonesia 3 Marine Fisheries, Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, Kampus IPB Darmaga, Bogor, Indonesia (Received 4 March 2016; revised 28 April 2016; accepted 10 May 2016) SUMMARY This study provides the first comprehensive information on the parasite fauna of the white-streaked grouper Epinephelus ongus. A total of 35 specimens from the archipelago Karimunjawa, Java Sea, Indonesia were studied for metazoan parasites. For comparison, the documented parasite community of 521 E. areolatus, E. coioides and E. fuscoguttatus from previous studies were analysed. A total of 17 different parasite taxa were recognized for E. ongus, including 14 new host and four new locality records. This increases the known parasite taxa of E. ongus by more than 80%. The ectoparasite fauna was predominated by the monogenean Pseudorhabdosynochus quadratus resulting in a low Shannon index of species diversity of the entire parasite community (0.17). By contrast, the species diversity excluding the ectoparasites reached the highest value recorded for Indonesian epinephelids (1.93). The endoparasite fauna was predominated by generalists, which are already known from Indonesia. This demonstrates the potential risk of parasite transmission through E. ongus into mariculture and vice versa. One-way analyses of similarity revealed a significantly different parasite community pattern of E.
    [Show full text]
  • New Species of Diplectanum (Monogenoidea: Diplectanidae
    FOLIA PARASITOLOGICA 55: 171-179, 2008 New species of Diplectanum (Monogenoidea: Diplectanidae), and proposal of a new genus of the Dactylogyridae from the gills of gerreid fishes (Teleostei) from Mexico and Panama Edgar F. Mendoza Franco12, Dominique G. Roche13 and Mark E. Torchin 'Smithsonian Tropical Research Institute, Apartado Postal 0843-03092 Balboa, Ancon, Panama, Republic of Panama; institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic; ^Department of Biology, McGill University, 1205 Avenue Doctor Penfield, Montreal, Quebec, H3A 1B1, Canada Key words: Monogenoidea, Diplectanidae, Dactylogyridae, Diplectanum, Octouncuhaptor, Diplectanum gatunense, Diplectanum mexicanum, Octouncuhaptor eugerrei, Eugerres brasilianus, Diapterus rhombeus, Panama, Mexico Abstract. While investigating the parasites of several marine fishes from the Western Atlantic, the Southern Gulf of Mexico and Central America (Panama), the following monogenoidean species from the gills of gerreid fishes (Gerreidae) were found: Diplec- tanum gatunense sp. n. (Diplectanidae) and Octouncuhaptor eugerrei gen. et sp. n. (Dactylogyridae) in Eugerres brasilianus (Cuvier) from Gatun Lake in the Panama Canal Watershed, and Diplectanum mexicanum sp. n. in Diapterus rhombeus (Cuvier) from the coast of Campeche State, Mexico. New diplectanid species are distinguished from other species of the genus by the general morphology of the copulatory complex and by the shape of the anchors and bars on the haptor. Octouncuhaptor gen. n. is proposed for its new species having slightly overlapping gonads (testis posterodorsal to the ovary), a dextrolateral vaginal aper- ture, a copulatory complex consisting of a coiled male copulatory organ with counterclockwise rings with the base articulated to the accessory piece, 8 pairs of hooks and the absence of anchors and bars on haptor.
    [Show full text]
  • Title Six Species of Lamellodiscus (Monogenea : Diplectanidae
    Six Species of Lamellodiscus (Monogenea : Diplectanidae) Title Collected from Australian Bream (Acanthopagrus spp.) Author(s) Byrnes, Thomas PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (1986), 31(3-6): 169-190 Issue Date 1986-11-29 URL http://hdl.handle.net/2433/176127 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Six Species of Lamellodiscus (Monogenea: Diplectanidae) Collected from Australian Bream (Acanthopagrus spp.) By Thomas Byrnes1l Department of Zoology, University of New England, Armidale, N.S.W., 2351, Australia With Text-figures 1-7 and Tables 1-10 Abstract Six Lamellodiscus species are recorded from Australian bream, i.e. Acanthopagrus butcheri (Munro), A. australis (Gunther), A. berda (Forskal) and A. latus (Houttuyn) from around Australia. New species include Lamellodiscus vagina/is, L. butcheri and L. cirrusspiralis. Previously described spe­ cies include L. acanthopagri Roubal, L. squamosus Roubal and L. major Murray. From May 1982 to January 1983, I collected and examined approximately 1000 fishes of four species of bream (Acanthopagrus spp.) from 22 localities around Australia (see Fig. 7), to assess the ectoparasite fauna of the economically important bream. To date, four species of Polylabroides have been described (Byrnes, 1985), as well as a single species of Benedenia, Haliotrema, Allomurraytrema, Anoplodiscus and Udonella (Byrnes, in press). In this paper 6 species of Lamellodiscus are recorded, 3 of which are new to science. The only previous records of Lamellodiscus species from Australian waters are those given in Johnston & Tiegs (1922), Murray (1931), Roubal (1981) and Roubal et al. (1983). Most fish were collected by rod and reel, a small portion by net and an even smaller percentage with a hand spear.
    [Show full text]
  • Monogenea, Diplectanidae
    Pseudorhabdosynochus regius n. sp. (Monogenea, Diplectanidae) from the mottled grouper Mycteroperca rubra (Teleostei) in the Mediterranean Sea and Eastern Atlantic Amira Chaabane, Lassad Neifar, Jean-Lou Justine To cite this version: Amira Chaabane, Lassad Neifar, Jean-Lou Justine. Pseudorhabdosynochus regius n. sp. (Monogenea, Diplectanidae) from the mottled grouper Mycteroperca rubra (Teleostei) in the Mediterranean Sea and Eastern Atlantic. Parasite, EDP Sciences, 2015, 22, pp.9. 10.1051/parasite/2015005. hal-01271438 HAL Id: hal-01271438 https://hal.sorbonne-universite.fr/hal-01271438 Submitted on 9 Feb 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Parasite 2015, 22,9 Ó A. Chaabane et al., published by EDP Sciences, 2015 DOI: 10.1051/parasite/2015005 urn:lsid:zoobank.org:pub:EEB58B6E-4C70-4F30-AE5D-7169BA21D1C6 Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS Pseudorhabdosynochus regius n. sp. (Monogenea, Diplectanidae) from the mottled
    [Show full text]
  • Monogenea: Diplectanidae
    FOLIA PARASITOLOGICA 52: 231–240, 2005 Description of Pseudorhabdosynochus seabassi sp. n. (Monogenea: Diplectanidae) from Lates calcarifer and revision of the phylogenetic position of Diplectanum grouperi (Monogenea: Diplectanidae) based on rDNA sequence data Xiang Y. Wu1, An X. Li1, Xing Q. Zhu2 and Ming Q. Xie1 1Centre for Parasitic Organisms, School of Life Sciences, Sun Yat-sen University, 135 Xingang West Street, Haizhu District, Guangzhou 510275, Guangdong Province, The People’s Republic of China; 2Laboratory of Parasitology, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, Guangdong Province, The People’s Republic of China Key words: Pseudorhabdosynochus seabassi, Diplectanum grouperi, PCR, phylogeny, Lates calcarifer Abstract. Pseudorhabdosynochus seabassi sp. n. (Monogenea: Diplectanidae) from the gill filaments of Lates calcarifer Bloch, a marine teleost fish held in floating sea cages in Guangdong Province, China, is described based on morphological observations and molecular data. The shapes of the male copulatory organs (MCO) of Pseudorhabdosynochus spp. were the focus of this study. The typical proximal part of the MCO in most species of Pseudorhabdosynochus is reniform, heavily sclerotized, and divided into four chambers. However, the new species from L. calcarifer has a bulbous proximal region with four concentric layers of apparent muscular origin, instead of a reniform structure with four compartments. This organ is also different in Diplectanum grouperi Bu, Leong, Wong, Woo et Foo, 1999, being sclerotized, cup-shaped, wide proximally with four concentric muscular layers and tubular distally. The 3’ terminal portion of the small subunit ribosomal RNA gene (ssrDNA) and the 5’ terminal region (domains C1-D2) of the large subunit ribosomal RNA gene (lsrDNA) were used to reconstruct the phylogenetic relationships of P.
    [Show full text]