Gene Therapy in Plants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gene Use Restriction Technologies for Transgenic Plant Bioconfinement
Plant Biotechnology Journal (2013) 11, pp. 649–658 doi: 10.1111/pbi.12084 Review article Gene use restriction technologies for transgenic plant bioconfinement Yi Sang, Reginald J. Millwood and C. Neal Stewart Jr* Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA Received 1 February 2013; Summary revised 3 April 2013; The advances of modern plant technologies, especially genetically modified crops, are considered accepted 9 April 2013. to be a substantial benefit to agriculture and society. However, so-called transgene escape *Correspondence (fax 1-865-974-6487; remains and is of environmental and regulatory concern. Genetic use restriction technologies email [email protected]) (GURTs) provide a possible solution to prevent transgene dispersal. Although GURTs were originally developed as a way for intellectual property protection (IPP), we believe their maximum benefit could be in the prevention of gene flow, that is, bioconfinement. This review describes the underlying signal transduction and components necessary to implement any GURT system. Keywords: transgenic plants, Furthermore, we review the similarities and differences between IPP- and bioconfinement- transgene escape, male sterility, oriented GURTs, discuss the GURTs’ design for impeding transgene escape and summarize embryo sterility, transgene deletion, recent advances. Lastly, we go beyond the state of the science to speculate on regulatory and gene flow. ecological effects of implementing GURTs for bioconfinement. Introduction proposed (Daniell, 2002; Gressel, 1999; Moon et al., 2011), including strategies for male sterility (Mariani et al., 1990), Transgenic crops have become an integral part of modern maternal inheritance (Daniell et al., 1998; Iamtham and Day, agriculture and have been increasingly adopted worldwide (James, 2000; Ruf et al., 2001), transgenic mitigation (Al-Ahmad et al., 2011). -
Widespread Gene Transfection Into the Central Nervous System of Primates
Gene Therapy (2000) 7, 759–763 2000 Macmillan Publishers Ltd All rights reserved 0969-7128/00 $15.00 www.nature.com/gt NONVIRAL TRANSFER TECHNOLOGY RESEARCH ARTICLE Widespread gene transfection into the central nervous system of primates Y Hagihara1, Y Saitoh1, Y Kaneda2, E Kohmura1 and T Yoshimine1 1Department of Neurosurgery and 2Division of Gene Therapy Science, Department of Molecular Therapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan We attempted in vivo gene transfection into the central ner- The lacZ gene was highly expressed in the medial temporal vous system (CNS) of non-human primates using the hem- lobe, brainstem, Purkinje cells of cerebellar vermis and agglutinating virus of Japan (HVJ)-AVE liposome, a newly upper cervical cord (29.0 to 59.4% of neurons). Intrastriatal constructed anionic type liposome with a lipid composition injection of an HVJ-AVE liposome–lacZ complex made a similar to that of HIV envelopes and coated by the fusogenic focal transfection around the injection sites up to 15 mm. We envelope proteins of inactivated HVJ. HVJ-AVE liposomes conclude that the infusion of HVJ-AVE liposomes into the containing the lacZ gene were applied intrathecally through cerebrospinal fluid (CSF) space is applicable for widespread the cisterna magna of Japanese macaques. Widespread gene delivery into the CNS of large animals. Gene Therapy transgene expression was observed mainly in the neurons. (2000) 7, 759–763. Keywords: central nervous system; primates; gene therapy; HVJ liposome Introduction ever, its efficiency has not been satisfactory in vivo. Recently HVJ-AVE liposome, a new anionic-type lipo- Despite the promising results in experimental animals, some with the envelope that mimics the human immuno- gene therapy has, so far, not been successful in clinical deficiency virus (HIV), has been developed.13 Based upon 1 situations. -
Recombinant DNA and Elements Utilizing Recombinant DNA Such As Plasmids and Viral Vectors, and the Application of Recombinant DNA Techniques in Molecular Biology
Fact Sheet Describing Recombinant DNA and Elements Utilizing Recombinant DNA Such as Plasmids and Viral Vectors, and the Application of Recombinant DNA Techniques in Molecular Biology Compiled and/or written by Amy B. Vento and David R. Gillum Office of Environmental Health and Safety University of New Hampshire June 3, 2002 Introduction Recombinant DNA (rDNA) has various definitions, ranging from very simple to strangely complex. The following are three examples of how recombinant DNA is defined: 1. A DNA molecule containing DNA originating from two or more sources. 2. DNA that has been artificially created. It is DNA from two or more sources that is incorporated into a single recombinant molecule. 3. According to the NIH guidelines, recombinant DNA are molecules constructed outside of living cells by joining natural or synthetic DNA segments to DNA molecules that can replicate in a living cell, or molecules that result from their replication. Description of rDNA Recombinant DNA, also known as in vitro recombination, is a technique involved in creating and purifying desired genes. Molecular cloning (i.e. gene cloning) involves creating recombinant DNA and introducing it into a host cell to be replicated. One of the basic strategies of molecular cloning is to move desired genes from a large, complex genome to a small, simple one. The process of in vitro recombination makes it possible to cut different strands of DNA, in vitro (outside the cell), with a restriction enzyme and join the DNA molecules together via complementary base pairing. Techniques Some of the molecular biology techniques utilized during recombinant DNA include: 1. -
REVIEW Gene Therapy
Leukemia (2001) 15, 523–544 2001 Nature Publishing Group All rights reserved 0887-6924/01 $15.00 www.nature.com/leu REVIEW Gene therapy: principles and applications to hematopoietic cells VFI Van Tendeloo1,2, C Van Broeckhoven2 and ZN Berneman1 1Laboratory of Experimental Hematology, University of Antwerp (UIA), Antwerp University Hospital (UZA), Antwerp; and 2Laboratory of Molecular Genetics, University of Antwerp (UIA), Department of Molecular Genetics, Flanders Interuniversity Institute for Biotechnology (VIB), Antwerp, Belgium Ever since the development of technology allowing the transfer Recombinant viral vectors of new genes into eukaryotic cells, the hematopoietic system has been an obvious and desirable target for gene therapy. The last 10 years have witnessed an explosion of interest in this Biological gene transfer methods make use of modified DNA approach to treat human disease, both inherited and acquired, or RNA viruses to infect the cell, thereby introducing and with the initiation of multiple clinical protocols. All gene ther- expressing its genome which contains the gene of interest (= apy strategies have two essential technical requirements. ‘transduction’).1 The most commonly used viral vectors are These are: (1) the efficient introduction of the relevant genetic discussed below. In each case, recombinant viruses have had material into the target cell and (2) the expression of the trans- gene at therapeutic levels. Conceptual and technical hurdles the genes encoding essential replicative and/or packaging pro- involved with these requirements are still the objects of active teins replaced by the gene of interest. Advantages and disad- research. To date, the most widely used and best understood vantages of each recombinant viral vector are summarized in vectors for gene transfer in hematopoietic cells are derived Table 1. -
Historiographies of Plant Breeding and Agriculture LSE Research Online URL for This Paper: Version: Accepted Version
Historiographies of Plant Breeding and Agriculture LSE Research Online URL for this paper: http://eprints.lse.ac.uk/101334/ Version: Accepted Version Book Section: Berry, Dominic J. (2019) Historiographies of Plant Breeding and Agriculture. In: Dietrich, Michael, Borrello, Mark and Harman, Oren, (eds.) Handbook of the Historiography of Biology. Springer. ISBN 9783319901183 (In Press) Reuse Items deposited in LSE Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the LSE Research Online record for the item. [email protected] https://eprints.lse.ac.uk/ Historiographies of Plant Breeding and Agriculture Dominic J. Berry London School of Economics There are unique opportunities that plant breeding and agriculture offer the historian of biology, and unique ways in which the historian of biology can inform the history of plant breeding and agriculture (Harwood, 2006. Phillips and Kingsland, 2015). There are also of course questions and challenges that the study of agricultural sites share with the study of other biological sites, such as those in medicine (Wilmot 2007. Woods et al. 2018), the environment (Agar and Ward 2018), and non-agricultural industries (Bud 1993). Indeed, in some instances the agricultural, medical, environmental, and biologically industrial will be one and the same. This is to say nothing of what agricultural sites share in common with histories of science beyond biology, but that is a broader discussion I can only mention in passing (Parolini 2015). -
Gene Therapy and Genetic Engineering: Frankenstein Is Still a Myth, but It Should Be Reread Periodically
Indiana Law Journal Volume 48 Issue 4 Article 2 Summer 1973 Gene Therapy and Genetic Engineering: Frankenstein is Still a Myth, but it Should be Reread Periodically George A. Hudock Indiana University - Bloomington Follow this and additional works at: https://www.repository.law.indiana.edu/ilj Part of the Genetics and Genomics Commons Recommended Citation Hudock, George A. (1973) "Gene Therapy and Genetic Engineering: Frankenstein is Still a Myth, but it Should be Reread Periodically," Indiana Law Journal: Vol. 48 : Iss. 4 , Article 2. Available at: https://www.repository.law.indiana.edu/ilj/vol48/iss4/2 This Article is brought to you for free and open access by the Law School Journals at Digital Repository @ Maurer Law. It has been accepted for inclusion in Indiana Law Journal by an authorized editor of Digital Repository @ Maurer Law. For more information, please contact [email protected]. GENE THERAPY AND GENETIC ENGINEERING: FRANKENSTEIN IS STILL A MYTH, BUT IT SHOULD BE REREAD PERIODICALLY GEORGE A. HUDOCKt Biotechnology and the law are far removed from each other as disciplines of human intellect. Yet the law and my own discipline, genetics, have come together in many courtrooms concerning such matters as paternity, and they will continue to intersect with increasing frequency as the visions of 100 years ago become the reality of today. This article examines the implications of recent research for human genetic therapy and genetic engineering, and suggests some guidelines for legal regulation of genetic technology. The following discussion derives from three premises which I view as basic: (1) that which is currently possible in genetic engineering, and in fact has already been done, is generally underestimated; (2) what may be possible in the near future is quite commonly overesti- mated; (3) regulation of the application of genetic technology is possible and will not be overwhelmingly complicated. -
An Overview: Innovation in Plant Breeding
An Overview: Innovation in Plant Breeding Modern plant breeding blends traditional ways of developing crops with the latest in science and technology to achieve improved crops – enabling more choices for both farmers and consumers, and producing crops that can better cope with evolving pests, diseases and a changing climate. The Basics What: The simplest definition of plant breeding is crossing two plants Most of the fruits, vegetables, and to produce offspring that share the best characteristics of the two grains that we eat today are the parent plants. Breeders make crosses then select which offspring to advance in the pipeline based on their desired characteristics. result of generations of plant breeding. About 5,000 years ago, Why: Even the earliest farmers understood that, in order to survive, watermelons were only they needed plant varieties specifically adapted to their environmental conditions and cultivated to produce the best foods to nourish their 2 inches in diameter livestock and communities. and had a bitter taste, vastly How: Through generations of research and discovery, plant breeding has advanced beyond selecting a parent plant simply based on its different from appearance. It now includes an in-depth understanding of plants’ the large, genetic makeup, enabling breeders to better predict which plants will sweet-tasting have the highest probability of success in the field and the grocery fruit we enjoy store before making a cross. today. The Background The earliest farmers were plant breeders who understood the value of identifying crops that showed beneficial characteristics to plant in future seasons. Later, they learned they could cross two plants to develop an even better plant. -
Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-By-Case Decision-Making
sustainability Review Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making Paul Vincelli Department of Plant Pathology, 207 Plant Science Building, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; [email protected] Academic Editor: Sean Clark Received: 22 March 2016; Accepted: 13 May 2016; Published: 20 May 2016 Abstract: Genetic engineering (GE) offers an expanding array of strategies for enhancing disease resistance of crop plants in sustainable ways, including the potential for reduced pesticide usage. Certain GE applications involve transgenesis, in some cases creating a metabolic pathway novel to the GE crop. In other cases, only cisgenessis is employed. In yet other cases, engineered genetic changes can be so minimal as to be indistinguishable from natural mutations. Thus, GE crops vary substantially and should be evaluated for risks, benefits, and social considerations on a case-by-case basis. Deployment of GE traits should be with an eye towards long-term sustainability; several options are discussed. Selected risks and concerns of GE are also considered, along with genome editing, a technology that greatly expands the capacity of molecular biologists to make more precise and targeted genetic edits. While GE is merely a suite of tools to supplement other breeding techniques, if wisely used, certain GE tools and applications can contribute to sustainability goals. Keywords: biotechnology; GMO (genetically modified organism) 1. Introduction and Background Disease management practices can contribute to sustainability by protecting crop yields, maintaining and improving profitability for crop producers, reducing losses along the distribution chain, and reducing the negative environmental impacts of diseases and their management. -
Plant Genetics and Biotechnology in Biodiversity
diversity Plant Genetics and Biotechnology in Biodiversity Edited by Rosa Rao and Giandomenico Corrado Printed Edition of the Special Issue Published in Diversity www.mdpi.com/journal/diversity Plant Genetics and Biotechnology in Biodiversity Plant Genetics and Biotechnology in Biodiversity Special Issue Editors Rosa Rao Giandomenico Corrado MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editors Rosa Rao Giandomenico Corrado Universita` degli Studi di Napoli Universita` degli Studi di Napoli “Federico II” “Federico II” Italy Italy Editorial Office MDPI St. Alban-Anlage 66 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Diversity (ISSN 1424-2818) from 2017 to 2018 (available at: http://www.mdpi.com/journal/diversity/special issues/plant genetics biotechnology) For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03842-003-3 (Pbk) ISBN 978-3-03842-004-0 (PDF) Articles in this volume are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book taken as a whole is c 2018 MDPI, Basel, Switzerland, distributed under the terms and conditions of the Creative Commons license CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/). -
Mendelism, Plant Breeding and Experimental Cultures: Agriculture and the Development of Genetics in France Christophe Bonneuil
Mendelism, plant breeding and experimental cultures: Agriculture and the development of genetics in France Christophe Bonneuil To cite this version: Christophe Bonneuil. Mendelism, plant breeding and experimental cultures: Agriculture and the development of genetics in France. Journal of the History of Biology, Springer Verlag, 2006, vol. 39 (n° 2 (juill. 2006)), pp.281-308. hal-00175990 HAL Id: hal-00175990 https://hal.archives-ouvertes.fr/hal-00175990 Submitted on 3 Oct 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mendelism, plant breeding and experimental cultures: Agriculture and the development of genetics in France Christophe Bonneuil Centre Koyré d’Histoire des Sciences et des Techniques, CNRS, Paris and INRA-TSV 57 rue Cuvier. MNHN. 75005 Paris. France Journal of the History of Biology, vol. 39, no. 2 (juill. 2006), 281-308. This is an early version; please refer to the original publication for quotations, photos, and original pagination Abstract The article reevaluates the reception of Mendelism in France, and more generally considers the complex relationship between Mendelism and plant breeding in the first half on the twentieth century. It shows on the one side that agricultural research and higher education institutions have played a key role in the development and institutionalization of genetics in France, whereas university biologists remained reluctant to accept this approach on heredity. -
PLANT GENETICS Tunable Plastic Development Plant Development Is Highly Plastic; That Is, It Can Be Extensively Adjusted to Different Environments
RESEARCH HIGHLIGHTS IN BRIEF PLANT GENETICS Tunable plastic development Plant development is highly plastic; that is, it can be extensively adjusted to different environments. These authors investigated whether the traits involved in this plasticity are controlled coordinately or independently. Specifically, they looked at plastic responses of Arabidopsis thaliana roots to two different nitrogen environments and used both genome-wide association mapping and gene expression analysis to identify the contributing genes. Their findings support the independent control of plastic traits, an insight that could be put to use in developing more robust crops. ORIGINAL RESEARCH PAPER Gifford, M. L. et al. Plasticity regulators modulate specific root traits in discrete nitrogen environments. PLoS Genet. 9, e1003760 (2013) COMPLEX DISEASE A SNP for disease prognosis Genome-wide association studies (GWASs) have generally focused on susceptibility to disease, whereas the genetics of complex-disease progression and outcome has received little attention. Here, the authors use data from previous GWASs to identify a single-nucleotide polymorphism (SNP) in the forkhead box O3 gene (FOXO3) that is associated with the severity of, but not the susceptibility to, Crohn’s disease, rheumatoid arthritis and malaria infection. This finding shows how new biological insights can be gained from re-analyses of GWAS data and has implications for predicting disease outcome and developing new therapies. ORIGINAL RESEARCH PAPER Lee, J. C. et al. Human SNP links differential outcomes in inflammatory and infectious disease to a FOXO3-regulated pathway. Cell 155, 57–69 (2013) EVOLUTION Interference follows duplication One important source of genetic material for evolution is gene duplication followed by the partitioning of ancestral functions among the resulting paralogues. -
Agrobacterium, a Natural Metabolic Engineer of Plants
CHAPTER 3 AGROBACTERIUM, A NATURAL METABOLIC ENGINEER OF PLANTS P.J.J. HOOYKAAS Introduction The soil bacteria Agrobacterium tumefaciens and A. rhizogenes are the etiological agents of the plant diseases crown gall and hairy root, respectively. They belong to the family of Rhizobiaceae, and thus are related to the nitrogen fixing rhizobia. Whereas crown gall is characterized by the presence of tumors on plants, the hairy root disease is so called because of a conspicuous proliferation of roots from infection sites (Fig. 1). Plant cells in crown galls and hairy roots have two features with which they are distinguished from normal plant cells: 1) they are tumorous i.e. they proliferate in the absence of added growth factors in in vitro culture, and 2) they produce and secrete specific compounds which have been given the generic name of opines. It is now known that these novel properties of crown gall and hairy root cells are a consequence of the presence of a segment of bacterial DNA, the T(ransferred)-DNA within these cells. This bacterial DNA forms part of a large (about 200 kbp) bacterial plasmid which is present in virulent strains of these Agrobacteria, and is known as Ti (tumor inducing) plasmid in the case of A. tumefaciens and Ri (root inducing) plasmid in the case of A. rhizogenes. The T-DNA of the Ti plasmid contains a number of genes which are expressed in the transformed plant cells. Some of these are one-genes which encode enzymes involved in the production of plant growth regulators, viz. the phytohormones indole acetic acid (an auxin) and isopentenyl-AMP (a cytokinin).