Oomatch: Pattern Matching As Dispatch in Java

Total Page:16

File Type:pdf, Size:1020Kb

Oomatch: Pattern Matching As Dispatch in Java OOMatch: Pattern Matching as Dispatch in Java by Adam Richard A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Master of Mathematics in Computer Science Waterloo, Ontario, Canada, 2007 c Adam Richard 2007 AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract We present a new language feature, specified as an extension to Java. The feature is a form of dispatch, which includes and subsumes multimethods (see for example [CLCM00]), but which is not as powerful as general predicate dispatch [EKC98]. It is, however, intended to be more practical and easier to use than the latter. The extension, dubbed OOMatch, allows method parameters to be specified as patterns, which are matched against the arguments to the method call. When matches occur, the method applies; if multiple methods apply, the method with the more specific pattern overrides the others. The pattern matching is very similar to that found in the “case” constructs of many functional languages (ML [MTHM97], for example), with an important difference: functional languages normally allow pattern matching over variant types (and other primitives such as tuples), while OOMatch allows pattern matching on Java objects. Indeed, the wider goal here is the study of the combination of functional and object-oriented programming paradigms. Maintaining encapsulation while allowing pattern matching is of special impor- tance. Class designers should have the control needed to prevent implementation details (such as private variables) from being exposed to clients of the class. We here present both an informal “tutorial” description of OOMatch, as well as a formal specification of the language, and a proof that the conditions specified guarantee run-time safety. iii Acknowledgments Special thanks go to my supervisor, OndˇrejLhot´ak, for all his help in the production of this thesis, as well as to Gordon Cormack, Peter Buhr, Brad Lushman, Nomair Naeem, and Ghulam Lashari for their help and suggestions. iv Contents 1 Introduction and Motivation 1 2 Background 5 2.1 Pattern Matching . 5 2.2 Dispatch . 6 2.2.1 Multimethods . 8 2.2.2 Predicate Dispatch . 10 3 Using OOMatch - Informal Description 11 3.1 Pattern Matching . 11 3.2 Deconstructors . 15 3.3 Order of Deconstructors . 18 3.4 Null . 19 3.5 Undecidable Errors . 19 3.5.1 Interfaces . 20 3.5.2 Different deconstructors . 20 3.5.3 Non-deterministic deconstructors . 22 3.6 Where clause . 23 3.7 Matching Against the Values of Variables . 24 3.8 Cross-class Ambiguities and Final Methods . 26 3.9 Abstract Methods . 28 v 3.10 Overriding among Primitive Types . 28 3.11 Manual Overriding . 29 3.12 Let statement . 30 3.13 Static deconstructors . 31 3.14 Backwards Compatibility . 32 3.15 Multi-threaded Applications . 35 4 Formal Specification 37 4.1 Grammar . 37 4.2 Notation and Definitions . 38 4.3 Deconstructor disambiguation . 39 4.4 Method dispatch . 41 4.4.1 Applicable methods . 41 4.4.2 Preferred Methods . 42 4.4.3 Overall Method Dispatch . 44 4.5 Compile-time checks . 44 4.5.1 Parameter Intersection . 44 4.5.2 Conditions to be checked statically . 45 4.6 Absence of runtime ambiguities . 47 4.6.1 Undecidable equivalence . 48 4.6.2 Common descendent . 48 4.6.3 Deterministic deconstructors . 49 4.6.4 Claims of safety . 49 5 Implementation 55 5.1 Overview: how Polyglot works . 55 5.2 Overview: OOMatch compiler . 57 5.3 Preprocessing Visitor Passes . 57 5.4 Typechecking and Building Override DAGs . 62 vi 5.5 Transformation . 65 5.5.1 Rename methods . 65 5.5.2 Add dispatchers . 66 5.5.3 Transform deconstructors . 75 5.5.4 Passing null and primitive values . 76 5.5.5 Name Mangling . 77 5.5.6 Example Transformation . 78 6 Limitations 79 6.1 Patterns in Constructors . 79 6.2 Abstract Deconstructors . 80 6.3 Error Messages . 81 6.4 Extending Java Classes . 82 7 Use Cases 84 7.1 Polyglot . 85 7.2 Soot . 86 8 Other Related Work 91 8.1 Scala . 91 8.2 OCaml . 92 8.3 TOM . 93 8.4 Views . 93 8.5 JMatch . 94 8.6 JPred . 96 8.7 Other Approaches to Pattern Matching as Dispatch . 96 vii 9 Conclusion and Future Work 98 9.1 Conclusion . 98 9.2 Design Goals . 99 9.3 Future Work . 101 9.3.1 Other data types . 101 9.3.2 Disjunctive Patterns and Regular Expressions . 102 9.3.3 Partial Deconstructing . 103 A Example of typechecking algorithm 105 B Examples of uses of OOMatch 109 C Example dispatcher output 116 viii List of Figures 5.1 OOMatch compiler overview . 58 5.2 OOMatch Visitor Passes . 59 5.3 Code for example transformation . 78 A.1 Typecheck algorithm example code . 105 A.2 Typecheck algorithm example, step 1 . 106 A.3 Typecheck algorithm example, step 2 . 106 A.4 Typecheck algorithm example, step 3 . 106 A.5 Typecheck algorithm example, step 4 . 107 A.6 Typecheck algorithm example, step 5 . 108 ix List of Tables 4.1 Partial function u (parameter intersection) . 46 x Chapter 1 Introduction and Motivation Object-oriented programming languages have become a widespread means of writ- ing large programs (of millions of lines of code), and with good reason. Building large systems naturally lends itself to breaking down a task into components, and programmers must be provided with a simple interface to conceptualize and work with these components. A class-based type system is intended for such modular- ization. Functional programming languages, on the other hand, have gained a group of devoted followers not only for their beauty, but also because programs written in a functional style tend to have fewer bugs. Because of their declarative nature and lack of side effects, it is generally easier to avoid bugs in a functional language (once the software passes the compiler) than in an object-oriented language. As there is a greater trend toward security, as computers are used for more and riskier applications, and as programs get larger, it is becoming increasingly important to prevent bugs from the start. The strong static checking of languages like Standard ML [MTHM97] and Haskell [PJ03] provides this safety quite well. But most functional languages (with notable exceptions such as OCaml [CMP07] and Scala [OAC+06]) do not have built- in support for class-based object-oriented programming as found in languages like Java and C++. Each methodology - functional and OO programming - is useful for a wide class of problems, and embodies the programming style of a large group of people. It is very difficult to say whether one or the other methodology is ideal for all situations, or whether some mixture is ideal. Therefore, we believe that for the time being, it is best to provide a language that supports as many styles as possible. The 1 features embodying each style should further be composable with each other, so that different pieces of code written in different styles can be pieced together to form a program. One might counter that we could simply write separate components in separate languages and combine the components with a standard interface. A functional or object-oriented language could be selected for each component depending on which is most applicable to the programmer or situation. The problem with this approach is that we might still want to use elements of both styles at once. We might want a class, with all the power of an object-oriented class, that contains a function that can be used as a value; or we might want a function that contains a nested function as well as a class definition within it. In general, the combination of several styles may yield new and powerful idioms or code patterns that are not present in their mere sum, and by studying the combination of functional and object-oriented styles, we hope to discover what some of these idioms might be. This thesis presents a small step towards the goal of unifying object-oriented and functional programming. In particular, it considers how pattern matching – a common and useful feature of many functional languages – might be interwoven into the object-oriented tapestry. Pattern matching in, for example, ML, allows one to decompose algebraic types or tuples into their components, either in a case statement or in a set of functions. Though this pattern matching is useful in a functional context, simple algebraic types and tuples are not used much in object- oriented programming; classes are used much more. So we here present a means of deconstructing objects into their components and specifying patterns that match objects with certain properties. Further, and most importantly, our pattern matching is used in determining method dispatch. The patterns are specified as parameters to methods (as in ML), and the compiler decides on a natural order to check for a matching pattern, i.e. to check which methods override which. Methods with more specific parameters override methods with more general parameters. Since parameters of subclass type are considered more specific than those of superclass type, this feature subsumes polymorphic dispatch and multimethods. Important to this approach, it should be noted, is that information hiding of objects (a fundamental property of object- oriented systems) must be preserved; we must not allow clients to access the data of the object except in ways the class writer explicitly allows.
Recommended publications
  • Dynamic Operator Overloading in a Statically Typed Language Olivier L
    Dynamic Operator Overloading in a Statically Typed Language Olivier L. Clerc and Felix O. Friedrich Computer Systems Institute, ETH Z¨urich, Switzerland [email protected], [email protected] October 31, 2011 Abstract Dynamic operator overloading provides a means to declare operators that are dispatched according to the runtime types of the operands. It allows to formulate abstract algorithms operating on user-defined data types using an algebraic notation, as it is typically found in mathematical languages. We present the design and implementation of a dynamic operator over- loading mechanism in a statically-typed object-oriented programming lan- guage. Our approach allows operator declarations to be loaded dynam- ically into a running system, at any time. We provide semantical rules that not only ensure compile-time type safety, but also facilitate the im- plementation. The spatial requirements of our approach scale well with a large number of types, because we use an adaptive runtime system that only stores dispatch information for type combinations that were encoun- tered previously at runtime. On average, dispatching can be performed in constant time. 1 Introduction Almost all programming languages have a built-in set of operators, such as +, -, * or /, that perform primitive arithmetic operations on basic data types. Operator overloading is a feature that allows the programmer to redefine the semantics of such operators in the context of custom data types. For that purpose, a set of operator implementations distinguished by their signatures has to be declared. Accordingly, each operator call on one or more custom-typed arguments will be dispatched to one of the implementations whose signature matches the operator's name and actual operand types.
    [Show full text]
  • Predicate Dispatching
    This pap er app ears in ECOOP the th Europ ean Conference on Ob ject Oriented Programming Brussels Belgium July pp Predicate Dispatching A Unied Theory of Dispatch Michael Ernst Craig Kaplan and Craig Chambers Department of Computer Science and Engineering University of Washington Seattle WA USA fmernstcskchambersgcswashingtonedu httpwwwcswashingtoneduresearchprojectscecil Abstract Predicate dispatching generalizes previous metho d dispatch mechanisms by p ermitting arbitrary predicates to control metho d ap plicabili ty and by using logical implication b etween predicates as the overriding relationship The metho d selected to handle a message send can dep end not just on the classes of the arguments as in ordinary ob jectoriented dispatch but also on the classes of sub comp onents on an arguments state and on relationships b etween ob jects This simple mechanism subsumes and extends ob jectoriented single and multiple dispatch MLstyle pattern matching predicate classes and classiers which can all b e regarded as syntactic sugar for predicate dispatching This pap er introduces predicate dispatching gives motivating examples and presents its static and dynamic semantics An implementation of predicate dispatching is available Introduction Many programming languages supp ort some mechanism for dividing the b o dy of a pro cedure into a set of cases with a declarative mechanism for selecting the right case for each dynamic invocation of the pro cedure Case selection can b e broken down into tests for applicability a case is a candidate
    [Show full text]
  • (Dynamic (Programming Paradigms)) Performance and Expressivity Didier Verna
    (Dynamic (programming paradigms)) Performance and expressivity Didier Verna To cite this version: Didier Verna. (Dynamic (programming paradigms)) Performance and expressivity. Software Engineer- ing [cs.SE]. LRDE - Laboratoire de Recherche et de Développement de l’EPITA, 2020. hal-02988180 HAL Id: hal-02988180 https://hal.archives-ouvertes.fr/hal-02988180 Submitted on 4 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE D’HABILITATION À DIRIGER LES RECHERCHES Sorbonne Université Spécialité Sciences de l’Ingénieur (DYNAMIC (PROGRAMMING PARADIGMS)) PERFORMANCE AND EXPRESSIVITY Didier Verna [email protected] Laboratoire de Recherche et Développement de l’EPITA (LRDE) 14-16 rue Voltaire 94276 Le Kremlin-Bicêtre CEDEX Soutenue le 10 Juillet 2020 Rapporteurs: Robert Strandh Université de Bordeaux, France Nicolas Neuß FAU, Erlangen-Nürnberg, Allemagne Manuel Serrano INRIA, Sophia Antipolis, France Examinateurs: Marco Antoniotti Université de Milan-Bicocca, Italie Ralf Möller Université de Lübeck, Allemagne Gérard Assayag IRCAM, Paris, France DOI 10.5281/zenodo.4244393 Résumé (French Abstract) Ce rapport d’habilitation traite de travaux de recherche fondamentale et appliquée en informatique, effectués depuis 2006 au Laboratoire de Recherche et Développement de l’EPITA (LRDE). Ces travaux se situent dans le domaine des langages de pro- grammation dynamiques, et plus particulièrement autour de leur expressivité et de leur performance.
    [Show full text]
  • Multimethods
    11-A1568 01/23/2001 12:39 PM Page 263 11 Multimethods This chapter defines, discusses, and implements multimethods in the context of Cϩϩ . The Cϩϩ virtual function mechanism allows dispatching a call depending on the dynamic type of one object. The multimethods feature allows dispatching a function call depending on the types of multiple objects. A universally good implementation requires language support, which is the route that languages such as CLOS, ML, Haskell, and Dylan have taken. Cϩϩ lacks such support, so its emulation is left to library writers. This chapter discusses some typical solutions and some generic implementations of each. The solutions feature various trade-offs in terms of speed, flexibility, and dependency management. To describe the technique of dispatching a function call depending on mul- tiple objects, this book uses the terms multimethod (borrowed from CLOS) and multiple dis- patch. A particularization of multiple dispatch for two objects is known as double dispatch. Implementing multimethods is a problem as fascinating as dreaded, one that has stolen lots of hours of good, healthy sleep from designers and programmers.1 The topics of this chapter include • Defining multimethods • Identifying situations in which the need for multiobject polymorphism appears • Discussing and implementing three double dispatchers that foster different trade-offs • Enhancing double-dispatch engines After reading this chapter, you will have a firm grasp of the typical situations for which multimethods are the way to go. In addition, you will be able to use and extend several ro- bust generic components implementing multimethods, provided by Loki. This chapter limits discussion to multimethods for two objects (double dispatch).
    [Show full text]
  • Multiple Dispatch and Roles in OO Languages: Ficklemr
    Multiple Dispatch and Roles in OO Languages: FickleMR Submitted By: Asim Anand Sinha [email protected] Supervised By: Sophia Drossopoulou [email protected] Department of Computing IMPERIAL COLLEGE LONDON MSc Project Report 2005 September 13, 2005 Abstract Object-Oriented Programming methodology has been widely accepted because it allows easy modelling of real world concepts. The aim of research in object-oriented languages has been to extend its features to bring it as close as possible to the real world. In this project, we aim to add the concepts of multiple dispatch and first-class relationships to a statically typed, class based langauges to make them more expressive. We use Fickle||as our base language and extend its features in FickleMR . Fickle||is a statically typed language with support for object reclassification, it allows objects to change their class dynamically. We study the impact of introducing multiple dispatch and roles in FickleMR . Novel idea of relationship reclassification and more flexible multiple dispatch algorithm are most interesting. We take a formal approach and give a static type system and operational semantics for language constructs. Acknowledgements I would like to take this opportunity to express my heartful gratitude to DR. SOPHIA DROSSOPOULOU for her guidance and motivation throughout this project. I would also like to thank ALEX BUCKLEY for his time, patience and brilliant guidance in the abscence of my supervisor. 1 Contents 1 Introduction 5 2 Background 8 2.1 Theory of Objects . 8 2.2 Single and Double Dispatch . 10 2.3 Multiple Dispatch . 12 2.3.1 Challenges in Implementation .
    [Show full text]
  • Redalyc.Attaining Multiple Dispatch in Widespread Object-Oriented
    Dyna ISSN: 0012-7353 [email protected] Universidad Nacional de Colombia Colombia Ortin, Francisco; Quiroga, Jose; Redondo, Jose M.; Garcia, Miguel Attaining multiple dispatch in widespread object-oriented languages Dyna, vol. 81, núm. 186, agosto, 2014, pp. 242-250 Universidad Nacional de Colombia Medellín, Colombia Available in: http://www.redalyc.org/articulo.oa?id=49631663031 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Attaining multiple dispatch in widespread object-oriented languages Francisco Ortin a, Jose Quiroga b, Jose M. Redondo c & Miguel Garcia d a Computer Science Department, University of Oviedo, Spain, [email protected] b Computer Science Department, University of Oviedo, Spain, [email protected] c Computer Science Department, University of Oviedo, Spain, [email protected] d Computer Science Department, University of Oviedo, Spain, [email protected] Received: October 23th, de 2013. Received in revised form: April 28th, 2014. Accepted: May 22th, 2014 Abstract Multiple dispatch allows determining the actual method to be executed, depending on the dynamic types of its arguments. Although some programming languages provide multiple dispatch, most widespread object-oriented languages lack this feature. Therefore, different implementation techniques are commonly used to obtain multiple dispatch in these languages. We evaluate the existing approaches, presenting a new one based on hybrid dynamic and static typing. A qualitative evaluation is presented, considering factors such as software maintainability and readability, code size, parameter generalization, and compile-time type checking.
    [Show full text]
  • Understanding Symmetry in Object- Oriented Languages
    JOURNAL OF OBJECT TECHNOLOGY Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003 Vol. 2, No. 5, September/October 2003 Understanding Symmetry in Object- Oriented Languages Liping Zhao, UMIST, U.K. James O. Coplien, North Central College, U.S.A. Abstract The success of symmetry applications in many scientific disciplines has motivated us to explore symmetry in software. Our exploration is based on an informal notion that symmetry is the possibility of making a change together with some aspect that is immune to this change. In this view, symmetry has a duality of change and constancy whereby some aspect of an object can be changed while leaving other key aspects invariant. This view of symmetry is a fundamental concept underpinning many symmetry principles in the physical sciences. We have found that we can explain some object-oriented language constructs using this notion of symmetry. This article explores symmetry in object-oriented languages and also provides other examples of symmetry outside of object-oriented programming to show that symmetry considerations broaden beyond object orientation to other areas of software design. 1 INTRODUCTION The success of symmetry applications in many scientific disciplines has motivated us to explore symmetry in software [7][8][31]. Our exploration is based on an informal notion that symmetry is the possibility of making a change while some aspect remains immune to this change. In this view, symmetry has a duality of change and constancy whereby some aspect of an object can be changed while leaving other key aspects invariant. This view of symmetry has underpinned many principles in the physical sciences.
    [Show full text]
  • Aspects and Polymorphism in Aspectj
    Aspects and Polymorphism in AspectJ Erik Ernst David H. Lorenz Dept. of Computer Science, College of Computer & Information Science, University of Aarhus Northeastern University Abogade˚ 34, DK­8200 Arhus˚ N 360 Huntington Avenue 161 CN Denmark Boston, Massachusetts 02115 USA [email protected] [email protected] ABSTRACT ¢ Polymorphic access: A name denotes an object whose dy- There are two important points of view on inclusion or subtype namic type is known only by an upper bound. For example, polymorphism in object-oriented programs, namely polymorphic the predefined reference self in a method in a class C de- access and dynamic dispatch. These features are essential for object- notes an instance of C or some subclass of C. The essence is oriented programming, and it is worthwhile to consider whether that the same code can operate on differently shaped objects they are supported in aspect-oriented programming (AOP). In AOP, because they all satisfy certain constraints (possibly made pieces of crosscutting behavior are extracted from the base code explicit in a statically declared type). and localized in aspects, losing as a result their polymorphic capa- ¢ Dynamic dispatch: When accessing an object polymorphi- bilities while introducing new and unexplored issues. In this paper, cally, a message-send may be resolved by late binding, i.e., we explore what kinds of polymorphism AOP languages should it may call different method implementations for different support, using AspectJ as the basis for the presentation. The results dynamic receiver types. The essence is that the meaning of are not exclusive to AspectJ—aspectual polymorphism may make a name (the method selector) is determined by dynamically aspects in any comparable AOSD language more expressive and selecting the “best” definition from a set of different avail- reusable across programs, while preserving safety.
    [Show full text]
  • Componentization: the Visitor Example
    Componentization: the Visitor example Bertrand Meyer* Karine Arnout** [email protected] [email protected] Chair of Software Engineering ETH (Swiss Federal Institute of Technology) Cite as follows: Bertrand Meyer, CH-8092 Zurich, Switzerland Karine Arnout, Componentization: http://se.ethz.ch The Visitor Example, to appear in Computer (IEEE), 2006. *Also Eiffel Software, California **Now at AXA Rosenberg, Orinda, California Abstract: In software design, laziness is a virtue: it’s better to reuse than to redo. Design patterns are a good illustration. Patterns, a major advance in software architecture, provide a common vocabulary and a widely known catalog of design solutions addressing frequently encountered situations. But they do not support reuse, which assumes components: off-the-shelf modules ready to be integrated into an application through the sole knowledge of a program interface (API). Is it possible to go beyond patterns by componentizing them — turning them into components? We have built a component library which answers this question positively for a large subset of the best- known design patterns. Here we summarize these results and analyze the componentization process through the example of an important pattern, Visitor, showing how to take advantage of object-oriented language mechanisms to replace the design work of using a pattern by mere “ready-to-wear” reuse through an API. The reusable solution is not only easier to use but more general than the pattern, removing its known limitations; performance analysis on a large industrial application shows that the approach is realistic and scales up gracefully. Keywords: Design patterns, Reuse, Components, Library design, Componentization 1.
    [Show full text]
  • Multiple Dispatching
    Multiple Dispatching Alex Tritthart WS 12/13 Outline 1 Introduction 2 Dynamic Dispatch Single Dispatch Double Dispatch 3 Multiple Dispatch Example 4 Evaluation 2 / 24 Introduction What is it all about? Assume c l a s s Animal f shout ( ) = 0g c l a s s Lion : Animal f shout ( ) f" r o a r "gg void shoutMethod(Animal &a)f a . shout ( ) g Call Lion lion(); shoutMethod(lion ); // should output "roar" 3 / 24 Introduction What do we need? We need no compiling time resolution, but runtime function resolution no function overloading, but function overriding This is called: Dynamic Dispatch 4 / 24 Introduction What do we need? We need no compiling time resolution, but runtime function resolution no function overloading, but function overriding This is called: Dynamic Dispatch 4 / 24 Dynamic Dispatch Dynamic Dispatch Decision at runtime Allows instance behaviour Implemented through virtual tables Dynamic Dispatch is every Dispatch with: More than one possibility Same method signature in super class and subclasses Choosing method depending on the real types of arguments There exist single dispatch, double dispatch, triple dispatch, ... 5 / 24 Dynamic Dispatch Single Dispatch Single Dispatch Definition "The Object-Oriented term for overriding, allowing different methods to be used depending on the type of a single object." 6 / 24 Dynamic Dispatch Single Dispatch Single Dispatch Dynamic dispatch with a single type Used mostly in object oriented languages Simple to implement Languages Java, C#, JS, Python, Ruby can handle single dispatch 7 / 24 Dynamic
    [Show full text]
  • Oomatch: Pattern Matching As Dispatch in Java
    OOMatch: Pattern Matching as Dispatch in Java Adam Richard Ondrejˇ Lhotak´ University of Waterloo University of Waterloo [email protected] [email protected] Abstract ther in a case statement or in a set of functions. Though this pat- We present a new language feature, specified as an extension to tern matching is useful in a functional context, simple algebraic Java. The feature is a form of dispatch, which includes and sub- types and tuples are not used much in object-oriented program- sumes multimethods (see for example [CLCM00]), but which is ming; classes are used much more. So we here present a means of not as powerful as general predicate dispatch [EKC98]. It is, how- deconstructing objects into their components and specifying pat- ever, intended to be more practical and easier to use than the latter. terns that match objects with certain properties. The extension, dubbed OOMatch, allows method parameters to be The most significant difference from pattern matching in func- specified as patterns, which are matched against the arguments to tional languages is that in OOMatch, pattern matching is used in the method call. When matches occur, the method applies; if multi- determining method dispatch. Thus, pattern precedence cannot be ple methods apply, the method with the more specific pattern over- determined by textual order, as it is in functional languages. The rides the others. patterns are specified as parameters to methods, and the compiler The pattern matching is very similar to that found in the “case” decides on a natural order to check for a matching pattern, i.e.
    [Show full text]
  • Signature Redacted Department of Electrical Engineering and Computer Science May 20, 2015
    ARCHNES Abstraction in Technical Computing MASSACHUSETTS INSTITUTE OF TECHNOLOLGY by JUL 0 7 2015 Jeffrey Werner Bezanson LIBRARIES A.B., Harvard University (2004) S.M., Massachusetts Institute of Technology (2012) Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2015 @ Massachusetts Institute of Technology 2015. All rights reserved. Author....... Signature redacted Department of Electrical Engineering and Computer Science May 20, 2015 Certified by ............ Signature redacted ......... Alan Edelman Professor Thesis Supervisor Accepted by...... Signature redacted -6 Leslie Kolodziejski Chairman, Department Committee on Graduate Students 2 Abstraction in Technical Computing by Jeffrey Werner Bezanson Submitted to the Department of Electrical Engineering and Computer Science on May 20, 2015, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Array-based programming environments are popular for scientific and technical computing. These systems consist of built-in function libraries paired with high-level languages for in- teraction. Although the libraries perform well, it is widely believed that scripting in these languages is necessarily slow, and that only heroic feats of engineering can at best partially ameliorate this problem. This thesis argues that what is really needed is a more coherent structure for this func- tionality. To find one, we must ask what technical computing is really about. This thesis suggests that this kind of programming is characterized by an emphasis on operator com- plexity and code specialization, and that a language can be designed to better fit these requirements.
    [Show full text]