Aspects and Polymorphism in Aspectj

Total Page:16

File Type:pdf, Size:1020Kb

Aspects and Polymorphism in Aspectj Aspects and Polymorphism in AspectJ Erik Ernst David H. Lorenz Dept. of Computer Science, College of Computer & Information Science, University of Aarhus Northeastern University Abogade˚ 34, DK­8200 Arhus˚ N 360 Huntington Avenue 161 CN Denmark Boston, Massachusetts 02115 USA [email protected] [email protected] ABSTRACT ¢ Polymorphic access: A name denotes an object whose dy- There are two important points of view on inclusion or subtype namic type is known only by an upper bound. For example, polymorphism in object-oriented programs, namely polymorphic the predefined reference self in a method in a class C de- access and dynamic dispatch. These features are essential for object- notes an instance of C or some subclass of C. The essence is oriented programming, and it is worthwhile to consider whether that the same code can operate on differently shaped objects they are supported in aspect-oriented programming (AOP). In AOP, because they all satisfy certain constraints (possibly made pieces of crosscutting behavior are extracted from the base code explicit in a statically declared type). and localized in aspects, losing as a result their polymorphic capa- ¢ Dynamic dispatch: When accessing an object polymorphi- bilities while introducing new and unexplored issues. In this paper, cally, a message-send may be resolved by late binding, i.e., we explore what kinds of polymorphism AOP languages should it may call different method implementations for different support, using AspectJ as the basis for the presentation. The results dynamic receiver types. The essence is that the meaning of are not exclusive to AspectJ—aspectual polymorphism may make a name (the method selector) is determined by dynamically aspects in any comparable AOSD language more expressive and selecting the “best” definition from a set of different avail- reusable across programs, while preserving safety. able definitions, namely all the method implementations in the dynamic class of the receiver and its superclasses. 1. INTRODUCTION There are two important points of view on inclusion or subtype polymorphism in object-oriented programs, namely polymorphic In short, inclusion polymorphism is characterized by invariance in access and dynamic dispatch (Figure 1). an “early” phase (e.g., a call site contains one particular message send foo; or an object £ contains a known set of features), and by dynamic variance in a “late” phase (e.g., considering all the Polymorphism possible implementations of foo for that call site; or all the pos- sible additional features of £ ). Late binding of methods provides the flexibility of executing different behaviors at the same call site, Ad hoc Universal while preserving the safety of always executing a behavior that is appropriate for the actual receiver object. For object access, we get the flexibility of being able to add new features, and the safety guarantee that known features will indeed be present dynamically. Coercion Overloading Inclusion Parametric In this paper, we seek a similar kind of safe flexibility by means of polymorphism in connection with aspects. Polymorphic Dynamic Access Dispatch Inclusion polymorphism is a kind of universal polymorphism, which means that the set of possible forms in the late phase is open- Figure 1: Polymorphism ended [7]. In contrast, in ad-hoc polymorphism, the set of possible forms is determined in the early phase, and one specific form is se- lected. For example, an overloaded operation also simultaneously Supported in part by the National Science Foundation (NSF) un- denotes more than one function [21]. However, unlike dynamic dis- der Grant No. CCR-0098643 and CCR-0204432, and by the Insti- tute for Complex Scientific Software at Northeastern University. patch, overloading is resolved at compile time and hence is a form of ad-hoc polymorphism. Permission to make digital or hard copies of all or part of this work for In AspectJ [27, 25], object-oriented polymorphism is supported in personal or classroom use is granted without fee provided that copies the sense that the Java [3] programming language supports poly- are not made or distributed for profit or commercial advantage and that morphism, and AspectJ is a superset of Java. Similar connections copies bear this notice and the full citation on the first page. To copy would typically exist with other AOSD approaches. The support otherwise, to republish, to post on servers or to redistribute to lists, for polymorphism in connection with aspects is essentially ad-hoc. requires prior specific permission and/or a fee. AOSD 2003 Boston, MA USA For example, one can write a single implementation of an aspect, ¡ c ACM 2003 1­58113­660­9/03/002...$5.00 which displays polymorphic behavior in different join points. Con- 150 sider the abstract aspect SimpleTracing in Listing 1. 1 and this means that the advice code will polymorphically access the receiver, p, of the intercepted invocation of setX. Listing 1: SimpleTracing.java However, all these examples of polymorphism are “inherited” from package aspect;2 import org.aspectj.lang.JoinPoint; the base language. Imagine a base language without polymor- abstract aspect SimpleTracing { phism, and they would all evaporate. abstract pointcut tracePoints(); before(): !within(aspect..*) && tracePoints() { Even the notion of an abstract pointcut and associated definitions trace(thisJoinPoint); of concrete pointcuts is not truly polymorphic in the same sense } as object-oriented methods. It is true that advice code such as the protected abstract void trace(JoinPoint jp); } invocation of trace in Listing 1 is executed depending on a point- cut whose concrete definition is not known in SimpleTracing. In other words, it is not known in SimpleTracing when this ad- The thisJoinPoint pseudo variable (and the related pseudo vari- vice code will be executed. But for each location in the program able thisJoinPointStaticPart) is bound to an object repre- where this advice may actually be enabled, it will be considered senting the current join point, thus providing access to dynamic in context of a concrete subaspect of SimpleTracing for which (respectively static) information about that join point. This object tracePoints can be checked statically—e.g., can be queried with methods such as Listing 3: PointTracing.java thisJoinPoint.getThis() aspect PointTracing extends ExecutingObjectTracing { pointcut tracePoints(): or execution(* Point+.setX(..)); } thisJoinPointStaticPart.getSignature() .getDeclaringType().getName() —“is this an invocation of C.setX where C is Point or a subclass which will give different outcomes depending on the actual join thereof?” Note that even with dynamic pointcuts, e.g., cflow, it is point. This is because the pointcut (and hence the aspect) is ab- known statically that it is a cflow pointcut, with a known specifi- stract, which means that an actual aspect using the given before- cation, and the dynamic part is only determining whether a given advice would be a subaspect of SimpleTracing in which the point- expression is true or not. cut tracePoints has been made concrete, and the method trace has been implemented. Hence, an execution of the before-advice 2. AD­HOC POLYMORPHISM IN ASPECTJ would happen in context of an aspect instance whose type is only There are several points worth noting about polymorphism in As- known by an upper bound, and thisJoinPoint is only known to pectJ. be a join point. 2.1 Extending an aspect Moreover, an aspect can define abstract or concrete methods for It is possible to extend an abstract aspect, but not a concrete one. subaspects to redefine or use, e.g., The concrete aspect PointTracing (Listing 3) extends the ab- stract aspect ExecutingObjectTracing (Listing 2). However, Listing 2: ExecutingObjectTracing.java PointTracing cannot be further extended. This is actually a mi- abstract aspect ExecutingObjectTracing nor limitation that can be explained as an enforcement of the “ab- extends SimpleTracing { stract superclass rule” [20], i.e., the rule that only the leaves of an protected void trace(JoinPoint jp) { inheritance hierarchy can be concrete. Every aspect hierarchy can System.out.println("Executing object: " be transformed into one in which all super-aspects are abstract, al- + jp.getThis()); 3 } though this is not typically required by programming languages. } 2.2 Overriding a pointcut designator It is possible to redefine concrete pointcuts in the subaspect. For Finally, an advice and a pointcut may take arguments such as the example, the abstract aspect ReturnValueTracing in Listing 4, receiver object, e.g., Listing 4: ReturnValueTracing.java after(Point p, int nval): target(p) abstract public aspect ReturnValueTracing && args(nval) extends ExecutingObjectTracing { && call(void Point.setX(int)) { pointcut tracePoints(): call(*.new (..)); System.out.println("x in " + p after() returning (Object o): tracePoints() { + " is now set to " + nval + "."); System.out.println("Return: " + o); } } } 1To avoid explaining AspectJ basics we will assume knowledge of [25] and use some examples similar to the ones in that paper. In 3For example, the Sather programming language separates classes specific discussions about properties of AspectJ we are referring to and types strictly, and supports only the `insert-new-super' for version 1.0.6 types. However, the treatment of classes in Sather does not en- 2For the rest of the paper we will assume that all aspects are defined force a strict abstract superclass rule. Even in Sather it is possible in this package. to inherit from
Recommended publications
  • The Inheritance Anomaly Revisited
    The Inheritance Anomaly Revisited Ryan J. Wisnesky August 2006 Contents Contents i Preface ii Introduction 1 1 The Inheritance Anomaly and Formal Framework 2 1.1 An Overview of the Inheritance Anomaly . 2 1.2 An Overview of the Framework . 4 2 History-based Guard Languages 7 2.1 History-based guard languages . 7 2.2 Two tweaks . 8 2.2.1 The first tweak: Behavior Preservation . 8 2.2.2 The second tweak: Patching the Proof . 10 2.3 Discussion . 13 2.4 Related Work and Future Directions . 13 2.5 Conclusion . 15 3 Intra-object Concurrency 16 3.1 Methods and Messages . 16 3.1.1 New synchronization constructs . 17 3.1.2 Synchronization, Methods, and Messages . 18 3.2 New Types . 19 3.2.1 Mutual Exclusion: TypesS ............................ 20 3.2.2 Mutual Exclusion and Containment: TypesS .................. 24 3.2.3 TypesT,S ...................................... 25 3.3 Conclusion and Related Work . 27 4 Specification Languages 28 5 Overall Conclusion, Future Directions, and a Note on Typing 29 6 Related Work 30 6.1 Core Papers . 30 i 6.2 Concurrent Formal Systems . 31 6.3 Anomaly Avoidance Mechanisms . 33 6.4 Anomaly Generalizations . 36 6.5 Anomaly Experiences . 36 6.6 Surveys . 37 6.7 Aspect-Oriented Programming . 37 6.8 Others............................................ 38 Bibliography 41 ii Introduction The Inheritance Anomaly has been a thorn in the side of the concurrent object-oriented language community for 15 years. Simply put, the anomaly is a failure of inheritance and concurrency to work well with each other, negating the usefulness of inheritance as a mechanism for code-reuse in a concurrent setting.
    [Show full text]
  • The Inheritance Anomaly: Ten Years After
    The inheritance anomaly: ten years after Giuseppe Milicia Vladimiro Sassone Chi Spaces Technologies ltd. University of Sussex, UK Cambridge, UK [email protected] [email protected] ABSTRACT Clearly we must make sure that no object is removed from an The term inheritance anomaly was coined in 1993 by Matsuoka empty buffer and that no object is inserted into a full buffer. In a and Yonezawa [15] to refer to the problems arising by the coexis- sequential setting, the burden of ensuring such constraints resides tence of inheritance and concurrency in concurrent object oriented with the buffer’s user. Indeed the buffer is created and used by languages (COOLs). The quirks arising by such combination have one thread only, which is responsible for the state of the object. been observed since the early eighties, when the first experimen- To facilitate usage, the buffer’s methods might return certain er- tal COOLs were designed [3]. In the nineties COOLs turned from ror codes in case of misuse. This approach is not feasible in a research topic to widely used tools in the everyday programming concurrent setting. The buffer will be used concurrently by mul- practice, see e.g. the Java [9] experience. This expository paper ex- tiple clients, leaving each of them no idea on the buffer’s current tends the survey presented in [15] to account for new and widely state. Although it is possible to envisage ad-hoc protocols among used COOLs, most notably Java and C] [19]. Specifically, we il- clients to keep track of the buffer’s state, such a solution is com- lustrate some innovative approaches to COOL design relying on plex and hardly feasible in practice.
    [Show full text]
  • Source-Code Instrumentation and Quantification of Events Robert E
    Source-Code Instrumentation and Quantification of Events Robert E. Filman Klaus Havelund RIACS Kestrel Technology NASA Ames Research Center, MS 269/2 NASA Ames Research Center, MS 269/2 Moffett Field, CA 94035 U.S.A. Moffett Field, CA 94035 U.S.A +1 650–604–1250 +1 650–604–3366 [email protected] [email protected] ABSTRACT particularly with respect to debugging and validating concurrent Aspect-Oriented Programming is making quantified programmatic systems. assertions over programs that otherwise are not annotated to 2. EVENTS receive these assertions. Varieties of AOP systems are Quantification implies matching a predicate about a program. characterized by which quantified assertions they allow, what they Such a predicate must be over some domain. In the permit in the actions of the assertions (including how the actions quantification/implicit invocation papers, we distinguished interact with the base code), and what mechanisms they use to between static and dynamic quantification. achieve the overall effect. Here, we argue that all quantification is over dynamic events, and describe our preliminary work in Static quantification worked over the structure of the program. developing a system that maps dynamic events to transformations That is, with static quantification, one could reference the over source code. We discuss possible applications of this system, programming language structures in a system. Examples of such particularly with respect to debugging concurrent systems. structures include reference to program variables, calls to subprograms, loops, and conditional tests. Categories and Subject Descriptors Many common AOP implementation techniques can be D.3.3 [Programming Languages]: Language Constructs and understood in terms of quantified program manipulation on the Features – aspects.
    [Show full text]
  • Predicate Dispatching
    This pap er app ears in ECOOP the th Europ ean Conference on Ob ject Oriented Programming Brussels Belgium July pp Predicate Dispatching A Unied Theory of Dispatch Michael Ernst Craig Kaplan and Craig Chambers Department of Computer Science and Engineering University of Washington Seattle WA USA fmernstcskchambersgcswashingtonedu httpwwwcswashingtoneduresearchprojectscecil Abstract Predicate dispatching generalizes previous metho d dispatch mechanisms by p ermitting arbitrary predicates to control metho d ap plicabili ty and by using logical implication b etween predicates as the overriding relationship The metho d selected to handle a message send can dep end not just on the classes of the arguments as in ordinary ob jectoriented dispatch but also on the classes of sub comp onents on an arguments state and on relationships b etween ob jects This simple mechanism subsumes and extends ob jectoriented single and multiple dispatch MLstyle pattern matching predicate classes and classiers which can all b e regarded as syntactic sugar for predicate dispatching This pap er introduces predicate dispatching gives motivating examples and presents its static and dynamic semantics An implementation of predicate dispatching is available Introduction Many programming languages supp ort some mechanism for dividing the b o dy of a pro cedure into a set of cases with a declarative mechanism for selecting the right case for each dynamic invocation of the pro cedure Case selection can b e broken down into tests for applicability a case is a candidate
    [Show full text]
  • Approaches to Composition and Refinement in Object-Oriented Design
    Approaches to Composition and Refinement in Object-Oriented Design Marcel Weiher Matrikelnummer 127367 Diplomarbeit Fachbereich Informatik Technische Unversitat¨ Berlin Advisor: Professor Bernd Mahr August 21, 1997 Contents 1 Introduction 4 1.1 Object Orientation 4 1.2 Composition and Refinement 5 2 State of the Art 7 2.1 Frameworks 7 2.1.1 Framework Construction 8 2.1.2 Reusing Frameworks 9 2.2 Design Patterns 10 2.2.1 Reusing Patterns 10 2.2.2 Communicating Patterns 12 2.3 Commentary 13 3 Enhanced Interfaces 14 3.1 Interface Typing 14 3.2 The Refinement Interface 15 3.2.1 Protocol Dependencies 15 3.2.2 Reuse Contracts 18 3.3 Interaction Interfaces 21 3.3.1 Interaction Protocols 21 3.3.2 Protocol Specification and Matching 22 3.4 Commentary 23 4 Orthogonalization 24 4.1 Delegation 24 4.1.1 Prototypes Languages 25 4.1.2 Composition Filters 25 4.2 Mixins 27 4.2.1 Mixins and Multiple Inheritance 28 4.2.2 Nested Dynamic Mixins 28 4.3 Extension Hierarchies 29 4.3.1 Extension Operators 29 4.3.2 Conflicts: Detection, Resolution, Avoidance 30 4.4 Canonic Components 31 4.4.1 Components 31 4.4.2 Views 32 4.5 Commentary 33 1 5 Software Architecture 34 5.1 Architectural Styles 34 5.1.1 Pipes and Filters 35 5.1.2 Call and Return 36 5.1.3 Implicit Invocation 36 5.1.4 Using Styles 37 5.2 Architecture Description Languages 38 5.2.1 UniCon 38 5.2.2 RAPIDE 39 5.2.3 Wright 40 5.2.4 ACME 43 5.3 Commentary 43 6 Non-linear Refinement 45 6.1 Domain Specific Software Generators 45 6.1.1 A Domain Independent Model 46 6.1.2 Implementation 47 6.2 Subject Oriented
    [Show full text]
  • (Dynamic (Programming Paradigms)) Performance and Expressivity Didier Verna
    (Dynamic (programming paradigms)) Performance and expressivity Didier Verna To cite this version: Didier Verna. (Dynamic (programming paradigms)) Performance and expressivity. Software Engineer- ing [cs.SE]. LRDE - Laboratoire de Recherche et de Développement de l’EPITA, 2020. hal-02988180 HAL Id: hal-02988180 https://hal.archives-ouvertes.fr/hal-02988180 Submitted on 4 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE D’HABILITATION À DIRIGER LES RECHERCHES Sorbonne Université Spécialité Sciences de l’Ingénieur (DYNAMIC (PROGRAMMING PARADIGMS)) PERFORMANCE AND EXPRESSIVITY Didier Verna [email protected] Laboratoire de Recherche et Développement de l’EPITA (LRDE) 14-16 rue Voltaire 94276 Le Kremlin-Bicêtre CEDEX Soutenue le 10 Juillet 2020 Rapporteurs: Robert Strandh Université de Bordeaux, France Nicolas Neuß FAU, Erlangen-Nürnberg, Allemagne Manuel Serrano INRIA, Sophia Antipolis, France Examinateurs: Marco Antoniotti Université de Milan-Bicocca, Italie Ralf Möller Université de Lübeck, Allemagne Gérard Assayag IRCAM, Paris, France DOI 10.5281/zenodo.4244393 Résumé (French Abstract) Ce rapport d’habilitation traite de travaux de recherche fondamentale et appliquée en informatique, effectués depuis 2006 au Laboratoire de Recherche et Développement de l’EPITA (LRDE). Ces travaux se situent dans le domaine des langages de pro- grammation dynamiques, et plus particulièrement autour de leur expressivité et de leur performance.
    [Show full text]
  • Open Modules: Reconciling Extensibility and Information Hiding
    Open Modules: Reconciling Extensibility and Information Hiding Jonathan Aldrich School of Computer Science Carnegie Mellon University 5000 Forbes Avenue Pittsburgh, PA 15213, USA [email protected] ABSTRACT nisms are not flexible enough to capture many concerns that Aspect-oriented programming systems provide powerful are likely to change. These concerns cannot be effectively mechanisms for separating concerns, but understanding hidden behind information-hiding boundaries, because they how these concerns interact can be challenging. In partic- are scattered in many placed throughout the system and ular, many aspect-oriented programming constructs can vio- tangled together with unrelated code. Aspect-oriented pro- late encapsulation, creating dependencies between concerns gramming systems provide mechanisms for modularizing a that make software evolution more difficult and error-prone. more diverse set of concerns. However, few aspect-oriented In this paper, we introduce Open Modules, a mechanism programming projects have addressed the problem of pro- for enforcing a strong form of encapsulation while support- viding an encapsulation facility for aspect-oriented program- ing much of the extensibility provided by languages like ming. AspectJ. Open Modules provide extensibility by allowing 2.1 Existing Encapsulation Approaches clients to advise the interface of a module, but enforce encap- sulation by protecting function calls made within the mod- The most widely-used AOP system, AspectJ, leaves Java’s ule from external advice. A module can expose semantically existing encapsulation mechanisms largely unchanged [7]. important internal events to client aspects through pointcuts AspectJ provides new programming mechanisms that cap- in its interface. The module’s implementation can change ture concerns which crosscut Java’s class and package struc- without affecting client advice as long as the semantics of the ture.
    [Show full text]
  • Aspect-Oriented Programming
    Beyond OOP Advanced Separation of Concerns Metaprogramming Reflection Aspect-Oriented Programming Eric Tanter DCC/CWR University of Chile [email protected] Éric Tanter – U.Chile [june | 2005] 1 Contents ● A brief history of programming ● Advanced modularization problems ● Reflection and metaprogramming ● Aspect-oriented programming Éric Tanter – U.Chile [june | 2005] 2 Part I A Quick History of Programming Adapted from Brian Hayes, “The Post-OOP Paradigm”, American Scientist, 91(2), March-April 2003, pp. 106-110 Éric Tanter – U.Chile [june | 2005] 3 Software? ● Real challenge: building the machine ● Software was not important as such ● First programs (40's) ● Written in pure binary: 0s and 1s ● Explicit memory address management Éric Tanter – U.Chile [june | 2005] 4 Then came the assembly... ● Assembly language ● No more raw binary codes ● Symbols: load, store, add, sub ● Converted to a binary program by an assembler ● Calculates memory addresses ● First program to help programming Éric Tanter – U.Chile [june | 2005] 5 ...and then, compilers ● Assembly required knowledge of the specific computer instruction set ● Higher-level languages (e.g. Fortran) ● Think in terms of variables/equations ● Not registers/addresses ● 60's: big projects = late/costly/buggy Éric Tanter – U.Chile [june | 2005] 6 Structured Programming ● Manifesto by Edsger W. Dijkstra: “Go to statement considered harmful” [1968] ● Build programs out of sub-units ● Single entrance point, single exit ● 3 constructs: ● Sequencing, alternation, and iteration ● Proof that
    [Show full text]
  • Challenges for Refinement and Composition of Instrumentations
    Challenges for Refinement and Composition of Instrumentations: Position Paper Danilo Ansaloni1,WalterBinder1,ChristophBockisch2,EricBodden3, Kardelen Hatun2,Lukáš Marek4,ZhengweiQi5,AibekSarimbekov1, Andreas Sewe3,PetrTůma4,andYudiZheng5 1 University of Lugano, Switzerland {danilo.ansaloni,walter.binder,aibek.sarimbekov}@usi.ch 2 University of Twente, The Netherlands [email protected], [email protected] 3 Technische Universität Darmstadt, Germany [email protected], [email protected] 4 Charles University, Czech Republic {lukas.marek,petr.tuma}@d3s.mff.cuni.cz 5 Shanghai Jiao Tong University, China {qizhwei,zheng.yudi}@sjtu.edu.cn Abstract. Instrumentation techniques are widely used for implement- ing dynamic program analysis tools like profilers or debuggers. While there are many toolkits and frameworks to support the development of such low-level instrumentations, there is little support for the refinement or composition of instrumentations. A common practice is thus to copy and paste from existing instrumentation code. This, of course, violates well-established software engineering principles, results in code duplica- tion, and hinders maintenance. In this position paper we identify two challenges regarding the refinement and composition of instrumentations and illustrate them with a running example. Keywords: Instrumentation, composition, aspect-oriented program- ming, domain-specific languages. 1 Introduction Many dynamic program analyses, including tools for profiling, debugging, testing, program comprehension, and reverse engineering, rely on code instrumentation. Such tools are usually implemented with toolkits that allow for the careful low- level optimization of the inserted code. While this low-level view is needed to keep the overhead incurred by dynamic program analyses low, it currently brings with it a lack of support for refining and composing the resulting instrumentations.
    [Show full text]
  • Reasoning About a Classification of Crosscutting Concerns in Object-Oriented Systems
    Reasoning About a Classification of Crosscutting Concerns in Object-Oriented Systems Constantinos A. Constantinides Therapon Skotiniotis Department of Computer Science and College of Computer Science Information Systems Northeastern University Birkbeck College, University of London [email protected] [email protected] Abstract eventual design class diagram will be built with no domi- In this paper we discuss some issues regarding the nature nance of components over aspects. Further, the ability to pro- and behavior of crosscutting concerns in OO systems. We vide component and aspect off-the-shelf (CAOTS) technolo- argue that aspects must be defined as first-class abstractions gies can result in a high level of reuse and thus provide for a in order to be manipulated as such and thus to provide for faster development, as well as for a high level of software reusability and dynamic adaptability as well as for the crea- maintenance. tion of dynamically loadable aspect repositories. In this paper, we discuss some issues regarding the nature and behavior of aspects, and we argue that it would be advan- 1. INTRODUCTION tageous if aspects are defined as first-class abstractions in Object Orientation has provided the means to modularize data order to be able to be manipulated as such and thus provide abstractions along with operations on them. It further pro- for a high level of reusability and dynamic adaptability. This vided mechanisms to group, reuse and extend behavior as can also enable formal modelling with the support of UML. well as internal component structure. Recent research has We further discuss issues that arise in order to obtain demonstrated that OOP gives rise to certain problematic is- CAOTS.
    [Show full text]
  • Oomatch: Pattern Matching As Dispatch in Java
    OOMatch: Pattern Matching as Dispatch in Java Adam Richard Ondrejˇ Lhotak´ University of Waterloo University of Waterloo [email protected] [email protected] Abstract ther in a case statement or in a set of functions. Though this pat- We present a new language feature, specified as an extension to tern matching is useful in a functional context, simple algebraic Java. The feature is a form of dispatch, which includes and sub- types and tuples are not used much in object-oriented program- sumes multimethods (see for example [CLCM00]), but which is ming; classes are used much more. So we here present a means of not as powerful as general predicate dispatch [EKC98]. It is, how- deconstructing objects into their components and specifying pat- ever, intended to be more practical and easier to use than the latter. terns that match objects with certain properties. The extension, dubbed OOMatch, allows method parameters to be The most significant difference from pattern matching in func- specified as patterns, which are matched against the arguments to tional languages is that in OOMatch, pattern matching is used in the method call. When matches occur, the method applies; if multi- determining method dispatch. Thus, pattern precedence cannot be ple methods apply, the method with the more specific pattern over- determined by textual order, as it is in functional languages. The rides the others. patterns are specified as parameters to methods, and the compiler The pattern matching is very similar to that found in the “case” decides on a natural order to check for a matching pattern, i.e.
    [Show full text]
  • Signature Redacted Department of Electrical Engineering and Computer Science May 20, 2015
    ARCHNES Abstraction in Technical Computing MASSACHUSETTS INSTITUTE OF TECHNOLOLGY by JUL 0 7 2015 Jeffrey Werner Bezanson LIBRARIES A.B., Harvard University (2004) S.M., Massachusetts Institute of Technology (2012) Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2015 @ Massachusetts Institute of Technology 2015. All rights reserved. Author....... Signature redacted Department of Electrical Engineering and Computer Science May 20, 2015 Certified by ............ Signature redacted ......... Alan Edelman Professor Thesis Supervisor Accepted by...... Signature redacted -6 Leslie Kolodziejski Chairman, Department Committee on Graduate Students 2 Abstraction in Technical Computing by Jeffrey Werner Bezanson Submitted to the Department of Electrical Engineering and Computer Science on May 20, 2015, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Array-based programming environments are popular for scientific and technical computing. These systems consist of built-in function libraries paired with high-level languages for in- teraction. Although the libraries perform well, it is widely believed that scripting in these languages is necessarily slow, and that only heroic feats of engineering can at best partially ameliorate this problem. This thesis argues that what is really needed is a more coherent structure for this func- tionality. To find one, we must ask what technical computing is really about. This thesis suggests that this kind of programming is characterized by an emphasis on operator com- plexity and code specialization, and that a language can be designed to better fit these requirements.
    [Show full text]