Resting Electromyographic Activity of Deep Thoracic Transversospinalis Muscles Identified As Abnormal with Palpation

Total Page:16

File Type:pdf, Size:1020Kb

Resting Electromyographic Activity of Deep Thoracic Transversospinalis Muscles Identified As Abnormal with Palpation ORIGINAL CONTRIBUTION Resting Electromyographic Activity of Deep Thoracic Transversospinalis Muscles Identified as Abnormal With Palpation Gary Fryer, BSc (Osteopathy), PhD; Michael Bird, PhD; Barry Robbins, DO; Christian Fossum, DO (Norway); and Jane C. Johnson, MA Context: In the 1940s, osteopathic researchers suggested that activity at each of the three intramuscular sites was evident paraspinal tissue abnormality was associated with sponta - (mean [SD] percent of MVIC: abnormal 7.83 [8.76]; normal 9.47 neous muscle activity, but few studies have since re-examined [8.45], 6.65 [7.39]). No statistically significant differences existed these reports. in the intramuscular EMG values between the two resting baseline periods ( P=.10). Objective: To determine whether abnormal motor activity plays a role in deep paraspinal tissues that appear abnormal Conclusion: The lack of statistically significant differences to palpation. between EMG activity at the abnormal and normal paraspinal sites suggests that factors other than muscle activity are respon - Methods: Using an observational study design, the PVG of sible for the apparent abnormality of these tissues to palpation. participants with thoracic pain were palpated by two exam - Investigation of these regions for increased tissue fluid and iners for consensus on the most marked level of tissue abnor - inflammatory mediators is recommended. mality. Dual fine-wire, intramuscular electrodes were inserted into the deep transversospinalis (multifidus, rotatores) mus - J Am Osteopath Assoc . 2010;110(2):61-68 cles at the abnormal level and at two normal sites (above and below the abnormal level). Surface electrodes were placed over the erector spinae muscles adjacent to each intramuscular esearchers in osteopathic medicine and other manual electrode site. Electromyography signals were recorded during Rmedicine disciplines have claimed that paraspinal tissue initial prone resting, three maximal voluntary isometric con - texture irregularity is an important clinical sign of functional tractions (MVIC), and a second prone resting. The area under disturbances to the spinal joints and tissues. 1-5 These functional the curve for a 2-second period was analyzed for each con - disturbances, termed somatic dysfunction in the osteopathic lit - dition, and values were normalized and reported as a per - erature, are identified primarily by the palpation of abnormal centage of MVIC. Data were analyzed using a 2-factor tissue texture, asymmetry, range-of-motion disturbance, and repeated-measures analysis of variance. tenderness. 2,3 Tissues in the paravertebral gutter (PVG) Results: Twenty-five participants with mean (SD) thoracic region—the longitudinal groove that lies between the verte - pain of 3.3 (1.9) on a 0 to 10 visual analog pain scale com - bral spinous processes and the bulk of the erector spinae pleted the study protocol. There were no statistically signifi - muscle group—are claimed to be of particular relevance to cant differences in normalized resting activity between the spinal assessment. 1-3,6 Irregularity of segmental tissue tex - three intramuscular sites ( P=.25) or between the three sur - ture in the PVG may include abnormal hardness, bogginess, face sites ( P=.33). Substantial variability in normalized resting or ropiness of the deep paraspinal tissues. 1-3,6 Increased motor activity of the deep paraspinal musculature, particularly the multifidus and rotatores muscles, has been cited as a possible etiologic process for paraspinal tissue irregularity associated From the A.T. Still Research Institute (Dr Fryer, Mr Fossum, and Ms Johnson) with somatic dysfunction. 1,2,6 and the Department of Neurobehavioral Sciences (Dr Robbins) at Kirksville Col - Although the clinical concept of somatic dysfunction has lege of Osteopathic Medicine-A.T. Still University in Missouri; and from the been central to osteopathic manipulative medicine for more Department of Exercise Science at Truman State University, also in Kirksville (Dr Bird). Dr Fryer is also affiliated with Osteopathic Medicine, School of than a century, objective evidence for the pathophysiology of Biomedical & Health Sciences at Victoria University in Melbourne, Australia. the proposed dysfunction and associated tissue texture abnor - This study was funded by the Strategic Research Fund (Grant # 501-281) mality is limited. Various models for the etiologic process of of the A.T. Still University of Health Sciences in Kirksville, Missouri. The authors have no conflicts of interest to declare. somatic dysfunction have attributed tissue texture abnormal - Address correspondence to Gary Fryer, BSc, PhD, Osteopathic Medicine ities to overactivity of segmental musculature, 7,8 tissue inflam - Unit, School of Biomedical & Health Sciences, Victoria University, PO Box mation, 8,9 segmental muscle atrophy, 9 or a combination of all 14428 MCMC, Melbourne, 8001, Australia. E-mail: [email protected] these factors. 9 As cited in the osteopathic medical literature, 10-12 many Submitted May 19, 2009; revision received October 6, 2009; accepted October researchers 13 -16 in the 1940s claimed evidence of increased 19, 2009. Fryer et al • Original Contribution JAOA • Vol 110 • No 2 • February 2010 • 61 ORIGINAL CONTRIBUTION segmental muscle activity and segmental sympathetic motor individuals during different activities indicates that this method output at spinal levels associated with palpable lesions (ie, should be examined for reliability. More importantly, sub - somatic dysfunction). Denslow and Clough 13 used needle stantial electromagnetic noise contaminated the EMG record - electrodes to examine the electromyographic (EMG) activity at ings and particularly affected the resting conditions, during “lesioned” and normal segments, as identified by palpation, of which activity was low. When resting conditions were excluded the thoracic paraspinal muscles in 16 healthy participants. from the analysis, a statistically significant difference between They reported that spontaneous electrical activity occurred at the normal and abnormal sites still existed, 25 but these limita - lesioned segments but was rare at normal segments. 13 These tions cast doubt on the veracity of the findings. findings were also reported in participants with postural The present study re-examined the hypothesis of Fryer et abnormalities. 14 A few years later, Denslow 15 and Denslow al 22 that increased paraspinal EMG activity at rest is associated et al 16 reported that when graded pressure was applied to the with abnormal sites as determined by palpation. Sites that thoracic and lumbar spinous processes, reflex paraspinal EMG appeared abnormal to palpation in the PVG were chosen for activity occurred at lower pressures in segments palpated as the present study because practitioners in the field have claimed abnormal than in adjacent, normal segments. Although these tissue abnormality in this region may be indicative of seg - studies 13 -16 are regarded as landmark research in the osteo - mental dysfunction. 1-3,6 In addition, increased activity of the pathic medical profession, they are more than 50 years old multifidus and rotatores muscles has been proposed as the and are, by today’s standards, poorly described with insuffi - cause of this tissue abnormality, 1,2,6 and these muscles, as well cient data and sometimes no statistical analysis. 17,18 as the zygapophysial joint, are located within the thoracic Few researchers have since investigated paraspinal tissue PVG region. 26 Compared to previous studies, 13,22 the current texture abnormality for empirical characteristics. In 2004, Fryer study examined a larger cohort of symptomatic participants et al 19 reported that sites abnormal to palpation in the tho - using fine-wire intramuscular EMG procedures and used a reli - racic PVG were substantially more sensitive to pressure than able method for EMG normalization. The purpose of the pre - adjacent sites. One year later, the same researchers 20 mea - sent study was to determine whether abnormal motor activity sured the anteroposterior cross-sectional dimension (thick - plays a role in deep paraspinal tissues that appear abnormal ness) of the paraspinal muscle bulk directly underlying sites to palpation. in the thoracic PVG using diagnostic ultrasonography. Normal and abnormal palpated regions had similar mean dimensions, Methods suggesting that factors other than paraspinal muscle thick - Participants ness were responsible for the apparently abnormal tissue tex - Students and staff from two university campuses in Kirksville, ture. 20 Missouri, were recruited to participate in the present study Given that Denslow 15 and Denslow et al 16 are commonly through e-mails and posted flyers. Participants were included cited as evidence of the facilitated segment concept of somatic if they had current or frequent thoracic spinal pain during the dysfunction, 10 -12 it is surprising that few researchers have preceding 3 weeks, were aged 18 to 50 years, and had an iden - attempted to re-examine and expand on this body of work. tifiable paraspinal region that appeared abnormal to palpation There is little direct evidence to support the proposition that by the examiners. Participants were excluded if they had abnormal muscle contraction or spasm is associated with obvious spinal deformities or pathologic processes or any paraspinal regions identified as abnormal. A large volume of medical condition that precluded them from fine-wire EMG research demonstrates lumbar paraspinal
Recommended publications
  • The Erector Spinae Plane Block a Novel Analgesic Technique in Thoracic Neuropathic Pain
    CHRONIC AND INTERVENTIONAL PAIN BRIEF TECHNICAL REPORT The Erector Spinae Plane Block A Novel Analgesic Technique in Thoracic Neuropathic Pain Mauricio Forero, MD, FIPP,*Sanjib D. Adhikary, MD,† Hector Lopez, MD,‡ Calvin Tsui, BMSc,§ and Ki Jinn Chin, MBBS (Hons), MMed, FRCPC|| Case 1 Abstract: Thoracic neuropathic pain is a debilitating condition that is often poorly responsive to oral and topical pharmacotherapy. The benefit A 67-year-old man, weight 116 kg and height 188 cm [body of interventional nerve block procedures is unclear due to a paucity of ev- mass index (BMI), 32.8 kg/m2] with a history of heavy smoking idence and the invasiveness of the described techniques. In this report, we and paroxysmal supraventricular tachycardia controlled on ateno- describe a novel interfascial plane block, the erector spinae plane (ESP) lol, was referred to the chronic pain clinic with a 4-month history block, and its successful application in 2 cases of severe neuropathic pain of severe left-sided chest pain. A magnetic resonance imaging (the first resulting from metastatic disease of the ribs, and the second from scan of his thorax at initial presentation had been reported as nor- malunion of multiple rib fractures). In both cases, the ESP block also pro- mal, and the working diagnosis at the time of referral was post- duced an extensive multidermatomal sensory block. Anatomical and radio- herpetic neuralgia. He reported constant burning and stabbing logical investigation in fresh cadavers indicates that its likely site of action neuropathic pain of 10/10 severity on the numerical rating score is at the dorsal and ventral rami of the thoracic spinal nerves.
    [Show full text]
  • Quantification of the Elastic Moduli of Lumbar Erector Spinae And
    applied sciences Article Quantification of the Elastic Moduli of Lumbar Erector Spinae and Multifidus Muscles Using Shear-Wave Ultrasound Elastography Tae Hyun Lim 1, Deukhee Lee 2,3 , Olga Kim 1,3 and Song Joo Lee 1,3,* 1 Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; [email protected] (T.H.L.); [email protected] (O.K.) 2 Center for Healthcare Robotics, AI and Robot Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; [email protected] 3 Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea * Correspondence: [email protected]; Tel.: +82-2-958-5645 Featured Application: The findings and approach can potentially be used to guide surgical train- ing and planning for developing a minimal-incision surgical procedure by considering surgical position-dependent muscle material properties. Abstract: Although spinal surgeries with minimal incisions and a minimal amount of X-ray exposure (MIMA) mostly occur in a prone posture on a Wilson table, the prone posture’s effects on spinal muscles have not been investigated. Thus, this study used ultrasound shear-wave elastography (SWE) to compare the material properties of the erector spinae and multifidus muscles when subjects lay on the Wilson table used for spinal surgery and the flat table as a control condition. Thirteen male subjects participated in the study. Using ultrasound SWE, the shear elastic moduli (SEM) of the Citation: Lim, T.H.; Lee, D.; Kim, O.; Lee, S.J. Quantification of the Elastic erector spinae and multifidus muscles were investigated.
    [Show full text]
  • Measurements of the Trapezius and Erector Spinae Muscles Using Virtual Touch Imaging Quantification Ultrasound-Elastography
    Heizelmann et al. BMC Musculoskeletal Disorders (2017) 18:370 DOI 10.1186/s12891-017-1733-8 RESEARCHARTICLE Open Access Measurements of the trapezius and erector spinae muscles using virtual touch imaging quantification ultrasound-Elastography: a cross section study Anne Heizelmann1, Sümeyra Tasdemir1, Julian Schmidberger1, Tilmann Gräter2, Wolfgang Kratzer1* and Beate Grüner3 Abstract Background: This study uses virtual touch imaging quantification (VTIQ) technology for the first time to conduct measurements of the trapezius and erector spinae muscles in a large study population. The significance of various influencing factors, such as age and sex, are also examined. Method: The study population comprised 278 subjects. The Siemens Acuson S3000 and VTIQ technology were used for measurements of the trapezius and erector spinae muscles (Siemens Healthcare, Erlangen, Germany). Results: The following mean values ± standard deviation were calculated: left trapezius: males 2.89 ± 0.38 m/s, females 2.71 ± 0.37 m/s; right trapezius: males 2.84 ± 0.41 m/s, females 2.70 ± 0.38 m/s; left erector spinae: males 2. 97 ± 0.50 m/s, females 2.81 ± 0.57 m/s; right erector spinae: males 3.00 ± 0.52 m/s, females 2.77 ± 0.59 m/s. A significant difference between male and female subjects was demonstrated both for the shear wave velocities of the trapezius and erector spinae as well as for the thickness of the trapezius muscle (p < 0.05). There was also a significant difference in muscle elasticity between subjects over 60 years of age and those under 60 (p < 0.05). Furthermore, the results indicate that regular physical activity has an effect on muscle elasticity.
    [Show full text]
  • Erector Spinae Plane Block Versus Retrolaminar Block a Magnetic Resonance Imaging and Anatomical Study
    Regional Anesthesia & Pain Medicine: first published as 10.1097/AAP.0000000000000798 on 1 October 2018. Downloaded from REGIONAL ANESTHESIA AND ACUTE PAIN BRIEF TECHNICAL REPORT Erector Spinae Plane Block Versus Retrolaminar Block A Magnetic Resonance Imaging and Anatomical Study Sanjib Das Adhikary, MD,* Stephanie Bernard, MD,† Hector Lopez, MD,‡ and Ki Jinn Chin, FRCPC§ As with the ESP block, it has been postulated that the clinical ef- Background and Objectives: The erector spinae plane (ESP) and fects of the retrolaminar block may be explained by spread of lo- retrolaminar blocks are ultrasound-guided techniques for thoracoabdominal cal anesthetic into the paravertebral space,6 but this mechanism wall analgesia involving injection into the musculofascial plane between has never been systematically investigated. However, there are the paraspinal back muscles and underlying thoracic vertebrae. The ESP significant anatomical and technical differences between the 2 block targets the tips of the transverse processes, whereas the retrolaminar techniques: the retrolaminar block targets the lamina instead of block targets the laminae. We investigated if there were differences in the transverse process, and thus the injection point is more medial injectate spread between the 2 techniques that would have implications and deeper. The muscle layer over the lamina and adjacent to the for their clinical effect. spinous processes is thicker, being composed of the spinalis portion Methods: The blocks were performed in 3 fresh cadavers. The ESP and of the erector spinae muscle group as well as the transversospinalis retrolaminar blocks were performed on opposite sides of each cadaver at muscle group, which comprises the multifidus, rotatores, semis- the T5 vertebral level.
    [Show full text]
  • Towards Defining Muscular Regions of Interest from Axial Magnetic Resonance Imaging with Anatomical Cross-Reference: Part II - Cervical Spine Musculature James M
    Elliott et al. BMC Musculoskeletal Disorders (2018) 19:171 https://doi.org/10.1186/s12891-018-2074-y TECHNICAL ADVANCE Open Access Towards defining muscular regions of interest from axial magnetic resonance imaging with anatomical cross-reference: part II - cervical spine musculature James M. Elliott1,2,3* , Jon Cornwall4, Ewan Kennedy5, Rebecca Abbott2 and Rebecca J. Crawford6 Abstract Background: It has been suggested that the quantification of paravertebral muscle composition and morphology (e.g. size/shape/structure) with magnetic resonance imaging (MRI) has diagnostic, prognostic, and therapeutic potential in contributing to overall musculoskeletal health. If this is to be realised, then consensus towards standardised MRI methods for measuring muscular size/shape/structure are crucial to allow the translation of such measurements towards management of, and hopefully improved health for, those with some musculoskeletal conditions. Following on from an original paper detailing methods for measuring muscles traversing the lumbar spine, we propose new methods based on anatomical cross-reference that strive towards standardising MRI-based quantification of anterior and posterior cervical spine muscle composition. Methods: In this descriptive technical advance paper we expand our methods from the lumbar spine by providing a detailed examination of regional cervical spine muscle morphology, followed by a comprehensive description of the proposed technique defining muscle ROI from axial MRI. Cross-referencing cervical musculature and vertebral
    [Show full text]
  • The Erector Spinae Group Is a Group of 3 Sets of Muscles—Spinalis, Longissimus, and Iliocostalis
    The Erector Spinae Group is a group of 3 sets of muscles—spinalis, longissimus, and iliocostalis. The spinalis group are located off of the spinous processes of the vertebrae. The longissimus group are located off of the transverse processes of the vertebrae and the iliocostalis group are located off of the ribs. By knowing these regions we can see that the spinalis group is the most medial and the iliocostalis group is most lateral. 1 During full flexion the erector spinae are relaxed. When standing upright the muscles are active and extension is initiated by the hamstrings—so when you lift a load from the bent over position it causes injury to the erector spinae group. Always lift with a straight back, not when you are hunched over. 2 3 The interspinalis muscles are very tiny muscles that connect from one spinous process to another. The intertransversarii muscles connect between each transverse process. The multifidus lies deep to the erector spinae muscles and it connects from one transverse process to the next spinous process. 4 The rotatores differs from the multifidus by going from 1 transverse process to 2 spinous processes. 5 The external obliques are the most superficial of the oblique muscles. Notice the fibers angle downward and medially, which allows for lateral flexion to same side and rotation to the opposite side. What other muscle does that (neck muscle)?? Once again it takes both sides to contract to cause trunk flexion to occur and only 1 side to cause the rotation and lateral flexion. Now the internal obliques have the fibers directed more horizontally which allows for rotation to the same side when 1 side contracts unlike the external obliques.
    [Show full text]
  • Methodological Considerations in Region of Interest Definitions for Paraspinal Muscles in Axial Mris of the Lumbar Spine David B
    Berry et al. BMC Musculoskeletal Disorders (2018) 19:135 https://doi.org/10.1186/s12891-018-2059-x RESEARCHARTICLE Open Access Methodological considerations in region of interest definitions for paraspinal muscles in axial MRIs of the lumbar spine David B. Berry1, Jennifer Padwal2, Seth Johnson3, Callan L. Parra3, Samuel R. Ward1,3,4 and Bahar Shahidi3,4* Abstract Background: Magnetic Resonance Imaging (MRI) is commonly used to assess the health of the lumbar spine and supporting structures. Studies have suggested that fatty infiltration of the posterior lumbar muscles is important in predicting responses to treatment for low back pain. However, methodological differences exist in defining the region of interest (ROI) of a muscle, which limits the ability to compare data between studies. The purpose of this study was to determine reliability and systematic differences within and between two commonly utilized methodologies for ROI definitions of lumbar paraspinal muscle. Methods: T2-weighted MRIs of the mid-L4 vertebrae from 37 patients with low back pain who were scheduled for lumbar spine surgery were included from a hospital database. Fatty infiltration for these patients ranged from low to high, based on Kjaer criteria. Two methods were used to define ROI: 1) segmentation of the multifidus and erector spinae based on fascial planes including epimuscular fat, and 2) segmentation of the multifidus and erector spinae based on visible muscle boundaries, which did not include epimuscular fat. Total cross sectional area (tCSA), fat signal fraction (FSF), muscle cross sectional area, and fat cross sectional area were measured. Degree of agreement between raters for each parameter was assessed using intra-class correlation coefficients (ICC) and area fraction of overlapping voxels.
    [Show full text]
  • Differences in Electromyographic Activity in the Multifidus Muscle And
    Eur Spine J (2002) 11:13–19 DOI 10.1007/s005860100314 ORIGINAL ARTICLE L. A. Danneels Differences in electromyographic activity P. L. Coorevits A. M. Cools in the multifidus muscle G. G. Vanderstraeten D. C. Cambier and the iliocostalis lumborum E. E. Witvrouw H. J. De Cuyper between healthy subjects and patients with sub-acute and chronic low back pain Abstract The present study was differences between patients and Received: 2 February 2001 Revised: 12 May 2001 carried out to examine possible controls were found for the nor- Accepted: 28 May 2001 mechanisms of back muscle dysfunc- malised EMG activity of the two Published online: 14 July 2001 tion by assessing a stabilising and a muscles. These findings indicated © Springer-Verlag 2001 torque-producing back muscle, the that, during low-load exercises, no multifidus (MF) and the iliocostalis insufficiencies in back muscle re- lumborum pars thoracis (ICLT), re- cruitment were evident in either sub- spectively, in order to identify acute or chronic back pain patients. whether back pain patients showed During the strength exercises, the altered recruitment patterns during normalised activity of both back different types of exercise. In a muscles was significantly lower group of healthy subjects (n=77) and in chronic low back pain patients patients with sub-acute (n=24) and (P=0.017 and 0.003 for the MF and chronic (51) low back pain, the nor- ICLT, respectively) than in healthy malised electromyographic (EMG) controls. Pain, pain avoidance and activity of the MF and the ICLT (as deconditioning may have contributed a percentage of maximal voluntary to these lower levels of EMG activ- contraction) were analysed during ity during intensive back muscle coordination, stabilisation and contraction.
    [Show full text]
  • Lumbar Muscle Function and Dysfunction in Low Back Pain - Markku Kankaanpää
    PHYSIOLOGY AND MAINTENANCE – Vol. IV - Lumbar Muscle Function and Dysfunction in Low Back Pain - Markku Kankaanpää LUMBAR MUSCLE FUNCTION AND DYSFUNCTION IN LOW BACK PAIN Markku Kankaanpää Department of Physical Medicine and Rehabilitation, Kuopio University Hospital, and Department of Physiology, University of Kuopio, Finland Keywords: Low back pain, trunk muscles, muscle coordination, dysfunction, biomechanics, deconditioning syndrome. Contents 1. Anatomy and Function of the Trunk Extensor and Flexor Muscles 1.1. Functional Properties of Lumbar Spine 1.2. Anatomy of Lumbar and Abdominal Muscles 1.3. Control Properties of Lumbar and Abdominal Muscles 2. Epidemiological Aspects of LBP 2.1. Physical Risk Factors of LBP 3. Structural and Pathophysiological Aspects in LBP 4. Lumbar Muscle Dysfunction in LBP 4.1. Loss of Strength 4.2. Excessive Lumbar Muscle Fatigue 4.3. Loss of Co-ordination and Muscle Control 4.4. Active Rehabilitation and Back Extensor Muscle Functional Assessment Glossary Bibliography Biographical Sketch Summary Low back pain is one of the most common health problems. The reason for back pain is most often unknown. Some of the models that help in explaining the origin of low back pain are introduced. The lumbar structure and muscle functions and dysfunctions in relation to low back pain are reviewed. Complex central and peripheral elements control the biomechanics of the lumbar spine and ensure optimal spinal loading in normal everyday life situations.UNESCO Low back pain leads to acute – and EOLSS chronic changes in paraspinal muscles and their control mechanisms. Acute changes are observed as impaired reflexive functions of paraspinal muscles. Pain in spinal structures results from reflexive activities that protect the spine from excessiveSAMPLE and harmful loading.
    [Show full text]
  • EMG Analysis of Latissimus Dorsi, Erector Spinae and Middle Trapezius Muscle Activity During Spinal Rotation: a Pilot Study Jamie Flint University of North Dakota
    University of North Dakota UND Scholarly Commons Physical Therapy Scholarly Projects Department of Physical Therapy 2015 EMG Analysis of Latissimus Dorsi, Erector Spinae and Middle Trapezius Muscle Activity during Spinal Rotation: A Pilot Study Jamie Flint University of North Dakota Toni Linneman University of North Dakota Rachel Pederson University of North Dakota Megan Storstad University of North Dakota Follow this and additional works at: https://commons.und.edu/pt-grad Part of the Physical Therapy Commons Recommended Citation Flint, Jamie; Linneman, Toni; Pederson, Rachel; and Storstad, Megan, "EMG Analysis of Latissimus Dorsi, Erector Spinae and Middle Trapezius Muscle Activity during Spinal Rotation: A Pilot Study" (2015). Physical Therapy Scholarly Projects. 571. https://commons.und.edu/pt-grad/571 This Scholarly Project is brought to you for free and open access by the Department of Physical Therapy at UND Scholarly Commons. It has been accepted for inclusion in Physical Therapy Scholarly Projects by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. ------- ---- ------------------------------- EMG ANALYSIS OF LATISSIMUS DORSI, ERECTOR SPINAE AND MIDDLE TRAPEZIUS MUSCLE ACTIVITY DURING SPINAL ROTATION: A PILOT STUDY by Jamie Flint, SPT Toni Linneman, SPT Rachel Pederson, SPT Megan Storstad, SPT Bachelor of Science in Physical Education, Exercise Science and Wellness University of North Dakota, 2013 A Scholarly Project Submitted to the Graduate Faculty of the
    [Show full text]
  • Evaluation of Epaxial Muscle Structure in Dogs with Spinal Disease
    Department of Equine and Small Animal Medicine Faculty of Veterinary Medicine University of Helsinki Finland EVALUATION OF EPAXIAL MUSCLE STRUCTURE IN DOGS WITH SPINAL DISEASE Anna Boström ACADEMIC DISSERTATION To be presented, with the permission of the Faculty of Veterinary Medicine of the University of Helsinki, for public examination in Lecture Room XIV, University Main Building, on 23rd of November 2018, at 12 noon. Helsinki 2018 Published in Dissertationes Scholae Doctoralis Ad Sanitatem Investigandam Universitatis Helsinkiensis ISSN 2342-3161 (print) ISSN 2342-317X (online) ISBN 978-951-51-4624-3 (paperback) ISBN 978-951-51-4625-0 (PDF) Cover picture, the Dachshund Harmi Armi by Vesa-Ville Välimäki Unigrafia Oy Helsinki 2018 To my boys Director of studies Professor Outi Vapaavuori Department of Equine and Small Animal medicine Faculty of Veterinary Medicine University of Helsinki, Finland Supervisors Professor Outi Vapaavuori Department of Equine and Small Animal medicine Faculty of Veterinary Medicine University of Helsinki, Finland Docent Anna Hielm-Björkman Department of Equine and Small Animal medicine Faculty of Veterinary Medicine University of Helsinki, Finland Professor Lieven Danneels Department of Rehabilitation Sciences and Physiotherapy University of Ghent, Belgium Reviewers Professor Paul Hodges School of Health and Rehabilitation Sciences University of Queensland, Australia Luisa DeRisio, DVM, PhD, DipECVN, FRCVS, RCVS Neurology and Neurosurgery unit Animal Health Trust, UK Opponent Professor Catherine McGowan Institute of Ageing and Chronic Disease University of Liverpool, UK Abstract Epaxial muscle atrophy, decreased cross-sectional area (CSA) and increased fat infiltration has been found in dogs with spinal pathology. However, methods to quantify muscle structure have not been validated, and breed differences in the epaxial muscle architecture of dogs have not been considered in relation to spinal pathology.
    [Show full text]
  • The Relationship Between the Angle of Curvature of the Spine and SEMG Amplitude of the Erector Spinae in Young School-Children
    applied sciences Article The Relationship between the Angle of Curvature of the Spine and SEMG Amplitude of the Erector Spinae in Young School-Children Jacek Wilczy ´nski* , Przemysław Karolak, Sylwia Janecka, Magdalena Kabała and Natalia Habik-Tatarowska Department Posturology, Hearing and Balance Rehabilitation, Institute of Physiotherapy, Faculty of Medicine and Health Sciences, Jan Kochanowski University in Kielce, Al. IX Wieków Kielc 19, 25-317 Kielce, Poland * Correspondence: [email protected] Received: 11 July 2019; Accepted: 29 July 2019; Published: 1 August 2019 Abstract: The aim of the study was to analyze the relationship between the angle of spinal curvature and surface electromyography (SEMG) amplitude of the erector spinae in young school-children. A total of 251 children aged 7–8 participated in the study. The analysis involved 103 (41%) children with scoliosis, 141 (56.17%) with scoliotic posture, and seven (3.0%) with normal posture. Body posture was evaluated using the Diers formetric III 4D optoelectronic method. Analysis of SEMG amplitude of the erector spinae was performed with the Noraxon TeleMyo DTS apparatus. A significant correlation was found between the angle of spinal curvature and the SEMG amplitude of the erector spinae. The most important and statistically significant predictor of the SEMG amplitude and scoliosis angle in the scoliosis group was the standing position, chest segment, right side. The largest generalized SEMG amplitude of the erector spinae occurred in both boys and girls with scoliosis. Impaired balance of muscle tension in the erector spinae can trigger a set of changes that create a clinical and anatomopathological image of spinal curvature.
    [Show full text]