Evidence for Phase Formation in Potassium Intercalated 1, 2; 8, 9-Dibenzopentacene

Total Page:16

File Type:pdf, Size:1020Kb

Evidence for Phase Formation in Potassium Intercalated 1, 2; 8, 9-Dibenzopentacene Evidence for phase formation in potassium intercalated 1,2;8,9-dibenzopentacene Friedrich Roth,1 Andreas K¨onig,1 Benjamin Mahns,1 Bernd B¨uchner,1 and Martin Knupfer1 1IFW Dresden, P.O. Box 270116, D-01171 Dresden, Germany (Dated: June 30, 2021) We have prepared potassium intercalated 1,2;8,9-dibenzopentacene films under vacuum condi- tions. The evolution of the electronic excitation spectra upon potassium addition as measured using electron energy-loss spectroscopy clearly indicate the formation of particular doped phases with compositions Kxdibenzopentacene (x = 1,2,3). Moreover, the stability of these phases as a function of temperature has been explored. Finally, the electronic excitation spectra also give insight into the electronic ground state of the potassium doped 1,2;8,9-dibenzopentacene films. I. INTRODUCTION Apart from the introduction of charge carriers, the ad- dition of potassium to dibenzopentacene can also lead to Molecular crystals|built from π conjugated mole- stable phases with particular stoichiometries. A very im- cules|are in the focus of research for a number of rea- portant prerequisite for detailed studies as well as the un- sons. Within this class of materials, almost every ground derstanding of physical properties is the knowledge about state can be realized at will, spanning from insulators such phases and their existence and stability regions. For to semiconductors, metals, superconductors or magnets. instance, the physical properties and the conclusive anal- Due to their relatively open crystal structure their elec- ysis of experimental data of alkali metal fullerenes have been demonstrated to be strongly dependent on the ex- tronic properties can be easily tuned by the addition 4,6,7,17{25 of electron acceptors and donors. In some cases, this isting phases and their characterization . resulted in intriguing and unexpected physical proper- In this contribution we report on an investigation of ties. For instance, carbon based superconductors have a the structural and electronic properties of potassium long history dating back to 1965, when superconductivity doped dibenzopentacene using electron energy-loss spec- was found in alkali-metal doped graphite, with transition troscopy (EELS) in transmission. EELS studies of other 1 undoped and doped molecular materials in the past temperatures of Tc < 1 . Recently, the Tc was increased up to 11.5 K for calcium intercalated graphite2. have provided useful insight into their electronic proper- ties26{28. We discuss the changes that are induced in the However, more than 25 years later the discovery electronic excitation spectrum as a function of doping, of a superconducting phase in the alkali metal doped and we provide clear evidence for the formation of three fullerides3,4 represented a breakthrough in the field of doped phases with K C H ,K C H and K C H superconductivity and attracted a lot of attention, also 1 30 18 2 30 18 3 30 18 composition. Moreover, temperature dependent investi- because of rather high transition temperatures up to gations also allowed first insight into the stability regions 40 K5{8. In this context, further interesting phenomena of those phases, and the electronic excitation spectra sug- were observed in alkali metal doped molecular materials gest insulating as well as metallic ground states. such as the observation of an insulator-metal-insulator transition in alkali doped phthalocyanines9, a transition from a Luttinger to a Fermi liquid in potassium doped carbon nanotubes10, or the formation of a Mott state in II. EXPERIMENTAL potassium intercalated pentacene11. In the case of organic superconductors, transition tem- 1,2;8,9-dibenzopentacene (C30H18) is a molecule peratures similar to those of the fullerides could not be formed by seven benzene rings as depicted in Fig. 1. It observed in other molecular crystals until 2010, when looks like a pentacene molecule with one snapped off ben- superconductivity has been reported for another alkali zene ring on both ends. Up to now, no details of the metal doped molecular solid, K-picene, with a Tc up crystal structure are published. to 18 K12. Furthermore, after this discovery supercon- Thin films of dibenzopentacene (BGB Analytik AG, 4461 arXiv:1206.0526v1 [cond-mat.supr-con] 4 Jun 2012 ductivity was also reported in other alkali metal inter- Boeckten, Switzerland) were prepared by thermal evap- calated polycyclic aromatic hydrocarbons, such as K- oration under high vacuum conditions (base pressure 13,14 15 −8 phenanthrene (Tc = 5 K) , K-coronene (Tc = 15 K) lower than 10 mbar) onto single crystalline KBr sub- 16 and K-(1,2;8,9-dibenzopentacene) (Tc = 33 K) . Espe- strates kept at room temperature with a deposition rate cially in the latter case, the Tc is higher than in any other of 0.3 nm/min and an evaporation temperature of about organic superconductor besides the alkali-metal doped 530 K. The film thickness was about 100 nm. These di- fullerides. Now, a thorough investigation of the physical benzopentacene films were floated off in destilled water, properties of 1,2;8,9-dibenzopentacene in the undoped as mounted onto standard electron microscopy grids and well as in the doped state is required in order to de- transferred into the spectrometer. Prior to the EELS velop an understanding of the superconducting and nor- measurements the films were characterized in situ using mal state properties. electron diffraction. The diffraction spectra show no sig- 2 III. RESULTS AND DISCUSSION KxC30H18 x = 0 x = 1 x = 2 x = 3 Intensity (arb. units) FIG. 1. Schematic representation of the molecular structure of 1,2;8,9-dibenzopentacene (C30H18). 275 280 285 290 295 300 305 nificant pronounced texture which leads to the conclusion Energy (eV) that our films are essentially polycrystalline. All measurements were carried out using the 172 keV FIG. 2. C 1s and K 2p core level excitations of Kx(1,2;8,9- spectrometer described in detail elsewhere29. We note dibenzopentacene) for x = 0,1,2,3. that at this high primary beam energy only singlet exci- tations are possible. The energy and momentum resolu- The amount of potassium in our doped dibenzopenta- tion were chosen to be 85 meV and 0.03 A˚−1, respectively. cene films was determined using core level excitation We have measured the loss function Im[-1/(q;!)] for a spectra. In Fig. 2 we show C 1s and K 2p core level exci- momentum transfer q parallel to the film surface, which tations of undoped and potassium doped dibenzopenta- probes the electronic excitations of the films [(q;!) is cene. These data can be used to analyze the doping in- the dielectric function]. In addition, the C 1s and K 2p duced changes of the potassium doped films. Moreover, core level excitations were measured with an energy res- the C 1s excitations represent transitions into empty olution of about 200 meV and a momentum resolution C 2p-derived levels, and thus allow to probe the projected of 0.03 A.˚ In order to obtain a direction independent unoccupied electronic density of states of carbon-based core level excitation information, we have determined the materials31{34. All spectra were normalized at the step- core level data for three different momentum directions like structure in the region between 291 eV and 293 eV, such that the sum of these spectra represent an aver- i. e. to the σ∗ derived intensity, which is proportional to aged polycrystalline sample30. The core excitation spec- the number of carbon atoms. For the undoped case (red tra have been corrected for a linear background, which line), we can clearly identify a sharp and strong feature has been determined by a linear fit of the data 10 eV in the range between 283 - 286 eV, which can be assigned below the excitation threshold. Since molecular crys- to transitions into π∗ states representing the unoccupied tals often are damaged by fast electrons, we repeatedly electronic states. The step-like structure above 291 eV checked our samples for any sign of degradation. In par- corresponds to the onset of transitions into σ∗-derived ticular, degradation was followed by watching an increas- unoccupied levels. ing amorphous-like background in the electron diffrac- By doping the sample with potassium the spectrum is tion spectra and a broadening of the spectral features still dominated by a sharp excitation feature right after in the loss function. It turned out that under our mea- the excitation onset at 283 eV and, in addition, by K 2p surement conditions the spectra remained unchanged for core excitations, which can be observed at 297.2 eV and about 14 h at 20 K and 8 h at room temperature. Samples 299.8 eV, and which can be seen as a first evidence of the that showed any signature of degradation were not con- successful doping of the sample. Importantly, a reduction sidered further but replaced by newly prepared thin films. of the spectral weight of the first C 1s excitation feature The results from the different films have been shown to is observed in Fig. 2 upon doping, which can be seen as a be reproducible. further signal of succesfully doping because it represents Potassium was added in several steps by evapora- the filling of the conduction band. tion from a commercial SAES (SAES GETTERS S.p.A., The stoichiometry analysis can be substantiated by Italy) getter source under ultra-high vacuum conditions comparing the K 2p and C 1s core excitation intensities (base pressure lower than 10−10 mbar). In each doping in comparison to other doped molecular films with well 35 step, the sample was exposed to potassium for several known stoichiometry, such as K6C60 . Details of this minutes, the current through the SAES getter source was procedure can be found in previous publications31,36.
Recommended publications
  • Chapter 16 Liquid and Solids
    Homework #2 Chapter 16 Liquid and Solids 7. Vapor Pressure: The pressure exerted by the vapor of a liquid when the vapor and the liquid are in dynamic equilibrium. The vapor pressure reflects the fact that within a system there is a distribution of energies that molecules can have, therefore, some molecules will have enough energy to overcome the intermolecular forces and enter into the gas phase. All liquids have some vapor pressure. The stronger the intermolecular forces the smaller the vapor pressure. All solids also have a vapor pressure. This is why if you leave ice in the freezer for a long time it “disappears.” The vapor pressure of solids is less than the vapor pressure of liquids. As the temperature increases the molecules have more energy, therefore, more molecules can escape into the gas phase (vapor pressure increases). When the vapor pressure is equal to the atmospheric pressure the solution boils. 9. a) Surface Tension As the intermolecular forces increase (↑), surface tension increases (↑). b) Viscosity As the intermolecular forces increase (↑), the viscosity increases (↑). c) Melting Point As the intermolecular forces increase (↑), the melting point increases (↑). d) Boiling Point As the intermolecular forces increase (↑), the boiling point increases (↑). e) Vapor Pressure As the intermolecular forces increase (↑), the vapor pressure decreases (↓). 11. Intermolecular Forces: The forces of attraction/repulsion between molecules. Intramolecular Forces: The forces of attraction/repulsion within a molecule. Intramolecular forces are stronger the intermolecular forces. Types of intermolecular forces: Dipole-Dipole Forces: The interaction between two electric dipoles in different molecules. Hydrogen Bonding: The attraction between a hydrogen atom (that is bonded to an O, N, or F atom) and an O, N, or F atom in a neighboring molecule.
    [Show full text]
  • Agenda Jan 21, 2020 Return Notes Pages - a Couple of Things I Noticed
    Agenda Jan 21, 2020 Return Notes pages - a couple of things I noticed Quick Check using your 13.3 notes Return notes - and I noticed a couple of areas I need to give you some additional insights. Kinetic Molecular Theory (for gases) The kinetic molecular theory is able to explain the behavior of most gases using the ideas that gas particles are very small, very far apart, moving quickly, colliding with each other and the walls of a container and that the higher the temperature the faster the particles are moving and the greater their average kinetic energy. In liquids the particles are still moving, but there are significant attractions in between molecules that hold them closer together in the flowing liquid phase. (intermolecular attractions) Intermolecular forces in liquids can result in properties like Viscosity - which is a measure of the resistance of a liquid to flow. It is determined by the type and strength of intermolecular forces in the liquid, the shape of the particles and temperature. As temperature increases the particles can flow more easily as they move more quickly, so the viscosity of the liquid decreases. Intermolecular forces in liquids can result in properties like Viscosity - which is a measure of the resistance of a liquid to flow. It is determined by the type and strength of intermolecular forces in the liquid, the shape of the particles and temperature. As temperature decreases the particles slow down and so the resistance to flow increases, in other words the viscosity increases. Intermolecular forces in liquids can result in properties like Surface tension and capillary action - which we will observe more closely after the Quick Check questions.
    [Show full text]
  • 13 Intermolecular Forces, Liquids, and Solids
    13Intermolecular Forces, Liquids, and Solids The four types of solids Intermolecular Forces of Attraction • Ch 12 was all about gases… particles that don’t attract each other. Intermolecular Forces of Attraction • Ch 13 is about liquids and solids… where the attraction between particles allows the formation of solids and liquids. Intermolecular Forces of Attraction • These attractions are called “intermolcular forces of attractions” or IMF’s for short. • Intermolcular forces vs intramolecular forces Four Solids – Overview • Molecular Solids (particles with IMF’s) • Metals (metallic bonding) • Ionic Solids (ionic bonding) • Covalent Network Solids (covalent bonding) Molecular Solids • Molecules or noble gases (individual particles) Molecular Solid Examples • H O 2 • C2H5OH • CO2 • C6H12O6 • CH 4 • The alkanes, alkenes, etc. • NH 3 • The diatomic molecules • NO 2 • The noble gases • CO • C2H6 Metals • A lattice of positive ions in a “sea of electrons” • Metal atoms have low electronegativity Metal Examples • Pb • Brass (Cu + Zn) • Ag • Bronze (Cu + Sn) • Au • Stainless Steel (Fe/Cr/C) • Cu • Zn • Fe Ionic Solids • A lattice of positive and negative ions Ionic Solid Examples • NaCl • CaCl2 • KCl • MgSO4 • KI • Fe2O3 • FeCl3 • AgNO3 • CaCO3 • + ion & - ion Covalent Network Solids • Crystal held together with covalent bonds Covalent Network Solid Examples • C(diamond) • C(graphite) • SiO2 (quartz, sand, glass) • SiC • Si • WC • BN Properties of Metals Metals are good conductors of heat and electricity. They are shiny and lustrous. Metals can be pounded into thin sheets (malleable) and drawn into wires (ductile). Metals do not hold onto their valence electrons very well. They have low electronegativity. Properties of Ionic Solids • Brittle • High MP & BP • Dissolves in H2O • Conducts as (l), (aq), (g) Electrical Conductivity Intermolecular Forces (IMFs) • Each intermolecular force involves + and – attractions.
    [Show full text]
  • Molecules to Materials 1
    SERIES I ARTICLE Molecules to Materials 1. An Overview of Functional Molecular Solids T P Radhakrishnan With the advent of modern physics and chemistry, T P Radhakrishnan is in the School of Chemistry, fundamentally new types of materials have been created in Central University of this century. Various types of forces operating in different Hyderabad, classes of solids are exploited in the design of molecular Hyderabad 500 046. materials. A variety of fabrication techniques have been developed to make materials with the desired properties. An overview of these aspects is provided in this article. Historical Perspective The kinds of materials that have been developed and used over the course of history serve as excellent indicators of the evolution of technology, and civilisation at large. For instance, the early growth of civilisation has been described in terms of the stone, copper, bronze and iron ages. The earliest materials were those which were readily available in nature, like stone, clay and wood and the technology consisted' in reshaping and restructuring physically these materials to suit specific purposes such as weaponry and utensils. The most intricate process at this stage perhaps involved the fabrication of ceramics such as porcelain by baking clays, a practice that Discovery of dates back to the eighth millennium Be. Discovery of procedures for procedures for extraction of metals from their ores and extraction of fabrication of alloys was a major revolution in the history of metals from their materials. Here was a case of complete transformation of the ores and physical and chemical properties of a material. Equally fabrication of alloys fantastic was the discovery of glass-making, a process in was a major which the optical properties of the starting substance, sand, revolution in the are completely and drastically modified.
    [Show full text]
  • Spiral Chain O4 Form of Dense Oxygen, Proc
    This is a pre-print version of the following article: Li Zhu et al, Spiral chain O4 form of dense oxygen, Proc. Natl. Acad. Sci. U.S.A. (2011), doi: 10.1073/pnas.1119375109, which has been published online at http://www.pnas.org/content/early/2011/12/27/1119375109 Spiral Chain O4 Form of Dense Oxygen Li Zhua, Ziwei Wanga, Yanchao Wanga, Yanming Maa,*, Guangtian Zoua, and Ho-kwang Maob,* aState Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China; and bGeophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015 Oxygen is in many ways a unique element: the only known diatomic molecular magnet and the stabilization of the hitherto unexpected O8 cluster structure in its solid form at high pressure. Molecular dissociations upon compression as one of the fundamental problems were reported for other diatomic solids (e.g., H2, I2, Br2, and N2), but it remains elusive for molecular oxygen, making oxygen an intractable system. We here report the direct prediction on the dissociation of molecular oxygen into a polymeric spiral chain O4 structure (space group I41/acd, -O4) under terapascal (TPa) pressure by using first-principles method on crystal structure prediction. The -O4 stabilizes at above 1.92 TPa and has been earlier observed as the high pressure phase III of sulfur. We find that the molecular O8 phase remains extremely stable in a large pressure range of 0.008 – 1.92 TPa, whose breakdown is driven by the pressure-induced softening of a transverse acoustic phonon mode at the zone boundary V point, leading to the ultimate formation of -O4.
    [Show full text]
  • Chemistry 11 Ap – Bonding and Properties of Solids Worksheet
    CHEMISTRY 11 AP – BONDING AND PROPERTIES OF SOLIDS WORKSHEET 1) Complete the following flowchart by filling in the boxes: Ionic/Covalent Metallic Ionic Network Covalent Covalent Molecular 2) Identify the type of solid shown by each of the following diagrams. Explain the types of particles and bonding represented by the diagram. (a) (c) Ionic solid since the particles are positive and Covalent molecular solid since the particles are negative ions that are held together by molecules that are held together by weak electrostatic attraction between oppositely intermolecular forces. charged particles. (b) (d) Network covalent solid since the particles are Metallic solids since the particles are positive atoms which are covalently bonded to each other ions and delocalized electrons. The metal is held forming an extremely large lattice structure. together by the attraction between the positive ions and the negative delocalized electrons. 3) Classify Ge, RbI, C6(CH3)6 and Zn according to their type of solid and arrange them in order of increasing melting point. Explain. Germanium is located on the periodic table just under silicon, along the diagonal line of metalloids, which suggests that elemental Ge is likely to have the same structure as Si (a tetrahedral diamond structure). Therefore Ge is probably a network covalent solid and would have an incredibly high melting point. RbI is an ionic solid and would have a high melting point. C6(CH3)6 is a combination of non-metals forming a covalent molecular solid which will form isolated molecules with weak intermolecular forces between them. Therefore C6(CH3)6 will have a low melting point due to the ease with which these weak IMFs can be broken.
    [Show full text]
  • Types of Solids
    TYPES OF SOLIDS By A.Prasannambigai Department of Chemistry SCSVMV OBJECTIVES Describe the general properties of a solid. Describe the six different types of solids. The goal is for the students to explore solid materials and to understand this state of matter. A variety of different objects will be used to demonstrate the properties of solids. Introduction: Solid-state is nothing but one of the states of matter. The matter exists in three states – solid, liquid and gas. The liquid and gas are fluids because of their ability to flow. The fluidity in both of these states is due to facts that the molecules are free to move. The free mobility of the molecule is due to weak intermolecular forces. The constituents particles in solids have fixed positions and can only oscillate about their mean positions. This explain the rigidity in solids. It is due to strong intermolecular forces. A solids may be defined as a form of matter in which the ions, atoms or molecules are held strongly that they cannot easily move away from each other. Hence solids is rigid form of matter which has a definite shape and a definite volume. General Characteristics of Solids i. Solids have definite mass, volume, shape and density. Usually, the density of solid state is greater than the density of liquid and gaseous state. Water and mercury are exceptions. The density of ice (solid state of water) is lower than the density of liquid state of water. The density of mercury (which exists in liquid state) is very high (13.6 g mL-1 ).
    [Show full text]
  • A Combined Experimental and Computational Study of the Pressure Dependence of the Vibrational Spectrum of Solid Picene C22H14
    A combined experimental and computational study of the pressure dependence of the vibrational spectrum of solid picene C22H14 F. Capitani,1 M. H¨oppner,2 B. Joseph,1 L. Malavasi,3 G.A. Artioli,3 L. Baldassarre,4 A. Perucchi,5 M. Piccinini,6, ∗ S. Lupi,7 P. Dore,8 L. Boeri,2, 9 and P. Postorino7, y 1Dipartimento di Fisica, Universit`a di Roma Sapienza, P.le Aldo Moro 2, 00185 Roma, Italy 2Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569, Stuttgart, Germany 3Dipartimento di Chimica, Universit`adi Pavia, Via Taramelli 16, 27100 Pavia, Italy 4Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Roma, Italy 5Sincrotrone Trieste, S.C.p.A., Area Science Park, I-34012, Basovizza, Trieste, Italy 6Porto Conte Ricerche S.r.l., SP 55 km 8.400 Loc. Tramariglio, 07041 Alghero (SS), Italy 7CNR-IOM and Dipartimento di Fisica, Universit`adi Roma Sapienza, P.le Aldo Moro 2, 00185 Roma, Italy 8CNR-SPIN and Dipartimento di Fisica, Universit`a di Roma Sapienza, P.le Aldo Moro 2, 00185 Roma, Italy 9Institute of Theoretical and Computational Physics, TU Graz, Petersgasse 16, 8010, Graz, Austria (Dated: October 14, 2013) We present high-quality optical data and density functional perturbation theory calculations for the vibrational spectrum of solid picene (C22H14) under pressure up to 8 GPa. First-principles calcu- lations reproduce with a remarkable accuracy the pressure effects on both frequency and intensities of the observed phonon peaks. We use the projection on molecular eigenmodes to unambiguously fit the experimental spectra, resolving complicated spectral structures, in a system with hundreds of phonon modes.
    [Show full text]
  • Molecules in the Solid State
    based processing methods that introduce substantial economic advantages as well as prospects for fabricating devices with Molecules in the unusual (e.g., nonplanar) geometries. History and Development of Molecular Materials Solid State The articles contained in this issue of MRS Bulletin address materials that derive their properties from molecules in the solid Bruce M. Foxman and Michael D. Ward, state. The recognition that molecules play a role in solid-state properties can be traced to Guest Editors some key historical benchmarks beginning in the latter part of the 19th century, a signif- icant period for both the history and devel- Abstract opment of molecular materials. In 1848, The design and synthesis of solid-state materials constructed from molecules has Pasteur performed the first resolution of a emerged as an important frontier of materials research. Molecular materials promise chiral compound by physically separating an unparalleled opportunity for systematic manipulation of solid-state properties and crystals of sodium ammonium tartrate into functions by using molecular design principles and capitalizing on the versatility of left- and right-handed forms (a molecule is organic synthesis. Furthermore, the use of molecular components may produce chiral if it cannot be superimposed on its considerable economic benefits, whether by reducing fabrication cost or through mirror image; the two forms are enan- increases in performance. The articles in this issue of MRS Bulletin cover recent tiomers). Pasteur brilliantly observed that discoveries and developments based on materials with properties and functions that the crystals were different: the right- and hinge on the characteristics of their molecular constituents. These materials promise left-handed forms were enantiomers and could not be superimposed, and thus were significant advances in several technologies of substantial commercial interest, chiral.
    [Show full text]
  • Evaluation of Non-Covalent Interaction Models in Molecular Crystals Using Terahertz Spectroscopy
    Syracuse University SURFACE Dissertations - ALL SURFACE December 2014 Evaluation of Non-Covalent Interaction Models in Molecular Crystals Using Terahertz Spectroscopy Thomas Juliano Syracuse University Follow this and additional works at: https://surface.syr.edu/etd Part of the Physical Sciences and Mathematics Commons Recommended Citation Juliano, Thomas, "Evaluation of Non-Covalent Interaction Models in Molecular Crystals Using Terahertz Spectroscopy" (2014). Dissertations - ALL. 168. https://surface.syr.edu/etd/168 This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact [email protected]. Abstract Density functional theory (DFT) is a powerful tool that can be used to evaluate the low- frequency vibrational spectra of solid-state crystalline materials. Since THz spectroscopy is sensitive to both the intermolecular and intramolecular forces that govern the formation of crystalline materials, it is an ideal tool to investigate the accuracy of calculated DFT crystal structures and their vibrational spectra. When using solid-state DFT, non-covalent dispersion interactions are not fully treated in typical approaches. In order to account for these interactions, the addition of dispersion force correction terms are necessary. A number of methods exist to correct for this deficiency of DFT, and this work investigates the use of semi-empirical London dispersion force correction models. Through the investigation of several small organic molecules, amino acids and related compounds, the standard implementation (referred to as DFT-D) is examined, and the need to alter this standard approach has been identified.
    [Show full text]
  • Calculations Predict a Stable Molecular Crystal of N
    ARTICLES PUBLISHED ONLINE: 15 DECEMBER 2013 | DOI: 10.1038/NCHEM.1818 Calculations predict a stable molecular crystal of N8 Barak Hirshberg1,R.BennyGerber1,2* and Anna I. Krylov3 Nitrogen, one of the most abundant elements in nature, forms the highly stable N2 molecule in its elemental state. In contrast, polynitrogen compounds comprising only nitrogen atoms are rare, and no molecular crystal made of these compounds has been prepared. Here, we predict the existence of such a molecular solid, consisting of N8 molecules, that is metastable even at ambient pressure. In the solid state, the N8 monomers retain the same structure and bonding pattern as those they adopt in the gas phase. The interactions that bind N8 molecules together are weak van der Waals and electrostatic forces. The solid is, according to calculations, more stable than a previously reported polymeric nitrogen solid, including at low pressure (below 20 GPa). The structure and properties of the N8 molecular crystal are discussed and a possible preparation strategy is suggested. itrogen is one of the most abundant elements on Earth, Supplementary Fig. 1. A non-polymeric, molecular phase of nitrogen constituting 78% of the atmosphere in its elemental form consisting of a mixture of planar N6 and N2 has been considered 15 N(diatomic gas N2). Under cryogenic conditions it exists in theoretically . At pressures around 60 GPa, a barrierless trans- E the solid state as a crystalline solid in which N2 molecules, which formation of -N2 into a hybrid N6/N2 structure, in which the two feature a very strong intramolecular triple bond (225 kcal mol21), molecules appear in the unit cell, has been observed in calculations.
    [Show full text]
  • Properties of Molecular Solids
    Properties Of Molecular Solids husbandsWhen Waldemar that choking spellbind magnetise his welders spellingly interferes and degaussnot momentarily fatalistically. enough, Cyclical is Sascha Eberhard stooping? depersonalises Crassulaceous harassedly. Steffen It is an fcc array of as ideal gas decreases as elastic behaviour of molecular properties of solids Earn overtime by sharing your favorite books through our Affiliate program. The exchange of some physical properties is dependent claim the direction in it they are measured with respect to the nematic director. Gases whose properties of molecular crystalline in a positively charges. If your browser does very accept cookies, porous molecular crystals can be considered somewhat competitive with MOFs and COF in terms always available porosity. Crystal engineering for porous molecular solids is challenging because the intermolecular interactions are typically weaker and less directional than for extended frameworks, which measure various potential process benefits; for example, transfer of atoms or some combination thereof. These properties differ from one on page is, solar cells table salt, densities of four major difference of a covalent bonds are called metallic. Gas however be compressed much more sweat than a liquid in solid. Join free AP Statistics reviews and weekly livestream study sessions! This page might seem weird and broken. There was your error cancelling the draft. Have properties are molecular solid? Was a molecular solids and students learn what is conductors of electrons to weak nature and compare prices. Three polymorphs have been identified. Microscopic view of molecular solids include diamonds strength of. It work the suburb or presence of other intermolecular interactions based on the atom or molecule that affords materials unique properties.
    [Show full text]