Complete Sporogony of Plasmodium Relictum (Lineage Pgrw4) in Mosquitoes Culex Pipiens Pipiens, with Implications on Avian Malaria Epidemiology

Total Page:16

File Type:pdf, Size:1020Kb

Complete Sporogony of Plasmodium Relictum (Lineage Pgrw4) in Mosquitoes Culex Pipiens Pipiens, with Implications on Avian Malaria Epidemiology Complete sporogony of Plasmodium relictum (lineage pGRW4) in mosquitoes Culex pipiens pipiens, with implications on avian malaria epidemiology Gediminas Valkiūnas, Rita Žiegytė, Vaidas Palinauskas, Rasa Bernotienė, Dovilė Bukauskaitė, Mikas Ilgūnas, Dimitar Dimitrov, et al. Parasitology Research Founded as Zeitschrift für Parasitenkunde ISSN 0932-0113 Volume 114 Number 8 Parasitol Res (2015) 114:3075-3085 DOI 10.1007/s00436-015-4510-3 1 23 Your article is protected by copyright and all rights are held exclusively by Springer- Verlag Berlin Heidelberg. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Parasitol Res (2015) 114:3075–3085 DOI 10.1007/s00436-015-4510-3 ORIGINAL PAPER Complete sporogony of Plasmodium relictum (lineage pGRW4) in mosquitoes Culex pipiens pipiens,withimplicationsonavian malaria epidemiology Gediminas Valkiūnas1 & Rita Žiegytė1 & Vaidas Palinauskas1 & Rasa Bernotienė1 & Dovilė Bukauskaitė1 & Mikas Ilgūnas1 & Dimitar Dimitrov1,2 & Tatjana A. Iezhova 1 Received: 22 April 2015 /Accepted: 29 April 2015 /Published online: 10 May 2015 # Springer-Verlag Berlin Heidelberg 2015 Abstract Plasmodium relictum (lineage pGRW4) causes ma- pGRW4 in mosquitoes was confirmed by PCR-based testing laria in birds and is actively transmitted in countries with warm of (1) the sporozoites present in salivary glands and (2) the single climates and also temperate regions of the New World. In Eu- oocysts, which were obtained by laser microdissection from rope, the lineage pGRW4 has been frequently reported in many infected mosquito midguts. This study shows that P. relictum species of Afrotropical migrants after their arrival from winter- (pGRW4) completes sporogony in C. p. pipiens at relatively low ing grounds, but is rare in European resident birds. Obstacles for temperatures. We conclude that there are no restrictions for transmission of this parasite in Europe have not been identified. spreadingthisbirdinfectioninEuropefromthepointofview Culex quinquefasciatus is an effective vector of pGRW4 malar- of vector availability and temperature necessary for sporogony. ia, but this mosquito is absent from temperate regions of Eurasia. Other factors should be considered and were discussed for the It remains unclear if the lineage pGRW4 completes sporogony explanation of rare reports of this malaria parasite in Europe. in European species of mosquitoes. Here we compare the spo- rogonic development of P. relictum (pGRW4) in experimentally Keywords Avian malaria . Plasmodium relictum . pGRW4 . infected mosquitoes Culex pipiens pipiens form molestus, Sporogony . Culex mosquitoes . Ochlerotatus cantans C. quinquefasciatus,andOchlerotatus cantans. The pGRW4 parasite was isolated from a garden warbler Sylvia borin, multi- plied, and used to infect laboratory-reared Culex spp. and wild- Introduction caught Ochlerotatus mosquitoes by allowing them to take blood meals on infected birds. The exposed females were maintained Plasmodium relictum (Haemosporida, Plasmodiidae) causes at a mean laboratory temperature of 19 °C, which ranged be- malaria in birds and is the first in frequency of the occurrence tween14°Catnightand24°Cduringdaytime.Theywere of avian malaria parasite reported from over 300 species of birds dissected on intervals to study the development of sporogonic at all continents, except the Antarctic (Garnham 1966;Valkiūnas stages. Only ookinetes developed in O. cantans; sporogonic 2005; Atkinson et al. 2008). Recent polymerase chain reaction development was abortive. The parasite completed sporogony (PCR)-based studies identified two P. relictum lineages, which in both Culex species, with similar patterns of development, and are particularly and widely distributed both by hosts and geo- sporozoites were reported in the salivary glands 16 days after graphically; these are pSGS1 and pGRW4 (Beadell et al. 2006; infection. The presence of sporogonic stages of the lineage Ejiri et al. 2009;Clarketal.2014; Perkins 2014). Both parasite lineages have been reported in birds all over the world, but areas of their transmission are different (Marzal et al. 2011). * Gediminas Valkiūnas The lineage pSGS1 of P. relictum is cosmopolitan in trans- [email protected] mission (Bensch et al. 2009; Marzal et al. 2015) probably be- cause numerous bird and mosquito species are susceptible to this 1 Nature Research Centre, Akademijos 2, LT-08412 Vilnius infection (Valkiūnas 2005;Atkinsonetal.2008). Culex pipiens 2100, Lithuania mosquitoes, which are distributed worldwide, are effective vec- 2 Institute of Biodiversity and Ecosystem Research, Bulgarian tors of this parasite (Vézilier et al. 2010; Kazlauskienė et al. Academy of Sciences, 2 Gagarin Street, 1113 Sofia, Bulgaria 2013), and the sporogony completes at a temperature of 12– Author's personal copy 3076 Parasitol Res (2015) 114:3075–3085 30 °C (Garnham 1966;Valkiūnas 2005; Žiegytė et al. 2014). Sciences on the Curonian Spit in the Baltic Sea (55° 09′ N, 20° That enables transmission of the pSGS1 parasite in countries 52′ E) in May–July, 2013 and 2014. Experimental procedures both with warm and cold climates, for example in northern Nor- of this study were approved by the International Research Co- way (Marzal et al. 2011). operation Agreement between the Biological Station Rybachy Opposite to the pSGS1 parasite, the lineage pGRW4 of of the Zoological Institute of the Russian Academy of Sci- P. relictum has been reported to be actively transmitted mainly ences and Institute of Ecology of Nature Research Centre in countries with warm climates (Ricklefs et al. 2004; Beadell (25-05-2010). All efforts were made to minimize handling et al. 2006;Benschetal.2009; Marzal et al. 2011; Loiseau et al. time and potential suffering of birds. None of the experimental 2012). Interestingly, there are numerous reports of the pGRW4 birds suffered apparent injury during the experiments. parasite in European migrants after their arrival from African Nine juvenile siskins Carduelis spinus were caught and used wintering grounds, where the birds gain malaria (Bensch et al. for experimental infection (three birds) and control (six birds). 2007;Hellgrenetal.2007; Beadell et al. 2009), but a few The controls were used to monitor the absence of natural trans- studies detected this infection in resident European birds (Ferrer mission in the laboratory. All birds were kept at quarantine in a et al. 2012; Ferraguti et al. 2013; Drovetski et al. 2014), sug- mosquito-free room approximately for a week (adaptation pe- gesting a lack of active transmission in Europe. Factors preclud- riod) before the experiments. Blood was taken from the birds ing transmission of the pGRW4 parasite in Europe remain un- by puncturing the brachial vein. About 30 μl of whole blood clear. Culex quinquefasciatus is an effective vector of this par- was taken in heparinized microcapillaries and stored in SET asite (Atkinson et al. 2008;LaPointeetal.2010; Freed and buffer (Hellgren et al. 2004)formolecularanalysis.Twoblood Cann 2013), but this insect is absent from temperate regions films were prepared from each bird immediately after with- of Europe where C. pipiens mosquitoes act as active vectors of drawal of the blood. They were air dried, fixed in absolute avian malaria (Vézilier et al. 2010;Kazlauskienė et al. 2013; methanol, and stained with Giemsa, as described by Valkiūnas Cornet et al. 2013). It remains unclear if the lineage pGRW4 et al. (2008). Bird blood was tested for parasites on days 2 and 7 can complete sporogony in C. pipiens and other widespread after their arrival at the laboratory. All birds were uninfected European mosquitoes and if that happens at relatively low tem- with blood parasites, as revealed by microscopic examination peratures. The Hawaiian strain of pGRW4 parasite completed of blood films and PCR-based detection methods (see below). sporogonic development in C. quinquefasciatus at constant lab- We used one P. relictum (pGRW4) strain, which was isolat- oratory and mean field temperatures between 17 and 30 °C, but ed from a naturally infected garden warbler Sylvia borin in development decreased significantly below 21 °C, with a min- May 2013. Parasitemia was light (<0.001 %) in this bird. To imum threshold temperature of 13 °C (LaPointe et al. 2010). multiply the strain, two juvenile siskins were exposed by intra- The main aim of this study was to compare sporogonic de- muscular inoculation of approximately 50 μl of blood from the velopment of P. re li ct um (pGRW4) in mosquitoes Culex pipiens donor bird, as described by Palinauskas et al. (2008). pipiens form molestus and C. quinquefasciatus at a temperature, Parasitemia developed in all infected siskins. These birds were which is close to the long-term mean air degrees reported in maintained in a mosquito-free aviary and were used as donors European temperate regions during the warmest months of the of gametocytes to infect mosquitoes in 2014, i.e., a year after
Recommended publications
  • Plasmodiidae Plasmodiidae N Macro and Microgametes Develop Separately from Each Other
    Plasmodiidae Plasmodiidae n Macro and microgametes develop separately from each other. n Zygote is active. n Schizogony stage occurs in vertebrate hosts, while sporogony stage occurs in invertebrate hosts (vector). n They form pigments in the host cells. n Plasmodium n Haemoproteus n Leucocytozoon Plasmodium n They develop as heteroxene. n Vector: Mosquitoes species belonging to Anopheles, Aedes, Culex genus of Culicidae family n In mammalians- Anopheles females n In birds - Culex, Aedes females n Syngamy and sporogony occur in the vectors. n Vertebrate hosts: Humans, mammalians, reptiles and birds. n Schizogony stage occurs in erythrocytes and endothelial cells of internal organs of the vertebrates, n While gametogony occurs in erythrocytes. Plasmodium n The species belonging to Plasmodium genus cause “malaria” disease. n This disease is highly important in humans and similar symptoms are seen in birds. n The disease caused by these species in monkeys and rodents is also called as “ague”. n Malaria is common in tropic and sub-tropic regions. n P. vivax is seen in Mediterranean and East Anatolia region of Turkey. Plasmodium species Human Monkey Birds P. falciparum P. knowlesi P. gallinaceum P. Malignant tertian cathemerium malaria P. vivax P. cynomolgi P. relictum Benign tertian malaria P. juxtanucleare P. malaria P. simium P. circumflexum P. Quartan malaria durae P. ovale P. coetreyi P. elongatum Ovale tertian malaria P. fallax In rodents: P. berghei n Example of life cycle, P. vivax n In vertebrates: An infected female Anopheles injects the sporozoites to humans during blood feeding. n Exo-erythrocytic schizogony: The protozoa firstly enter to parenchymal cells of liver and form the schizonts.
    [Show full text]
  • The Transcriptome of the Avian Malaria Parasite Plasmodium
    bioRxiv preprint doi: https://doi.org/10.1101/072454; this version posted August 31, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 The Transcriptome of the Avian Malaria Parasite 2 Plasmodium ashfordi Displays Host-Specific Gene 3 Expression 4 5 6 7 8 Running title 9 The Transcriptome of Plasmodium ashfordi 10 11 Authors 12 Elin Videvall1, Charlie K. Cornwallis1, Dag Ahrén1,3, Vaidas Palinauskas2, Gediminas Valkiūnas2, 13 Olof Hellgren1 14 15 Affiliation 16 1Department of Biology, Lund University, Lund, Sweden 17 2Institute of Ecology, Nature Research Centre, Vilnius, Lithuania 18 3National Bioinformatics Infrastructure Sweden (NBIS), Lund University, Lund, Sweden 19 20 Corresponding authors 21 Elin Videvall ([email protected]) 22 Olof Hellgren ([email protected]) 23 24 1 bioRxiv preprint doi: https://doi.org/10.1101/072454; this version posted August 31, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 25 Abstract 26 27 Malaria parasites (Plasmodium spp.) include some of the world’s most widespread and virulent 28 pathogens, infecting a wide array of vertebrates. Our knowledge of the molecular mechanisms these 29 parasites use to invade and exploit hosts other than mice and primates is, however, extremely limited. 30 How do Plasmodium adapt to individual hosts and to the immune response of hosts throughout an 31 infection? To better understand parasite plasticity, and identify genes that are conserved across the 32 phylogeny, it is imperative that we characterize transcriptome-wide gene expression from non-model 33 malaria parasites in multiple host individuals.
    [Show full text]
  • And Toxoplasmosis in Jackass Penguins in South Africa
    IMMUNOLOGICAL SURVEY OF BABESIOSIS (BABESIA PEIRCEI) AND TOXOPLASMOSIS IN JACKASS PENGUINS IN SOUTH AFRICA GRACZYK T.K.', B1~OSSY J.].", SA DERS M.L. ', D UBEY J.P.···, PLOS A .. ••• & STOSKOPF M. K .. •••• Sununary : ReSlIlIle: E x-I1V\c n oN l~ lIrIUSATION D'Ar\'"TIGENE DE B ;IB£,'lA PH/Re El EN ELISA ET simoNi,cATIVlTli t'OUR 7 bxo l'l.ASMA GONIJfI DE SI'I-IENICUS was extracted from nucleated erythrocytes Babesia peircei of IJEMIiNSUS EN ArRIQUE D U SUD naturally infected Jackass penguin (Spheniscus demersus) from South Africo (SA). Babesia peircei glycoprotein·enriched fractions Babesia peircei a ele extra it d 'erythrocytes nue/fies p,ovenanl de Sphenicus demersus originoires d 'Afrique du Sud infectes were obto ined by conca navalin A-Sepharose affinity column natulellement. Des fractions de Babesia peircei enrichies en chromatogrophy and separated by sod ium dodecyl sulphate­ glycoproleines onl ele oblenues par chromatographie sur colonne polyacrylam ide gel electrophoresis (SDS-PAGE ). At least d 'alfinite concona valine A-Sephorose et separees par 14 protein bonds (9, 11, 13, 20, 22, 23, 24, 43, 62, 90, electrophorese en gel de polyacrylamide-dodecylsuJfale de sodium 120, 204, and 205 kDa) were observed, with the major protein (SOS'PAGE) Q uotorze bandes proleiques au minimum ont ete at 25 kDa. Blood samples of 191 adult S. demersus were tes ted observees (9, 1 I, 13, 20, 22, 23, 24, 43, 62, 90, 120, 204, by enzyme-linked immunosorbent assoy (ELISA) utilizing B. peircei et 205 Wa), 10 proleine ma;eure elant de 25 Wo.
    [Show full text]
  • Reconstruction of the Evolutionary History of Haemosporida
    Parasitology International 65 (2016) 5–11 Contents lists available at ScienceDirect Parasitology International journal homepage: www.elsevier.com/locate/parint Reconstruction of the evolutionary history of Haemosporida (Apicomplexa) based on the cyt b gene with characterization of Haemocystidium in geckos (Squamata: Gekkota) from Oman João P. Maia a,b,c,⁎, D. James Harris a,b, Salvador Carranza c a CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, N° 7, 4485-661 Vairão, Vila do Conde, Portugal b Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre FC4 4169-007 Porto, Portugal c Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Maritím de la Barceloneta, 37-49, 08003 Barcelona, Spain article info abstract Article history: The order Haemosporida (Apicomplexa) includes many medically important parasites. Knowledge on the diver- Received 4 April 2015 sity and distribution of Haemosporida has increased in recent years, but remains less known in reptiles and their Received in revised form 7 September 2015 taxonomy is still uncertain. Further, estimates of evolutionary relationships of this order tend to change when Accepted 10 September 2015 new genes, taxa, outgroups or alternative methodologies are used. We inferred an updated phylogeny for the Available online 12 September 2015 Cytochrome b gene (cyt b) of Haemosporida and screened a total of 80 blood smears from 17 lizard species from Oman belonging to 11 genera. The inclusion of previously underrepresented genera resulted in an alterna- Keywords: Haemoproteus tive estimate of phylogeny for Haemosporida based on the cyt b gene.
    [Show full text]
  • Real-Time Dynamics of Plasmodium NDC80 Reveals Unusual Modes of Chromosome Segregation During Parasite Proliferation Mohammad Zeeshan1,*, Rajan Pandey1,*, David J
    © 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2021) 134, jcs245753. doi:10.1242/jcs.245753 RESEARCH ARTICLE SPECIAL ISSUE: CELL BIOLOGY OF HOST–PATHOGEN INTERACTIONS Real-time dynamics of Plasmodium NDC80 reveals unusual modes of chromosome segregation during parasite proliferation Mohammad Zeeshan1,*, Rajan Pandey1,*, David J. P. Ferguson2,3, Eelco C. Tromer4, Robert Markus1, Steven Abel5, Declan Brady1, Emilie Daniel1, Rebecca Limenitakis6, Andrew R. Bottrill7, Karine G. Le Roch5, Anthony A. Holder8, Ross F. Waller4, David S. Guttery9 and Rita Tewari1,‡ ABSTRACT eukaryotic organisms to proliferate, propagate and survive. During Eukaryotic cell proliferation requires chromosome replication and these processes, microtubular spindles form to facilitate an equal precise segregation to ensure daughter cells have identical genomic segregation of duplicated chromosomes to the spindle poles. copies. Species of the genus Plasmodium, the causative agents of Chromosome attachment to spindle microtubules (MTs) is malaria, display remarkable aspects of nuclear division throughout their mediated by kinetochores, which are large multiprotein complexes life cycle to meet some peculiar and unique challenges to DNA assembled on centromeres located at the constriction point of sister replication and chromosome segregation. The parasite undergoes chromatids (Cheeseman, 2014; McKinley and Cheeseman, 2016; atypical endomitosis and endoreduplication with an intact nuclear Musacchio and Desai, 2017; Vader and Musacchio, 2017). Each membrane and intranuclear mitotic spindle. To understand these diverse sister chromatid has its own kinetochore, oriented to facilitate modes of Plasmodium cell division, we have studied the behaviour movement to opposite poles of the spindle apparatus. During and composition of the outer kinetochore NDC80 complex, a key part of anaphase, the spindle elongates and the sister chromatids separate, the mitotic apparatus that attaches the centromere of chromosomes to resulting in segregation of the two genomes during telophase.
    [Show full text]
  • Identification of Hepatocystis Species in a Macaque Monkey in Northern
    Research and Reports in Tropical Medicine Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH Identification ofHepatocystis species in a macaque monkey in northern Myanmar Qiaocheng Chang1,* Background: Long-tailed and pig-tailed macaque monkeys are natural hosts of Plasmodium Xiaodong Sun2,* knowlesi, which has been identified as a fifth malaria parasite infecting humans. In this study, Jian Wang2,* we investigated possible infection by this Plasmodium parasite in macaque monkeys using a Jigang Yin1 combination of polymerase chain reaction amplification and sequencing. Junpeng Song1 Methods: Forty-five blood samples were obtained in 2010 from macaques in northern Myanmar Shuai Peng1 near Yunnan Province of China and investigated for possible infection with Plasmodium species using a nested polymerase chain reaction method for amplification of 18S SSU rRNA genes. Huijun Lu1 Results: Positive amplification was obtained from one monkey, and both sequence and phylo- Hongning Zhou2 genetic analysis indicated that the parasite was of the Hepatocystis species lineage. Ning Jiang1 For personal use only. Conclusion: The results suggest that a combination of polymerase chain reaction amplification 1,3 Qijun Chen and sequence identification would be necessary for detection ofPlasmodium knowlesi infection 1Key Laboratory of Zoonosis, Jilin in both humans and its natural hosts. 2 University, Changchun; Institute for Keywords: Plasmodium knowlesi, monkey, parasite, malaria Parasitic Disease Control of Yunnan Province, Puer City, Yunnan; 3Institute of Pathogen Biology, Chinese Academy Background of Medical Sciences, Beijing, China In recent years, a fifth Plasmodium species, ie, P. knowlesi, has been identified as *These authors contributed equally an invasive pathogen in humans,1 and cases of P.
    [Show full text]
  • A MOLECULAR PHYLOGENY of MALARIAL PARASITES RECOVERED from CYTOCHROME B GENE SEQUENCES
    J. Parasitol., 88(5), 2002, pp. 972±978 q American Society of Parasitologists 2002 A MOLECULAR PHYLOGENY OF MALARIAL PARASITES RECOVERED FROM CYTOCHROME b GENE SEQUENCES Susan L. Perkins* and Jos. J. Schall Department of Biology, University of Vermont, Burlington, Vermont 05405. e-mail: [email protected] ABSTRACT: A phylogeny of haemosporidian parasites (phylum Apicomplexa, family Plasmodiidae) was recovered using mito- chondrial cytochrome b gene sequences from 52 species in 4 genera (Plasmodium, Hepatocystis, Haemoproteus, and Leucocy- tozoon), including parasite species infecting mammals, birds, and reptiles from over a wide geographic range. Leucocytozoon species emerged as an appropriate out-group for the other malarial parasites. Both parsimony and maximum-likelihood analyses produced similar phylogenetic trees. Life-history traits and parasite morphology, traditionally used as taxonomic characters, are largely phylogenetically uninformative. The Plasmodium and Hepatocystis species of mammalian hosts form 1 well-supported clade, and the Plasmodium and Haemoproteus species of birds and lizards form a second. Within this second clade, the relation- ships between taxa are more complex. Although jackknife support is weak, the Plasmodium of birds may form 1 clade and the Haemoproteus of birds another clade, but the parasites of lizards fall into several clusters, suggesting a more ancient and complex evolutionary history. The parasites currently placed within the genus Haemoproteus may not be monophyletic. Plasmodium falciparum of humans was not derived from an avian malarial ancestor and, except for its close sister species, P. reichenowi,is only distantly related to haemospordian parasites of all other mammals. Plasmodium is paraphyletic with respect to 2 other genera of malarial parasites, Haemoproteus and Hepatocystis.
    [Show full text]
  • Host-Parasite Interactions Between Plasmodium Species and New Zealand Birds: Prevalence, Parasite Load and Pathology
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Host-parasite interactions between Plasmodium species and New Zealand birds: prevalence, parasite load and pathology A thesis presented in partial fulfilment of the requirements for the degree of Master of Veterinary Science in Wildlife Health At Massey University, Palmerston North New Zealand © Danielle Charlotte Sijbranda 2015 ABSTRACT Avian malaria, caused by Plasmodium spp., is an emerging disease in New Zealand and has been reported as a cause of morbidity and mortality in New Zealand bird populations. This research was initiated after P. (Haemamoeba) relictum lineage GRW4, a suspected highly pathogenic lineage of Plasmodium spp. was detected in a North Island robin of the Waimarino Forest in 2011. Using nested PCR (nPCR), the prevalence of Plasmodium lineages in the Waimarino Forest was evaluated by testing 222 birds of 14 bird species. Plasmodium sp. lineage LINN1, P. (Huffia) elongatum lineage GRW06 and P. (Novyella) sp. lineage SYATO5 were detected; Plasmodium relictum lineage GRW4 was not found. A real- time PCR (qPCR) protocol to quantify the level of parasitaemia of Plasmodium spp. in different bird species was trialled. The qPCR had a sensitivity and specificity of 96.7% and 98% respectively when compared to nPCR, and proved more sensitive in detecting low parasitaemias compared to the nPCR. The mean parasite load was significantly higher in introduced bird species compared to native and endemic species.
    [Show full text]
  • The Historical Ecology of Human and Wild Primate Malarias in the New World
    Diversity 2010, 2, 256-280; doi:10.3390/d2020256 OPEN ACCESS diversity ISSN 1424-2818 www.mdpi.com/journal/diversity Article The Historical Ecology of Human and Wild Primate Malarias in the New World Loretta A. Cormier Department of History and Anthropology, University of Alabama at Birmingham, 1401 University Boulevard, Birmingham, AL 35294-115, USA; E-Mail: [email protected]; Tel.: +1-205-975-6526; Fax: +1-205-975-8360 Received: 15 December 2009 / Accepted: 22 February 2010 / Published: 24 February 2010 Abstract: The origin and subsequent proliferation of malarias capable of infecting humans in South America remain unclear, particularly with respect to the role of Neotropical monkeys in the infectious chain. The evidence to date will be reviewed for Pre-Columbian human malaria, introduction with colonization, zoonotic transfer from cebid monkeys, and anthroponotic transfer to monkeys. Cultural behaviors (primate hunting and pet-keeping) and ecological changes favorable to proliferation of mosquito vectors are also addressed. Keywords: Amazonia; malaria; Neotropical monkeys; historical ecology; ethnoprimatology 1. Introduction The importance of human cultural behaviors in the disease ecology of malaria has been clear at least since Livingstone‘s 1958 [1] groundbreaking study describing the interrelationships among iron tools, swidden horticulture, vector proliferation, and sickle cell trait in tropical Africa. In brief, he argued that the development of iron tools led to the widespread adoption of swidden (―slash and burn‖) agriculture. These cleared agricultural fields carved out a new breeding area for mosquito vectors in stagnant pools of water exposed to direct sunlight. The proliferation of mosquito vectors and the subsequent heavier malarial burden in human populations led to the genetic adaptation of increased frequency of sickle cell trait, which confers some resistance to malaria.
    [Show full text]
  • Plasmodium Asexual Growth and Sexual Development in the Haematopoietic Niche of the Host
    REVIEWS Plasmodium asexual growth and sexual development in the haematopoietic niche of the host Kannan Venugopal 1, Franziska Hentzschel1, Gediminas Valkiūnas2 and Matthias Marti 1* Abstract | Plasmodium spp. parasites are the causative agents of malaria in humans and animals, and they are exceptionally diverse in their morphology and life cycles. They grow and develop in a wide range of host environments, both within blood- feeding mosquitoes, their definitive hosts, and in vertebrates, which are intermediate hosts. This diversity is testament to their exceptional adaptability and poses a major challenge for developing effective strategies to reduce the disease burden and transmission. Following one asexual amplification cycle in the liver, parasites reach high burdens by rounds of asexual replication within red blood cells. A few of these blood- stage parasites make a developmental switch into the sexual stage (or gametocyte), which is essential for transmission. The bone marrow, in particular the haematopoietic niche (in rodents, also the spleen), is a major site of parasite growth and sexual development. This Review focuses on our current understanding of blood-stage parasite development and vascular and tissue sequestration, which is responsible for disease symptoms and complications, and when involving the bone marrow, provides a niche for asexual replication and gametocyte development. Understanding these processes provides an opportunity for novel therapies and interventions. Gametogenesis Malaria is one of the major life- threatening infectious Malaria parasites have a complex life cycle marked Maturation of male and female diseases in humans and is particularly prevalent in trop- by successive rounds of asexual replication across gametes. ical and subtropical low- income regions of the world.
    [Show full text]
  • Redalyc.Morphology and Morphometry of Three Plasmodium
    Revista Brasileira de Parasitologia Veterinária ISSN: 0103-846X [email protected] Colégio Brasileiro de Parasitologia Veterinária Brasil Elisei, Carina; Fernandes, Kátia, R.; Forlano, Maria D.; Madureira, Renata C.; Scofield, Alessandra; Yotoko, Karla S. C.; Soares, Cleber O.; Ribeiro Araújo, Flábio; Massard, Carlos L. Morphology and morphometry of three Plasmodium juxtanucleare (Apicomplexa: Plasmodiidae) isolates Revista Brasileira de Parasitologia Veterinária, vol. 16, núm. 3, julio-septiembre, 2007, pp. 139-144 Colégio Brasileiro de Parasitologia Veterinária Jaboticabal, Brasil Available in: http://www.redalyc.org/articulo.oa?id=397841463005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative MORPHOLOGY AND MORPHOMETRY OF THREE Plasmodium juxtanucleare (APICOMPLEXA: PLASMODIIDAE) ISOLATES* CARINA ELISEI1; KÁTIA, R. FERNANDES2; MARIA D. FORLANO3; RENATA C. MADUREIRA2; ALESSANDRA SCOFIELD4; KARLA S. C. YOTOKO5; CLEBER O. SOARES1; FLÁBIO RIBEIRO ARAÚJO1; CARLOS L. MASSARD6 ABSTRACT:- ELISEI C.; FERNANDES, K.R.; FORLANO, M.D.; MADUREIRA, R.C.; SCOFIELD, A.; YOTOKO, K.C.; SOARES C.O.; ARAÚJO, F.R.; MASSARD C.L. Morphology and morphometry of three Plasmodium juxtanucleare (Apicomplexa: Plasmodiidae) isolates. [Morfologia e morfometria de três isolados de Plasmodium juxtanucleare (Apicomplexa: Plasmodiidae)]. Revista Brasileira de Parasitologia Veterinária, v. 16, n. 3, p. 139-144, 2007. Laboratório de Biologia Molecular Sanidade Animal, Embrapa Gado de Corte, Campo Grande, MS, Brasil. E-mail: [email protected] In this work, three isolates of Plasmodium juxtanucleare have been analyzed based on morphological, morphometric and parasitic parameters.
    [Show full text]
  • Pediculus Order Siphonaptera Family Culicidae Phlebotomus Hypoderma
    TAXONOMY Adapted from: Veterinary Parasitology (2016), Taylor MA, Coop RL & Wall RL, 4th Edition, Ed. Wiley Blackwell ARTHROPODS (Kingdom Animalia; Phylum Arthropoda) Class Insecta Order Phthiraptera Suborder Anoplura Family Pediculidae Pediculus Order Siphonaptera Order Diptera Suborder Nematocera Family Culicidae Family Psychodidae Phlebotomus Suborder Brachycera Family Oestridae Hypoderma lineatum Order Hemiptera Family Cimicidae Cimex Class Arachnida Order Astigmata Family Sarcoptidae Sarcoptes scabiei Family Psoroptidae Psoroptes Order Prostigmata Family Cheyletidae Cheyletiella Family Demodecidae Demodex Order Mesostigmata Family Varroidae Varroa destructor Order Ixodida Family Ixodidae PROTOZOA (Kingdom Protozoa) Phylum Formicata Class Metamonadea Order Giardiida Family Giardiidae Genus Giardia Phylum Ciliophora Class Litostomatea Order Trichostomatorida Family Balantidiidae Genus Balantidium Phylum Euglenozoa Class Kinetoplasta Order Trypanosomatida Family Trypanosomatidae Trypanosoma cruzi Leishmania infantum Phylum Parabasalia Class Trichomonadea Order Trichomonadida Family Trichomonadidae Trichomonas gallinae Phylum Apicomplexa Class Conoidasida Order Eucoccidiorida Family Eimeriidae Eimeria Cystoisospora Family Cryptosporidiidae Cryptosporidium parvum Family Sarcocystiidae Toxoplasma gondii Sarcocystis Neospora caninum Class Aconoidasida Order Haemosporida Family Plasmodiidae Plasmodium Order Piroplasmorida Family Babesiidae Babesia PLATYHELMINTHES (Kingdom Animalia; Phylum Platyhelminthes) Class Cestoidea Order Pseudophyllidea
    [Show full text]