2006 IEEE Aerospace Conference Digest Gold Final

Total Page:16

File Type:pdf, Size:1020Kb

2006 IEEE Aerospace Conference Digest Gold Final 2006 IEEE Aerospace Conference Digest Big Sky, Montana, March 4-11, 2006 a e S S Dear 2006 IEEE Aerospace Conference Attendee, The Technical Program Committee and the Track and Session Organizers are pleased to bring you the technical program for 2006. Covering a wide range of topics in aerospace engineering, science and technology, the program consists of papers delivered in 113 sessions organized into 14 tracks, presented either orally or in our Electronic Presentation Hall over six days. With seven panels, seven plenaries, and invited speakers the total of papers and speakers will be over 520. We expect nearly 700 attendees over the week. The seven panels this year will address contemporary topics including space engineering workforce, planet finding, robotic history at JPL, developments in space robotics, beyond Einstein, spacecraft autonomy, and NASA-industry partnerships. Our seven plenary talks promise to be as interesting and exciting as ever, addressing nanotechnology, fusion, responsive space systems, hurricanes, dinosaurs, the Spitzer space telescope, and space tourism. As hoped, this year we have increased representation from around the world and across industry, government, and academia. Nineteen countries have submitted seventy-two papers and speakers. More than sixty-five universities are represented, as are a dozen national and six international laboratories, nine NASA centers, three military organizations, and nearly 100 commercial companies. We are confident that you will enjoy the conference and expect that you will take the opportunity to get to know some of your colleagues from this rich, diverse set of attendees. Ed Bryan Karen Profet Richard Mattingly Technical Program Co-Chairs ii Table of Contents TRACK 1: SCIENCE & AEROSPACE FRONTIERS (PLENARY SESSIONS).......................................................................... 1 1.1 Plenary 1: Nanotube-based Molecular Motors ................................................................ 1 1.2 Plenary 2: Operationally Responsive Space ................................................................... 1 1.3 Plenary 3: The World's Largest Laser ............................................................................. 1 1.4 Plenary 4: Hurricanes: Natures Dangerous Beauties...................................................... 1 1.5 Plenary 5: A Microscopic View of Dinosaurs ................................................................... 2 1.6 Plenary 6: The Spitzer Space Telescope: The Infrared Universe Revealed ................... 2 1.7 Plenary 7: Project Starchaser.......................................................................................... 2 TRACK 2: SPACE MISSIONS, SYSTEMS, AND ARCHITECTURE ...... 3 2.01 Mobility and Robotics Systems for In Situ Exploration..........................3 2.0101 SILVRCLAW II Analysis, Prototype Development, and Testing............................... 3 2.0102 Improved Target Handoff for Single Cycle Instrument Placement ............................ 3 2.0103 Humanoids in support of Lunar and Planetary Surface Operations .......................... 3 2.0104 Mobile Science Platforms for Impassable Terrain..................................................... 3 2.0105 The Mars Exploration Rover Surface Mobility Flight Software: Driving Ambition...... 3 2.0106 A Comparison of Force Sensing Techniques for Planetary Manipulation ................. 4 2.0107 Concept for Coring from a Low-mass Rover ............................................................. 4 2.0108 Vision-Based End-Effector Position Error Compensation ......................................... 4 2.02 Future Space and Earth Science Missions..............................................4 2.0201 Global Precipitation Measurement Mission Architecture and Mission Concept ....... 4 2.0202 Herschel/Planck Program Spacecraft Design Solutions for two Science Missions.. 5 2.0203 An Architecture Program for the Robotic Exploration of Venus ................................ 5 2.0204 Exploring the Possibilities: Earth and Space Science Missions in the Context of Exploration ............................................................................................................ 5 2.0205 Navigator Program: Exploring New Worlds ............................................................... 5 2.0206 Design of a Long Endurance Titan VTOL Vehicle..................................................... 5 2.0207 GeoSTAR: Developing A New Payload for GOES Satellites .................................... 6 2.0208 Architecting Space Exploration Campaigns: A Decision-Analytic Approach............. 6 2.0209 Human Spaceflights Will Extend Regulatory and Legal Framework Governing Civil Aviation.................................................................................................................. 6 2.03 Missions and Technologies for In Situ Exploration and Sample Return ................................................................................................................6 2.0301 What Titan is Really Like: In-Situ Measurements of the Titan Environment by the Huygens Probe...................................................................................................... 6 2.0302 Mars Ascent Vehicle: Key Elements of a Sample Return Mission ............................ 6 2.0303 Construction and Resource Utilization eXplorer (CRUX) .......................................... 7 2.0304 Planning for Planetary Protection and Contamination Control: Challenges Beyond Mars ...................................................................................................................... 7 2.0305 Design Tools for Cost-Effective Implementation of Planetary Protection Requirements ........................................................................................................ 7 2.0306 Cleaning to Achieve Sterility...................................................................................... 7 2.0307 A Rapid Micro-Detection System for the Enumeration of Bacterial Endospores....... 7 2.0308 Electron Beam (10 MeV) Irradiation to Decontaminate Spacecraft Components for Planetary Protection .............................................................................................. 8 2.0309 Preventing the Forward Contamination of Mars........................................................ 8 iii Table of Contents 2.04 Deep Space, Earth and Discovery Missions..........................................8 2.0401 The Glory Program: Global Science from a Unique Spacecraft Integration ..............8 2.0402 James Webb Space Telescope (JWST) Project Overview........................................8 2.0403 Return to Mercury: The MESSENGER Spacecraft and Mission ...............................9 2.0404 The U.S. Rosetta Project: Eighteen Months in Flight ................................................9 2.0405 Phoenix - The First Mars Scout Mission (A Mid-Term Report) ..................................9 2.05 Advanced Constellation Concepts and Missions ...................................9 2.0501 Demonstration and Science Experiments for DoD Space Capability in the MEO. ....9 2.06 Instruments for In Situ Exploration........................................................10 2.0601 Surface and Borehole Neutron Probes for the Construction and Resource Utilization eXplorer (CRUX) .................................................................................................10 2.0602 Electrical Properties Cup (EPC) for Characterizing Water Content of Martian and Lunar Soils...........................................................................................................10 2.0603 A Seismic Profiler for the Construction and Resource Utilization Explorer (CRUX) 10 2.0604 Miniature Ground Penetrating Radar, CRUX GPR..................................................10 2.0605 Atmospheric Electron-Induced X-ray Spectrometer (AEXS) Development .............10 2.0606 Deployable Wood Wasp Drill for Planetary Subsurface Sampling ..........................11 2.0607 Pulsed Cavity Ringdown Laser Absorption Spectroscopy in a Hollow Waveguide .11 2.07 Radiation Issues for Human Spaceflight ...............................................11 2.0701 Forecasting of Solar Particle Event Integral Proton Fluences Using Bayesian Inference..............................................................................................................11 2.0702 Characterization of the Lunar Radiation Environment Using the CRaTER Detector .............................................................................................................................11 2.0703 Electrostatic Active Radiation Shielding Revisited..................................................11 2.0704 Effectiveness of Shielding Materials for Dose Reduction ........................................12 2.0705 Novel Boron Fiber Composites for Radiation Protection .........................................12 2.0706 FLUKA Status and Preliminary Results from the July-2005 AGS Run....................12 2.08 In-Space Technology Validation Missions ............................................12 2.0801 Technology Validation: NMP ST8 Dependable Multiprocessor Project...................12 2.0802 Formulation Refinement and Access to Space for the ST8 Mission........................12 2.0803 Access to Space for Technology Validation Missions: Exploring Possibilities of Suborbital Flight...................................................................................................13 2.0804 The Space Technology 8 Mission............................................................................13
Recommended publications
  • Magcon White Paper V3
    Magnetospheric Constellation Tracing the flow of mass and energy from the solar wind through the magnetosphere Larry Kepko and Guan Le NASA Goddard Space Flight Center 1. Executive Summary The Magnetospheric Constellation (MagCon) mission is designed to understand the transport of mass and energy across the boundaries of and within Earth’s magnetosphere using a constellation of up to 36 small satellites. Energy is input into the geospace system at the dayside and flank magnetopause, yet we still do not understand the azimuthal extent of dayside reconnection sites, nor do we have a quantifiable understanding of how much energy enters the magnetosphere during different solar wind conditions. On the nightside, impulsive flows at various spatial and temporal scales occur frequently during storms and substorms and couple to the ionosphere through still unresolved physical mechanisms. A distributed array of small satellites is the required tool for unraveling the physics of magnetospheric mass and energy transport while providing definitive determinations of how major solar events lead to specific types of space weather. MagCon will map the global circulation of magnetic fields and plasma flows within a domain extending from just above the Earth’s surface to ~22 Earth radii (RE) radius, at all local times, on spatial scales from 1-5 RE and minimum time scales of 3-10 seconds. It will reveal simultaneously for the first time both the global spatial structures and temporal evolution of the magnetotail, the dayside and flank magnetopause, and the nightside transition region, leading to the physical understanding of system dynamics and energy transport across all scales.
    [Show full text]
  • James A. Slavin
    James A. Slavin Professor of Space Physics Department of Climate and Space Science & Engineering University of Michigan, College of Engineering Climate & Space Research Building Ann Arbor, MI, 48109 Phone: 240-476-8009 [email protected] EDUCATION: 1982 - Ph.D., Space Physics, University of California at Los Angeles Dissertation: Bow Shock Studies at Mercury, Venus, Earth and Mars with Applications ot the Solar – Planetary Interaction Problem; Advisor: Prof. Robert E. Holzer 1978 - M.S., Geophysics and Space Physics, University of California at Los Angeles 1976 - B.S., Physics, Case Western Reserve University APPOINTMENTS: 2011 - 2018 Chair, Department of Climate and Space Sciences & Engineering, University of Michigan 2005 - 2011 Director, Heliophysics Science Division 1990 - 2004 Head, Electrodynamics Branch 1987 - 1989 Staff Scientist, NASA/GSFC Laboratory for Extraterrestrial Physics 1986 - 1987 Discipline Scientist for Magnetospheric Physics, Space Physics Division, NASA Headquarters 1983 - 1986 Research Scientist, Astrophysics and Space Physics Section, Caltech/Jet Propulsion Laboratory HONORS: 2018 - Heliophysics Summer School Faculty, UCAR High Altitude Observatory 2017 - NASA Group Achievement Award, MESSENGER Project Team 2017 - Asia Oceania Geosciences Society 14th Annual Meeting Distinguished Lecturer in Planetary Sciences 2016 - NASA Group Achievement Award, MMS Instument Suite 2012 - International Academy of Astronautics Laurels for Team Achievement for MESSENGER 2012 - Fellow, American Geophysical Union 2009 - NASA Group
    [Show full text]
  • Out There Somewhere Could Be a PLANET LIKE OURS the Breakthroughs We’Ll Need to find Earth 2.0 Page 30
    September 2014 Out there somewhere could be A PLANET LIKE OURS The breakthroughs we’ll need to find Earth 2.0 Page 30 Faster comms with lasers/16 Real fallout from Ukraine crisis/36 NASA Glenn chief talks tech/18 A PUBLICATION OF THE AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS Engineering the future Advanced Composites Research The Wizarding World of Harry Potter TM Bloodhound Supersonic Car Whether it’s the world’s fastest car With over 17,500 staff worldwide, and 2,800 in or the next generation of composite North America, we have the breadth and depth of capability to respond to the world’s most materials, Atkins is at the forefront of challenging engineering projects. engineering innovation. www.na.atkinsglobal.com September 2014 Page 30 DEPARTMENTS EDITOR’S NOTEBOOK 2 New strategy, new era LETTER TO THE EDITOR 3 Skeptical about the SABRE engine INTERNATIONAL BEAT 4 Now trending: passive radars IN BRIEF 8 A question mark in doomsday comms Page 12 THE VIEW FROM HERE 12 Surviving a bad day ENGINEERING NOTEBOOK 16 Demonstrating laser comms CONVERSATION 18 Optimist-in-chief TECH HISTORY 22 Reflecting on radars PROPULSION & ENERGY 2014 FORUM 26 Electric planes; additive manufacturing; best quotes Page 38 SPACE 2014 FORUM 28 Comet encounter; MILSATCOM; best quotes OUT OF THE PAST 44 CAREER OPPORTUNITIES 46 Page 16 FEATURES FINDING EARTH 2.0 30 Beaming home a photo of a planet like ours will require money, some luck and a giant telescope rich with technical advances. by Erik Schechter COLLATERAL DAMAGE 36 Page 22 The impact of the Russia-Ukrainian conflict extends beyond the here and now.
    [Show full text]
  • Soviet Steps Toward Permanent Human Presence in Space
    SALYUT: Soviet Steps Toward Permanent Human Presence in Space December 1983 NTIS order #PB84-181437 Recommended Citation: SALYUT: Soviet Steps Toward Permanent Human Presence in Space–A Technical Mere- orandum (Washington, D. C.: U.S. Congress, Office of Technology Assessment, OTA- TM-STI-14, December 1983). Library of Congress Catalog Card Number 83-600624 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Foreword As the other major spacefaring nation, the Soviet Union is a subject of interest to the American people and Congress in their deliberations concerning the future of U.S. space activities. In the course of an assessment of Civilian Space Stations, the Office of Technology Assessment (OTA) has undertaken a study of the presence of Soviets in space and their Salyut space stations, in order to provide Congress with an informed view of Soviet capabilities and intentions. The major element in this technical memorandum was a workshop held at OTA in December 1982: it was the first occasion when a significant number of experts in this area of Soviet space activities had met for extended unclassified discussion. As a result of the workshop, OTA prepared this technical memorandum, “Salyut: Soviet Steps Toward Permanent Human Presence in Space. ” It has been reviewed extensively by workshop participants and others familiar with Soviet space activities. Also in December 1982, OTA wrote to the U. S. S. R.’s Ambassador to the United States Anatoliy Dobrynin, requesting any information concerning present and future Soviet space activities that the Soviet Union judged could be of value to the OTA assess- ment of civilian space stations.
    [Show full text]
  • California State University, Northridge Low Earth Orbit
    CALIFORNIA STATE UNIVERSITY, NORTHRIDGE LOW EARTH ORBIT BUSINESS CENTER A Project submitted in partial satisfaction of the requirements for the degree of Master of Science in Engineering by Dallas Gene Bienhoff May 1985 The Proj'ectof Dallas Gene Bienhoff is approved: Dr. B. J. Bluth Professor T1mothy Wm. Fox - Chair California State University, Northridge ii iii ACKNOWLEDGEHENTS I wish to express my gratitude to those who have helped me over the years to complete this thesis by providing encouragement, prodding and understanding: my advisor, Tim Fox, Chair of Mechanical and Chemical Engineering; Dr. B. J. Bluth for her excellent comments on human factors; Dr. B. J. Campbell for improving the clarity; Richard Swaim, design engineer at Rocketdyne Division of Rockwell International for providing excellent engineering drawings of LEOBC; Mike Morrow, of the Advanced Engineering Department at Rockwell International who provided the Low Earth Orbit Business Center panel figures; Bob Bovill, a commercial artist, who did all the artistic drawings because of his interest in space commercialization; Linda Martin for her word processing skills; my wife, Yolanda, for egging me on without nagging; and finally Erik and Danielle for putting up with the excuse, "I have to v10rk on my paper," for too many years. iv 0 ' PREFACE The Low Earth Orbit Business Center (LEOBC) was initially conceived as a modular structure to be launched aboard the Space Shuttle, it evolved to its present configuration as a result of research, discussions and the desire to increase the efficiency of space utilization. Although the idea of placing space stations into Earth orbit is not new, as is discussed in the first chapter, and the configuration offers nothing new, LEOBC is unique in its application.
    [Show full text]
  • FY06 PAR.Indb
    National Aeronautics and Space Administration r a 6 e Y PPeerrffoormancermance aandnd 0 l Performance and a c 0 s i F Fiscal Year 2 2006 Fiscal Year 2006 AccountabilityAAccountabilityccountability ReportRRepoeporrtt Table of Contents PART 1: MANAGEMENT DISCUSSION & ANALYSIS . .1 Mission, Vision, Values, & Organization . .3 NASA’s Mission Is on Track . .3 Making Progress . .3 NASA’s Values . .4 NASA’s Organization . .4 NASA Headquarters . .4 Building Healthy NASA Centers . .5 Measuring NASA’s Performance . .7 Establishing Government Performance and Results Act (GPRA) Performance Measures . .7 Rating NASA’s Performance . .7 Program Assessment Rating Tool (PART) . .12 President’s Management Agenda (PMA) . .12 Major Program Annual Reports . .13 Performance Overview . .15 Progress Toward Achieving NASA’s Strategic Goals . .15 A Guide to Performance Overviews . .15 Strategic Goal 1: Fly the Shuttle as safely as possible until its retirement, not later than 2010. .16 Strategic Goal 2: Complete the International Space Station in a manner consistent with NASA’s International Partner commitments and the needs of human exploration. .18 Goal 3: Develop a balanced overall program of science, exploration, and aeronautics consistent with the redirection of the human spacefl ight program to focus on exploration. .20 Sub-goal 3A: Study Earth from space to advance scientifi c understanding and meet societal needs. .22 Sub-goal 3B: Understand the Sun and its effects on Earth and the solar system. .25 Sub-goal 3C: Advance scientifi c knowledge of the origin and history of the solar system, the potential for life elsewhere, and the hazards and resources present as humans explore space. .28 Sub-goal 3D: Discover the origin, structure, evolution, and destiny of the universe, and search for Earth-like planets.
    [Show full text]
  • Beyond Einstein: from the Big Bang to Black Holes
    The Space Congress® Proceedings 2004 (41st) Space Congress Proceedings Apr 27th, 8:00 AM Panel Session II - Beyond Einstein: From the big bang to black holes Don Kniffen Beyond Einstein Program Scientist, NASA Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Kniffen, Don, "Panel Session II - Beyond Einstein: From the big bang to black holes" (2004). The Space Congress® Proceedings. 10. https://commons.erau.edu/space-congress-proceedings/proceedings-2004-41st/april-27/10 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. SEU Science ... accretion disks, Big Bang, black holes, cosmic magnetic fields, cosmic rays, dark energy, dark matter, extreme environments, gamma-ray bursts, jets, large-scale structure, microwave background, neutron stars, nucleosynthesis, relativity, supernovae, ... 10-25 cm (UHE Cosmic Rays) to 1015 cm (Gravitational wave Great Decade: CMB fluctuations (COBE, BOOMERanG, MAXIMA, MAP, . - Gamma-Ray Bursts (CGRO, HETE-2, Swift, Glast, .. .) Ubiquity of black holes (Chandra, ASCA, HST, ...) Top priority: Answer the most profound questior raised, but not answered, by Einstein. Einstein's Predictions Completing Einstein's Legacy theory fails to explain the Three startling predictions of Einstein's relativity: Einsteiff's legacy is incomplete, his underlying physics of the very phenomena his work predicted • The expansion of the Universe (from a big bang) BIG BANG • Black holes What powered the Big Bang? • Dark energy acting against the pull of gravity Observations confirm these predictions ..
    [Show full text]
  • The Flight Plan
    M A R C H 2 0 2 1 THE FLIGHT PLAN The Newsletter of AIAA Albuquerque Section The American Institute of Aeronautics and Astronautics AIAA ALBUQUERQUE MARCH 2021 SECTION MEETING: MAKING A DIFFERENCE A T M A C H 2 . Presenter. Lt. Col. Tucker Hamilton Organization USAF F-35 Developmental Test Director of Operations INSIDE THIS ISSUE: Abstract I humbly present my flying experiences through SECTION CALENDAR 2 pictures and videos of what it takes and what it is like to be an Experimental Fighter Test Pilot. My personal stories include NATIONAL AIAA EVENTS 2 major life-threatening aircraft accidents, close saves, combat SPACE NUCLEAR PROPULSION REPORT 3 flying revelations, serendipitous opportunities testing first of its kind technology, flying over 30 aircraft from a zeppelin to a ALBUQUERQUE DECEMBER MEETING 5 MiG-15 to an A-10, and managing the Joint Strike Fighter De- velopmental Test program for all three services. Through ALBUQUERQUE JANUARY MEETING 6 these experiences you will learn not just what a Test Pilot does, but also gain encour- ALBUQUERQUE FEBRUARY MEETING 7 agement through my lessons learned on how to make a difference in your local com- munities…did I mention cool flight test videos! CALL FOR SCIENCE FAIR JUDGES 9 Lt Col Tucker "Cinco" Hamilton started his Air Force career as an CALL FOR SCHOLARSHIP APPLICATIONS 10 operational F-15C pilot. He supported multiple Red Flag Exercises and real world Operation Noble Eagle missions where he protect- NEW AIAA HIGH SCHOOL MEMBERSHIPS 10 ed the President of the United States; at times escorting Air Force One.
    [Show full text]
  • Espinsights the Global Space Activity Monitor
    ESPInsights The Global Space Activity Monitor Issue 2 May–June 2019 CONTENTS FOCUS ..................................................................................................................... 1 European industrial leadership at stake ............................................................................ 1 SPACE POLICY AND PROGRAMMES .................................................................................... 2 EUROPE ................................................................................................................. 2 9th EU-ESA Space Council .......................................................................................... 2 Europe’s Martian ambitions take shape ......................................................................... 2 ESA’s advancements on Planetary Defence Systems ........................................................... 2 ESA prepares for rescuing Humans on Moon .................................................................... 3 ESA’s private partnerships ......................................................................................... 3 ESA’s international cooperation with Japan .................................................................... 3 New EU Parliament, new EU European Space Policy? ......................................................... 3 France reflects on its competitiveness and defence posture in space ...................................... 3 Germany joins consortium to support a European reusable rocket.........................................
    [Show full text]
  • NASA's Beyond Einstein Program: an Architecture for Implementation
    NASA’s Beyond Einstein Program: An Architecture for Implementation 1 Committee Charge 1. Assess the five proposed Beyond Einstein missions (Constellation- X, Laser Interferometer Space Antenna, Joint Dark Energy Mission, Inflation Probe, and Black Hole Finder probe) and recommend which of these five should be developed and launched first, using a funding wedge that is expected to begin in FY 2009. The criteria for these assessments include: – Potential scientific impact within the context of other existing and planned space-based and ground-based missions; and – Realism of preliminary technology and management plans, and cost estimates. 2. Assess the Beyond Einstein missions sufficiently so that they can act as input for any future decisions by NASA or the next Astronomy and Astrophysics Decadal Survey on the ordering of the remaining missions. This second task element will assist NASA in its investment strategy for future technology development within the Beyond Einstein Program prior to the results of the Decadal Survey. 2 Committee Members • Eric Adelberger, U Washington • Andrew Lankford, UC Irvine • William Adkins, Adkins • Dennis McCarthy, Swales Strategies, LLC (retired) • Thomas Appelquist, Yale • Stephan Meyer, U. Chicago • Joel Primack, UC Santa Cruz • James Barrowman, NASA (retired) • Lisa Randall, Harvard • Joseph Rothenberg, Universal • David Bearden, Aerospace Space Network, co-chair Corp. • Craig Sarazin, U Virginia • Mark Devlin, U Pennsylvania • James Ulvestad, NRAO • Joseph Fuller, Futron Corp. • Clifford Will, Washington • Karl Gebhardt, U Texas University • William Gibson, SWRI • Michael Witherell, UC Santa Barbara • Fiona Harrison, Caltech • Edward Wright, UCLA • Charles Kennel, UCSD, co- chair 3 Beyond Einstein Science • Scientific challenges at the intersection of physics and astrophysics.
    [Show full text]
  • Interview: Bill Workman & Ian Jordan
    VOL 20 ISSUE 01 Space Telescope Science Institute NASA and G. Bacon, STScI. (See page 24.) NASA and G. NASA and G. Bacon, STScI. (See page 24.) NASA and G. Illustration Credit: Interview: Illustration Credit: Bill Workman & Ian Jordan An artist’s concept of a gas giant planet orbiting the cool, red dwarf star Gliese 876. Bill Workman, [email protected], and Ian Jordan, [email protected] An artist’s concept of a gas giant planet orbiting the cool, red dwarf star Gliese 876. Bill and Ian, you are working on the Hubble long-range (constraint) window with available telescope orbit resources. Since we don’t observing plan (LRP). Please explain the role of the LRP actually schedule the telescope, the task is—by definition—statistical in Hubble operations and the work that creating it entails. in nature. Like any good science project, the ‘fun’ part is dealing with the ILL: Well, it’s not clear we can describe what we do in less than ‘Hubble uncertainties in the system. In this case, this means predicting HST behavior BTime’, but we’ll try! and what the whole General Observer (GO) observing program will look like BILL & IAN: Primarily the Long Range Planning Group (LRPG) and the LRP for the cycle. exist to help the Institute and user community maximize the science output of the Hubble Space Telescope (HST). Observers see the LRP as a set of plan How do you know when you are done with the LRP? windows that represent times when a particular set of exposures are likely IAN: Well, the long range plan is never done! Perhaps the LRP logo should to be observed by the telescope, similar to scheduling observing runs at a be a yin-yang symbol? ground-based observatory.
    [Show full text]
  • 6.3 LISA CNS MH.Indd
    NEWS FEATURE NATURE|Vol 452|6 March 2008 HEARING THE HEAVENS The cosmos is thought to be awash with gravitational waves to which humanity is, as yet, deaf. Trudy E. Bell reports on LISA, an experiment on an unprecedented scale designed to put that right. 18 NATURE|Vol 452|6 March 2008 NEWS FEATURE magine a new constellation — a narrow triangle about this way, as LISA is intended to do, is a three-step process. as deep as the scoop of the Big Dipper. But this constella- First you set up a situation in which masses can fall freely tion, unlike the familiar natural ones, moves through the along their geodesics without being disturbed by magnetic Isky, always appearing in the evening sky after sunset. The fields or other spurious forces. Then you must measure new constellation slowly rotates, each component circling with extraordinary precision how the distance between around the centre once every year. And as it does so, it also their geodesics changes when passing gravitational waves expands and contracts. distort the local curvature of space. The last step is analysing Unaided earthly eyes will never actually see the Laser these changes to determine the exact shape, frequency and Interferometer Space Antenna (LISA), as this artificial con- intensity of the distortions to the curvature of space, so as to stellation is to be named. Its three component spacecraft learn about the nature of distant events producing them. will be too small, and the light with which they shine will be To provide Vitale’s geodesic-joining rays of light, LISA invisible infrared.
    [Show full text]