1983 Geologic Time Scale

Total Page:16

File Type:pdf, Size:1020Kb

1983 Geologic Time Scale The Decade of North American Geology 1983 Geologic Time Scale Compiled by Allison R. Palmer Centennial Science Program Coordinator Geological Society of America, P.O. Box 9140, Boulder, Colorado 80301 Preparation of the 27 synthesis volumes of The Geology of MESOZOIC North America for the Decade of North American Geology Base of Companion to end of Cretaceous (DNAG) is now in progress. In order to encourage uniformity Berggren, W. A., Kent, D. V., and Flynn, J. J., 1984, Appendix, among DNAG authors in the citation of numerical ages for chron- in Geochronology and the geologic record: Geological Society ostratigraphic units of the geologic time scale, an ad hoc Time of London (in press). Scale Advisory Committee was established by the DNAG Steering Base of Aptian to base of Santonian Committee in 1982. This advisory committee, consisting of Z. E. Harland, W. B„ Cox, A. V., Llewellyn, P. G„ Picton, C.A.G., Peterman (Chairman) and J. E. Harrison, U.S. Geological Survey; Smith, A. G., and Walters, R., 1982, A geological time scale: R. L. Armstrong, University of British Columbia; and W. A. Cambridge, Cambridge University Press, 128 p. Berggren, Woods Hole Oceanographic Institution, was asked to Base of Hettangian to base of Barremian (dating and chronostrati- evaluate numerical dating schemes that were either recently pub- graphic correlation of the "M" series) lished or in press and to provide recommendations for the best Kent, D. V., and Gradstein, F. M., 1984, A Jurassic to Recent numbers to use in preparation of a DNAG time scale. The chart chronology, in Tucholke, B. E., and Vogt, P. R., eds., The on the opposite side of this page was developed from the recom- Western Atlantic region, Volume M of The geology of North mendations of the Time Scale Advisory Committee. America: Boulder, Colorado, Geological Society of America Geochronometric ages (Ma, Ga) assigned to chronostrati- (in press). graphic boundaries are subject to several uncertainties in addi- Note: Rhaetian has been eliminated from the Late Triassic tion to those introduced by the numerical dating methods chronostratigraphic scale following Tozer, E. T., 1979, Latest Tri- themselves; boundary stratotypes for many units are not yet assic ammonoid faunas and biochronology, western Canada: Geo- chosen, so disagreement exists about exact biostratigraphic place- logical Survey of Canada Paper 79-1B, p. 127-135. ment and correlation of a boundary; and many materials that can Base of Ladinian to base of Norian be numerically dated are not known in good context with biostrat- Armstrong, R. L., 1982, Late Triassic-Early Jurassic time scale igraphic data, so extrapolation to a chronostratigraphic boundary calibration in British Columbia, Canada, in Odin, G. S., ed., is commonly required. Furthermore, with respect to the late Numerical dating in stratigraphy: New York, John Wiley & Mesozoic and the Cenozoic, differing numerical age calibrations Sons, p. 509-513. of the magnetic polarity-reversal scale based on differing choices Base of Scythian to base of Anisian of scattered isotopically dated tie points, differing interpretations Webb, J. A., 1982, Triassic radiometric dates from eastern Austra- of the positions of biostratigraphic boundaries with respect to the lia: in Odin, G. S., ed., Numerical dating in stratigraphy: New polarity-reversal scale, and uncertainties in the meaning of isotopic York, John Wiley & Sons, p. 515-521. ages derived from glauconies lead to disagreement about ages assigned to some chronostratigraphic boundaries. PALEOZOIC With these caveats, the numerical ages given in this chart All numerical ages except those for the upper and lower represent interpretations acceptable to the DNAG Time Scale boundaries of the Paleozoic are derived from Harland and others Advisory Committee. The uncertainty bars for Paleozoic and (see above, 1982, p. 52-55). Late Carboniferous numbers are for Mesozoic ages are from data in Harland and others (1982). continentally based ages (N = "Namurian"; W = Westphalian; Uncertainty bars for the Cenozoic are not available. S = Stephanian). The marine-based ages are from Harland and Sources for the numerical ages and for the chronostrati- others (1982, Fig. 5.6). The earlier estimate for the base of the graphic nomenclature are given below. Cambrian at 570 Ma is retained. CENOZOIC PRECAMBRIAN Berggren, W. A., Kent, D. V., and Van Couvering, J. A., 1984, Harrison, J. E., and Peterman, Z. E., 1982, North American Neogene geochronology and chronostratigraphy; in Geo- Commission on Stratigraphic Nomenclature, Report 9, Adop- chronology and the geologic record: Geological Society of tion of geochronometric units for divisions of Precambrian London (in press). time: American Association of Petroleum Geologists Bulletin, Berggren, W. A., Kent, D. V., and Flynn, J. J., 1984, Paleogene v. 66, p. 801-802. geochronology and chronostratigraphy, in Geochronology and the geologic record: Geological Society of London (in press). GEOLOGY, v. II, p. 503-504, September 1983 503 è DECADE OF NORTH AMERICAN GEOLOGY 1983 GEOLOGIC TIME SCALE GEOLOGICAL SOCIETY OF AMERICA CENOZOIC MESOZOiC PALEOZOIC PRECAMBRiAN BOY. PERIOD EPOCH PICKS AGE I PERIOD EPOCH PICKS AGE PICKS |M>| AGE AGES (Ma) £ IM» (M») <Ma| (Ma) (Ma) 4UUÉA- 0.01 NARY PLEISTOCENE -H20 1.6 z TATARIAN " PIACENZIAN MAASTRICHTIAN < -120 —»24 LATE ZANCLEAN 5.3 s —122 MESSINIAN (12 6.5 CAMPANIAN oc UJ CO 84.0 TORTONIAN 87.5 SL 88.5 286 112 90- D GZELIAN 91 KASIMOVIAN O CENOMANIAN 296 10 MOSCOVIAN O SERRAVALLIAN iu MIDDLE o BASHKIRIAN o 15.1 O ALBIAN 315 o LANGHIAN < 16.6 320 N s SERPUKHOVIAN I- 113 O BURDIGALIAN LU APTIAN •119 VISEAN oc 21.8 0C BARREMIAN U AQUITANIAN 124 352 18 23.7 O HAUTERIVIAN TOURNAISIAN I- 360 10 •131 FAMMENIAN o 367 VALANGINIAN H12 CHATTIAN FRASNIAN 374 CC 138 z GIVETIAN H8 UJ BERRIASIAN 380 Q. EIFELIAN EARLY Ü 144 o 387 •118 O > EMSIAN TITHONIAN 394 -H28 a UJ SIEGENIAN -152 -112 o •401 -122 RUPELIAN KIMMERIDGIAN GEDINNIAN 408 •156 -"6 •118 PRIDOLIAN 414 OXFORDIAN 15 LUDLOVIAN 12 -163 421 oc 12 3 WENLOCKIAN 428 o CALLOVIAN 15 PRIABONIAN 169 LLANDOVERIAN -112 BATHONIAN 438 (/) 34 8 176 ASHGILLIAN BARTONIAN </) 448 112 180- BAJOCIAN CARADOCIAN < 34 < H2 LATE 183 458 w AALENIAN 34 O LLANOEILAN H16 z oc 187 > 468 UJ TOARCIAN 28 LLANVIRNIAN 16 LUTETIAN 193 o o 478 16 o PLIENSBACHIAN 32 o ARENIGIAN 111 198 120 L<U SINEMURIAN oc 18 204 o TREMADOCIAN HETTANGIAN MIDDLE 208 z TREMPEALEAUAN o YPRESIAN O FRANCONIAN NORIAN oc DRESBACHIAN < 57.8 (fi UJ 225 oc z (/> co EARLY UJ < CARNIAN 22 o 60.6 230 s LADINIAN < o 235 63.6 OC ANISIAN o 240 < DANIAN 240 - I- a SCYTHIAN r66.4 245 .
Recommended publications
  • On the Continuity of Background and Mass Extinction
    Paleobiology, 29(4), 2003, pp. 455±467 On the continuity of background and mass extinction Steve C. Wang Abstract.ÐDo mass extinctions grade continuously into the background extinctions occurring throughout the history of life, or are they a fundamentally distinct phenomenon that cannot be explained by processes responsible for background extinction? Various criteria have been proposed for addressing this question, including approaches based on physical mechanisms, ecological se- lectivity, and statistical characterizations of extinction intensities. Here I propose a framework de®ning three types of continuity of mass and background extinc- tionsÐcontinuity of cause, continuity of effect, and continuity of magnitude. I test the third type of continuity with a statistical method based on kernel density estimation. Previous statistical ap- proaches typically have examined quantitative characteristics of mass extinctions (such as metrics of extinction intensity) and compared them with the distribution of such characteristics associated with background extinctions. If mass extinctions are outliers, or are separated by a gap from back- ground extinctions, the distinctness of mass extinctions is supported. In this paper I apply Silverman's Critical Bandwidth Test to test for the continuity of mass ex- tinctions by applying kernel density estimation and bootstrap modality testing. The method im- proves on existing work based on searching for gaps in histograms, in that it does not depend on arbitrary choices of parameters (such as bin widths for histograms), and provides a direct estimate of the signi®cance of continuities or gaps in observed extinction intensities. I am thus able to test rigorously whether differences between mass extinctions and background extinctions are statisti- cally signi®cant.
    [Show full text]
  • On the Barremian - Lower Albian Stratigraphy of Colombia
    On the Barremian - lower Albian stratigraphy of Colombia Philip J. Hoedemaeker Hoedemaeker, Ph.J. 2004. On the Barremian-lower Albian stratigraphy of Colombia. Scripta Geologica, 128: 3-15, 3 figs., Leiden, December 2004. Ph.J. Hoedemaeker, Department of Palaeontology, Nationaal Natuurhistorisch Museum, P.O. Box 9517, 2300 RA Leiden, The Netherlands (e-mail: [email protected]). Key words – stratigraphy, Barremian, Aptian, depositional sequences, Colombia. The biostratigraphy and sequence stratigraphy of the Barremian deposits, and the biostratigraphy of the Aptian deposits in the Villa de Leyva area in Colombia are briefly described. Contents Introduction ....................................................................................................................................................... 3 Barremian ............................................................................................................................................................ 4 Barremian sequence stratigraphy ............................................................................................................ 6 Aptian ................................................................................................................................................................. 11 Lowermost Albian ........................................................................................................................................ 13 Conclusions ....................................................................................................................................................
    [Show full text]
  • GE OS 1234-101 Historical Geology Lecture Syllabus Instructor
    G E OS 1234-101 Historical Geology Lecture Syllabus Instructor: Dr. Jesse Carlucci ([email protected]), (940) 397-4448 Class: MWF, 10am -10:50am, BO 100 Office hours: Bolin Hall 131, MWF, 11am ± 2pm, Tuesday, noon - 2pm. You can arrange to meet with me at any time, by appointment. Textbook: Earth System History by Steven M. Stanley, 3rd edition. I will occasionally post articles and other readings on blackboard. I will also upload Power Point presentations to blackboard before each class, if possible. Course Objectives: Historical Geology provides the student with a comprehensive survey of the history of life, and major events in the physical development of Earth. Most importantly, this class addresses how processes like plate tectonics and climate interact with life, forming an integrated system. The first half of the class focuses on concepts, and the second on a chronologic overview of major biological and physical events in different geologic periods. L E C T UR E SC H E DU L E Aug 27-31: Overview of course; what is science? The Earth as a planet Stanley (pg. 244-247) Sep 5-7: Earth materials, rocks and minerals Stanley (pg. 13-17; 25-34) Sep 10-14: Rocks & minerals continued; plate tectonics. Stanley (pg. 3-12; 35-46; 128-141; 175-186) Sep 17-21: Geological time and dating of the rock record; chemical systems, the climate system through time. Quiz 1 (Sep 19; 5%). Stanley (pg. 187-194; 196-207; 215-223; 232-238) Sep 24-28: Sedimentary environments and life; paleoecology. Stanley (pg. 76-80; 84-96; 99-123) Oct 1-5: Biological evolution and the fossil record.
    [Show full text]
  • 1. Shatsky Rise: Seismic Stratigraphy and Sedimentary Record of Pacific Paleoceanography Since the Early Cretaceous1
    Natland, J.H., Storms, M.A., et al., 1993 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 132 1. SHATSKY RISE: SEISMIC STRATIGRAPHY AND SEDIMENTARY RECORD OF PACIFIC PALEOCEANOGRAPHY SINCE THE EARLY CRETACEOUS1 William V. Sliter2 and Glenn R. Brown3 ABSTRACT Shatsky Rise consists of three highs arranged in a linear trend more than 1300 km long. Shatsky Plateau, the southernmost and largest of three highs is represented by an exposed basement high of presumed Late Jurassic age flanked by a sedimentary sequence of at least Cretaceous and Cenozoic age that reaches a maximum thickness of more than 1100 m. Drilling on Shatsky Rise is restricted to eight DSDP and ODP sites on the southern plateau that partially penetrated the sedimentary sequence. Leg 132 seismic profiles and previous seismic records from Shatsky Plateau reveal a five-part seismic section that is correlated with the drilling record and used to interpret the sedimentary history of the rise. The seismic sequence documents the transit of Shatsky Plateau beneath the equatorial divergence in the Late Cretaceous by horizontal plate motion from an original location in the Southern Hemisphere. Unconformities and lithologic changes bounding several of the seismic units are correlated with pale- oceanographic changes that resulted in erosional events near the Barremian/Aptian, Cenomanian/Turonian, and Paleogene/Neo- gene boundaries. INTRODUCTION Plateau, is the largest with a length of about 700 km and a width of about 300 km. All previous DSDP and ODP drill sites are located on Shatsky Rise, the second largest oceanic plateau in the Pacific the southern plateau (Fig.
    [Show full text]
  • Download File
    Chronology and Faunal Evolution of the Middle Eocene Bridgerian North American Land Mammal “Age”: Achieving High Precision Geochronology Kaori Tsukui Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 © 2015 Kaori Tsukui All rights reserved ABSTRACT Chronology and Faunal Evolution of the Middle Eocene Bridgerian North American Land Mammal “Age”: Achieving High Precision Geochronology Kaori Tsukui The age of the Bridgerian/Uintan boundary has been regarded as one of the most important outstanding problems in North American Land Mammal “Age” (NALMA) biochronology. The Bridger Basin in southwestern Wyoming preserves one of the best stratigraphic records of the faunal boundary as well as the preceding Bridgerian NALMA. In this dissertation, I first developed a chronological framework for the Eocene Bridger Formation including the age of the boundary, based on a combination of magnetostratigraphy and U-Pb ID-TIMS geochronology. Within the temporal framework, I attempted at making a regional correlation of the boundary-bearing strata within the western U.S., and also assessed the body size evolution of three representative taxa from the Bridger Basin within the context of Early Eocene Climatic Optimum. Integrating radioisotopic, magnetostratigraphic and astronomical data from the early to middle Eocene, I reviewed various calibration models for the Geological Time Scale and intercalibration of 40Ar/39Ar data among laboratories and against U-Pb data, toward the community goal of achieving a high precision and well integrated Geological Time Scale. In Chapter 2, I present a magnetostratigraphy and U-Pb zircon geochronology of the Bridger Formation from the Bridger Basin in southwestern Wyoming.
    [Show full text]
  • GEOLOGY What Can I Do with This Major?
    GEOLOGY What can I do with this major? AREAS EMPLOYERS STRATEGIES Some employment areas follow. Many geolo- gists specialize at the graduate level. ENERGY (Oil, Coal, Gas, Other Energy Sources) Stratigraphy Petroleum industry including oil and gas explora- Geologists working in the area of energy use vari- Sedimentology tion, production, storage and waste disposal ous methods to determine where energy sources are Structural Geology facilities accumulated. They may pursue work tasks including Geophysics Coal industry including mining exploration, grade exploration, well site operations and mudlogging. Geochemistry assessment and waste disposal Seek knowledge in engineering to aid communication, Economic Geology Federal government agencies: as geologists often work closely with engineers. Geomorphology National Labs Coursework in geophysics is also advantageous Paleontology Department of Energy for this field. Fossil Energy Bureau of Land Management Gain experience with computer modeling and Global Hydrogeology Geologic Survey Positioning System (GPS). Both are used to State government locate deposits. Consulting firms Many geologists in this area of expertise work with oil Well services and drilling companies and gas and may work in the geographic areas Oil field machinery and supply companies where deposits are found including offshore sites and in overseas oil-producing countries. This industry is subject to fluctuations, so be prepared to work on a contract basis. Develop excellent writing skills to publish reports and to solicit grants from government, industry and private foundations. Obtain leadership experience through campus organi- zations and work experiences for project man- agement positions. (Geology, Page 2) AREAS EMPLOYERS STRATEGIES ENVIRONMENTAL GEOLOGY Sedimentology Federal government agencies: Geologists in this category may focus on studying, Hydrogeology National Labs protecting and reclaiming the environment.
    [Show full text]
  • The Mathematics of the Chinese, Indian, Islamic and Gregorian Calendars
    Heavenly Mathematics: The Mathematics of the Chinese, Indian, Islamic and Gregorian Calendars Helmer Aslaksen Department of Mathematics National University of Singapore [email protected] www.math.nus.edu.sg/aslaksen/ www.chinesecalendar.net 1 Public Holidays There are 11 public holidays in Singapore. Three of them are secular. 1. New Year’s Day 2. Labour Day 3. National Day The remaining eight cultural, racial or reli- gious holidays consist of two Chinese, two Muslim, two Indian and two Christian. 2 Cultural, Racial or Religious Holidays 1. Chinese New Year and day after 2. Good Friday 3. Vesak Day 4. Deepavali 5. Christmas Day 6. Hari Raya Puasa 7. Hari Raya Haji Listed in order, except for the Muslim hol- idays, which can occur anytime during the year. Christmas Day falls on a fixed date, but all the others move. 3 A Quick Course in Astronomy The Earth revolves counterclockwise around the Sun in an elliptical orbit. The Earth ro- tates counterclockwise around an axis that is tilted 23.5 degrees. March equinox June December solstice solstice September equinox E E N S N S W W June equi Dec June equi Dec sol sol sol sol Beijing Singapore In the northern hemisphere, the day will be longest at the June solstice and shortest at the December solstice. At the two equinoxes day and night will be equally long. The equi- noxes and solstices are called the seasonal markers. 4 The Year The tropical year (or solar year) is the time from one March equinox to the next. The mean value is 365.2422 days.
    [Show full text]
  • The Rock and Fossil Record the Rock and Fossil Record the Rock And
    TheThe RockRock andand FossilFossil RecordRecord Earth’s Story and Those Who First Listened . 426 Apply . 427 Internet Connect . 428 When on Earth? . 429 Activity . 430 MathBreak . 434 Internet Connect 432, 435 Looking at Fossils . 436 QuickLab . 438 Internet Connect . 440 Time Marches On . 441 QuickLab . 443 Internet Connect . 445 Chapter Lab . 446 Chapter Review . 449 TEKS/TAKS Practice Tests . 451, 452 Feature Article . 453 Time Stands Still Pre-Reading Questions Sealed in darkness for 49 million years, this beetle still shimmers with the same metallic hues that once helped it hide among ancient plants. This rare fossil 1. How do scientists study was found in Messel, Germany. In the same rock formation, the Earth’s history? scientists have found fossilized crocodiles, bats, birds, and 2. How can you tell the age frogs. A living stag beetle (above) has a similar form and of rocks and fossils? color. Do you think that these two beetles would live in 3. What natural or human similar environments? What do you think Messel, Germany, events have caused mass was like 49 million years ago? In this chapter, you will extinctions in Earth’s learn how scientists answer these kinds of questions. history? 424 Chapter 16 Copyright © by Holt, Rinehart and Winston. All rights reserved. MAKING FOSSILS Procedure 1. You and three or four of your classmates will be given several pieces of modeling clay and a paper sack containing a few small objects. 2. Press each object firmly into a piece of clay. Try to leave an imprint showing as much detail as possible.
    [Show full text]
  • Appendix 3.Pdf
    A Geoconservation perspective on the trace fossil record associated with the end – Ordovician mass extinction and glaciation in the Welsh Basin Item Type Thesis or dissertation Authors Nicholls, Keith H. Citation Nicholls, K. (2019). A Geoconservation perspective on the trace fossil record associated with the end – Ordovician mass extinction and glaciation in the Welsh Basin. (Doctoral dissertation). University of Chester, United Kingdom. Publisher University of Chester Rights Attribution-NonCommercial-NoDerivatives 4.0 International Download date 26/09/2021 02:37:15 Item License http://creativecommons.org/licenses/by-nc-nd/4.0/ Link to Item http://hdl.handle.net/10034/622234 International Chronostratigraphic Chart v2013/01 Erathem / Era System / Period Quaternary Neogene C e n o z o i c Paleogene Cretaceous M e s o z o i c Jurassic M e s o z o i c Jurassic Triassic Permian Carboniferous P a l Devonian e o z o i c P a l Devonian e o z o i c Silurian Ordovician s a n u a F y r Cambrian a n o i t u l o v E s ' i k s w o Ichnogeneric Diversity k p e 0 10 20 30 40 50 60 70 S 1 3 5 7 9 11 13 15 17 19 21 n 23 r e 25 d 27 o 29 M 31 33 35 37 39 T 41 43 i 45 47 m 49 e 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 Number of Ichnogenera (Treatise Part W) Ichnogeneric Diversity 0 10 20 30 40 50 60 70 1 3 5 7 9 11 13 15 17 19 21 n 23 r e 25 d 27 o 29 M 31 33 35 37 39 T 41 43 i 45 47 m 49 e 51 53 55 57 59 61 c i o 63 z 65 o e 67 a l 69 a 71 P 73 75 77 79 81 83 n 85 a i r 87 b 89 m 91 a 93 C Number of Ichnogenera (Treatise Part W)
    [Show full text]
  • Geologic Time and Geologic Maps
    NAME GEOLOGIC TIME AND GEOLOGIC MAPS I. Introduction There are two types of geologic time, relative and absolute. In the case of relative time geologic events are arranged in their order of occurrence. No attempt is made to determine the actual time at which they occurred. For example, in a sequence of flat lying rocks, shale is on top of sandstone. The shale, therefore, must by younger (deposited after the sandstone), but how much younger is not known. In the case of absolute time the actual age of the geologic event is determined. This is usually done using a radiometric-dating technique. II. Relative geologic age In this section several techniques are considered for determining the relative age of geologic events. For example, four sedimentary rocks are piled-up as shown on Figure 1. A must have been deposited first and is the oldest. D must have been deposited last and is the youngest. This is an example of a general geologic law known as the Law of Superposition. This law states that in any pile of sedimentary strata that has not been disturbed by folding or overturning since accumulation, the youngest stratum is at the top and the oldest is at the base. While this may seem to be a simple observation, this principle of superposition (or stratigraphic succession) is the basis of the geologic column which lists rock units in their relative order of formation. As a second example, Figure 2 shows a sandstone that has been cut by two dikes (igneous intrusions that are tabular in shape).The sandstone, A, is the oldest rock since it is intruded by both dikes.
    [Show full text]
  • A History of the Citizen Watch Company, from the Pages of Watchtime Magazine
    THE WORLD OF FINE WATCHES SPOTLIGHT www.watchtime.com A HISTORY OF THE CITIZEN WATCH COMPANY, FROM THE PAGES OF WATCHTIME MAGAZINE CCIITTIIZZEENN THe HisTory of ciTizen One of the original Citizen pocket watches that went on THE sale in December 1924 CITIZEN WATCH STORY How a Tokyo jeweler’s experiment in making pocket watches 84 years ago led to the creation of a global watch colossus n the 1920s, the young Emperor of Japan, than the imports. To that end, Yamazaki found - Goto. The mayor was a friend of Yamazaki’s. Hirohito, received a gift that reportedly de - ed in 1918 the Shokosha Watch Research Insti - When the fledgling watch manufacturer was I lighted him. The gift was from Kamekichi tute in Tokyo’s Totsuka district. Using Swiss ma - searching for a name for his product, he asked Yamazaki, a Tokyo jeweler, who had an ambi - chinery, Yamazaki and his team began experi - Goto for ideas. Goto suggested Citizen. A tion to manufacture pocket watches in Japan. menting in the production of pocket watches. watch is, to a great extent, a luxury item, he ex - The Japanese watch market at that time By the end of 1924, they began commercial plained, but Yamazaki was aiming to make af - was dominated by foreign makes, primarily production of their first product, the Caliber fordable watches. It was Goto’s hope that every Swiss brands, followed by Americans like 16 pocket watch, which they sold under the citizen would benefit from and enjoy the time - Waltham and Elgin. Yamazaki felt the time brand name Citizen.
    [Show full text]
  • Geochronology Database for Central Colorado
    Geochronology Database for Central Colorado Data Series 489 U.S. Department of the Interior U.S. Geological Survey Geochronology Database for Central Colorado By T.L. Klein, K.V. Evans, and E.H. DeWitt Data Series 489 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2010 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: T.L. Klein, K.V. Evans, and E.H. DeWitt, 2009, Geochronology database for central Colorado: U.S. Geological Survey Data Series 489, 13 p. iii Contents Abstract ...........................................................................................................................................................1 Introduction.....................................................................................................................................................1
    [Show full text]