Diurnal and Semi-Diurnal Tidal Structures Due to O2, O3 and H2O

Total Page:16

File Type:pdf, Size:1020Kb

Diurnal and Semi-Diurnal Tidal Structures Due to O2, O3 and H2O Diurnal and semi-diurnal tidal structures due to O2,O3 and H2O heating Geeta Vichare∗ and R Rajaram Indian Institute of Geomagnetism, New Panvel, Navi Mumbai 410 218, India. ∗Corresponding author. e-mail: [email protected] Today with increased availability of data of middle atmospheric winds and temperature, modelling of middle atmospheric tides has acquired greater importance. The theory of atmospheric tides has two main parts: (i) Investigation of the sources of periodic excitation, and (ii) calculation of the atmospheric response to the excitation. Other than stratospheric ozone and tropospheric water vapour absorption, the thermal energy available from the absorption in Schumann–Runge (SR) continuum leading to photo- dissociation of O2 is important energy source for tides in the lower thermosphere. PHODIS radiative transfer model is capable of providing tidal forcing due to combined effect of solar and chemical heating in the wavelength region 116 to 850 nm. In this paper, we present an atmospheric tidal model based on classical tidal theory and the prime objective is to obtain the tidal structure due to conventional ozone and water vapour heating in conjunction with the O2 absorption. Mean wind and dissipation mechanisms are not considered. The present tidal model reveals that the diurnal amplitude peaks in mid to low latitudes, whereas semidiurnal component is stronger at higher latitudes. The semidiurnal tide is about an order of magnitude weaker than the diurnal tide. Also, semidiurnal wave has longer vertical wavelength than diurnal tide. The results of present model are qualitatively in good agreement with the other tidal models, which utilize more sophisticated parameterization. Thus, the salient features of the tidal structure are obtained using basic computations without considering the effects of background winds and dissipation processes. Further refinements to the model can serve as an inexpensive substitute to the presently available tidal models. 1. Introduction space-based observations (Vincent 1984; Sasi and Krishna Murthy 1990;Denget al. 1997;Rajaram The Earth’s atmosphere responds to gravitational and Gurubaran 1998; Vincent et al. 1998; Tsuda and thermal forces in a manner analogous to forced et al. 1999; Ratnam et al. 2002;Panchevaet al. mechanical vibrations. The thermally forced atmo- 2003;Rigginet al. 2003;Xuet al. 2009;Zhao spheric tides are excited by the periodic absorp- et al. 2012). Also, number of attempts has been tion of solar radiation connected with the apparent made towards the modelling of tides (Forbes 1982; sidereal motion of the Sun around the Earth. Lieberman and Leovy 1995; Miyahara and Miyoshi Characteristics of the diurnal and semi-diurnal 1997; Wood and Andrews 1997; Hagan and Forbes components of the tidal oscillations have been 2002, 2003; Grieger et al. 2002; Zhang et al. 2010). studied extensively using various techniques such The theory of atmospheric tides has two main as rocket sounding, radar, lidar measurements and parts: (i) Investigation of the sources of periodic Keywords. Atmospheric tides; atmospheric tidal model; Phodis heating; O2,O3 and H2O heating; diurnal tide; semi-diurnal tide. J. Earth Syst. Sci. 122, No. 5, October 2013, pp. 1207–1217 c Indian Academy of Sciences 1207 1208 Geeta Vichare and R Rajaram excitation, and (ii) calculation of the atmospheric perturbations in neutral wind derived from present response to the excitation. Therefore, in order model simulations are discussed in section 5.Scope to numerically simulate the Earth’s upper atmo- of the future work is outlined in section 6, and the spheric circulation, the accurate knowledge of the last section presents the summary. heat budget of the atmosphere is essential. During photo-dissociation of the absorbing species, sub- stantial portions of the incident energy may appear as internal energy of the excited species or as chem- ical potential energy of the product species. Thus 2. Heating rates obtained from ‘PHODIS’ the absorbed solar energy does not all immedi- ately appear as heat, rather heating is a multi- The solar ultraviolet radiation absorbed by ozone step process, which makes the accurate evaluation and molecular oxygen in the mesosphere and lower of the heating rates of the atmosphere more com- thermosphere produces heating through a series of plicated. Moreover, absorption in the atmosphere complex processes and it is strongly dependent on takes place by various atoms and molecules such wavelength of impinging solar radiation. Ozone is ∼ as O2,O3,H2O, N2,N,CO2, etc. However, con- the main absorber of wavelength 240–320 nm, sidering all of them together affects the clarity in O2 of ∼100–200 nm, and both O3 and O2 absorb arriving at the cause and effect discussions. The radiation of wavelength ∼200–240 nm. Absorp- main absorbing molecules responsible for thermal tion below ∼100 nm can occur by various other tides are O3 in the stratosphere and mesosphere molecules and atoms, such as N2,O2,N,O. (Butler and Small 1963), H2O in the troposphere PHODIS is a software package developed by (Siebert 1961)andO2 in the thermosphere. Exten- Arve Kylling (Kylling et al. 1995), to calculate sive work has been performed for first two com- photo dissociation rates for number of molecules ponents (Chapman and Lindzen 1970;Forbesand such as O2,O3,NO2,CO2 and also computes Garrett 1978;Groves1982; Groves and Wilson the heating rate due to O3 and O2 absorption 1982), whereas fewer efforts have been made for in the wavelength region 116 to 850 nm. Many the forcing due to oxygen molecule. The O2 heat- atmospheric models such as Finish Meteoro- ing is significant in the thermosphere and it is logical Institute’s FinROSE chemistry transport found that the heating in the Schumann–Runge model (FinROSE-ctm) (Damski et al. 2007), the (SR) bands is the dominant heat source between EMEP Eulerian photochemistry model (Simpson 88 and 96 km, while absorption in the SR con- et al. 2012), etc., use photodissociation coefficients tinuum is most important above 96 km (Strobel compiled by PHODIS radiative transfer model. 1978). Therefore, it is vital to simulate the atmo- Simpson et al. (2002) compared the PHODIS pho- spheric tides for oxygen heating too. In this paper tolysis rate coefficients of NO2 with observations we present modelling results of diurnal and semi- and found the agreement is good under clear sky diurnal tides in the atmosphere due to O3,H2O conditions. and O2 heating using classical tidal theory. Here we In PHODIS model, the radiative transfer cal- demonstrate that the simple computations of the culation is divided into three distinct regions: tides without considering the mean wind and dis- (a) 116.3–177.5 nm (SR Continuum), (b) 177.5– sipation mechanisms can also reproduce the broad 202.5 nm (SR Bands), which uses Minschwaner features of the atmospheric tides, and is qualita- et al. (1993) parameterization, and (c) 202.5– tively in good agreement with the other existing 850.0 nm. First two regions employ no multiple sophisticated tidal models. The aim of the present scattering (Beer–Lambert law), whereas multiple paper is to introduce our atmospheric tidal model. scattering is included in the third region. All three For the present tidal model, we use PHODIS regions take into account the ozone and molecu- radiative transfer model to reproduce the heat- lar oxygen absorption and Rayleigh scattering. To ing due to stratospheric ozone and lower thermo- handle multiple scattering in the 202.5–850.0 nm spheric oxygen absorption, which is discussed in region PHODIS provides an option of three dif- section 2. The tropospheric water vapour heating ferent radiative transfer solvers: (1) The general is computed separately using the well-established purpose discrete ordinate algorithm DISORT with Grove’s method (Groves 1982). The mathemat- plane parallel geometry (Stamnes et al. 1988), (2) ical description of the model is presented in spherical and pseudo-spherical version of DISORT section 3. The height profiles of the Hough com- (Dahlback and Stamnes 1991), and (3) two-stream ponents of diurnal and semi-diurnal waves have algorithm (Twostr) (Kylling et al. 1995). In the been discussed in section 4. Thus, sections 2 and 4 present work, we used first solver (DISORT) to take care of the sources of periodic excitation calculate the radiation field in a model atmosphere. and section 3 describes the computation of the For the present simulations, we have used a atmospheric response to the excitation. The tidal tropical (15◦N) atmosphere as a background Diurnal and semi-diurnal tidal structures due to O2,O3 and H2Oheating 1209 Figure 1. Height profile of neutral densities. Figure 2. Height profile of heating rates obtained from PHODIS during equinox at noon, at geographic equator. atmosphere, which is based on the Air Force Geo- wavelength grid specified by WMO (1986). Higher physics Laboratory’s (AFGL) Atmospheric Con- resolution of 1 nm is used between wavelength 300 stituent Profiles model (Anderson et al. 1986). In and 315 nm. this model, the vertical structure including tem- Figure 2 represents typical heating rates perature, pressure and density distributions, plus obtained from PHODIS at spring equinox, at the mixing ratio profiles of H O, CO ,O,NO, CO, 2 2 3 2 geographic equator during noontime. The meso- and CH , were initially taken from U.S. Standard 4 spheric heating, essentially due to Ozone absorp- Atmosphere. Altogether, vertical profiles of the tion peaks at around 45 km above the Earth’s number densities of 28 constituents (H O, CO ,O , 2 2 3 surface. Whereas, in the lower thermosphere, the N O, CO, CH ,O,NO,SO,NO, HNO ,OH, 2 4 2 2 2 3 heating increases considerably due to molecu- HF, HCl , HBr, HI, ClO, OCS, H CO, HOCl, N , 2 2 lar oxygen absorption, which normally maximizes HCN, CH3Cl , H O ,CH ,CH ,andPH)are 2 2 2 2 2 6 3 around 140 km.
Recommended publications
  • Ozone Therapy: Beyond Oxygen the Most Needed Adjunct to Veterinary Medicine Introduction of Ozone
    Ozone Therapy: Beyond Oxygen The Most Needed Adjunct to Veterinary Medicine Introduction of Ozone Margo Roman, D.V.M., CVA, COT, CPT MASH Main St Animal Services of Hopkinton Hopkinton MA 01748 www.mashvet.com • OZONE is a trivalent oxygen molecule. Three O2 + electrical spark/ lightning= 2 O3. It is very reactive and will return to 3 O2 molecules giving high levels of O2. Healthy cells need Oxygen • Ozone is one of the most beneficial substances on this planet, and the BAD science you hear quoted on the news every night is causing you to subconsciously be afraid of nature, and therefore, a part of life itself. They tell you that somehow hydrogen plus nitrogen or sulfur equals ozone. H + N + S = 03? Not on this planet it doesn't! What is ozone? Simply, oxygen. Three atoms of nature's oxygen. It exists in a very active form for about 30 minutes before breaking down into two atoms of regular oxygen - by giving up one atom of singlet oxygen. Where does ozone come from? Nature. And nature is efficient. The new growth in the forests, the trees, the grass on your front lawn, and the plankton in the ocean are continually creating oxygen. • • If you have seen Inconvenient Truth, the Al Gore documentary on Global warming, there is one scene that brings it all together. In one section he discusses the CO2 levels over the Pacific Ocean. In addition to the original measurements that began in 1965, they were able to measure the levels from hundreds of years ago by taking samples from deep within glaciers.
    [Show full text]
  • Impact of Cabin Ozone Concentrations on Passenger Reported Symptoms in Commercial Aircraft
    RESEARCH ARTICLE Impact of Cabin Ozone Concentrations on Passenger Reported Symptoms in Commercial Aircraft Gabriel Bekö1*, Joseph G. Allen2, Charles J. Weschler1,3, Jose Vallarino2, John D. Spengler2 1 International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby, Denmark, 2 Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America, 3 Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, United States of America * [email protected] Abstract Due to elevated ozone concentrations at high altitudes, the adverse effect of ozone on air OPEN ACCESS quality, human perception and health may be more pronounced in aircraft cabins. The asso- Citation: Bekö G, Allen JG, Weschler CJ, Vallarino J, ciation between ozone and passenger-reported symptoms has not been investigated under Spengler JD (2015) Impact of Cabin Ozone real conditions since smoking was banned on aircraft and ozone converters became more Concentrations on Passenger Reported Symptoms in Commercial Aircraft. PLoS ONE 10(5): e0128454. common. Indoor environmental parameters were measured at cruising altitude on 83 US doi:10.1371/journal.pone.0128454 domestic and international flights. Passengers completed a questionnaire about symptoms Academic Editor: Qinghua Sun, The Ohio State and satisfaction with the indoor air quality. Average ozone concentrations were relatively University, UNITED STATES low (median: 9.5 ppb). On thirteen flights (16%) ozone levels exceeded 60 ppb, while the Received: December 10, 2014 highest peak level reached 256 ppb for a single flight. The most commonly reported symp- toms were dry mouth or lips (26%), dry eyes (22.1%) and nasal stuffiness (18.9%).
    [Show full text]
  • User's Guide M-Audio Ozone
    M-Audio Ozone version: MA-Ozone_052803 User’s Guide Introduction . .2 M-Audio Ozone Features . .2 M-Audio Ozone Overview . .2 What’s in the Box . .3 Guide to Getting Started . .4 M-Audio Ozone Panel Features . .4 Top Panel . .4 Rear Panel . .6 M-Audio Ozone Driver Installation . .7 Driver Installation for Windows . .7 Windows XP: . .8 Windows 2000: . .12 Windows ME: . .16 Windows 98SE: . .18 M-Audio Ozone and the Windows Sound System . .23 Macintosh Driver Installation . .23 OMS Installation . .24 M-Audio Ozone Driver Installation . .24 OMS Configuration (Mac OS9 only) . .25 M-Audio Ozone and the Mac OS 9 Sound Manager . .27 M-Audio Ozone and Mac OS X . .27 The M-Audio Ozone Control Panel . .28 Application Software Setup . .30 M-Audio Ozone Hardware Installation . .31 M-Audio Ozone Audio Setup and Control . .31 Using the Mic and Instrument Inputs . .33 Setting Input Gain . .34 Phantom Power . .34 Using the Aux Inputs . .35 Using Direct Monitor . .36 M-Audio Ozone MIDI Setup and Control . .37 MIDI Functions In Standalone Mode . .39 Utilizing the Programming Assignment Keys . .39 Technical Support & Contact Information . .44 M-Audio Ozone Warranty Information . .45 M-Audio Ozone Technical Specifications . .46 Appendix A - MIDI Controller Information . .47 Appendix B - M-Audio Ozone Block Diagram . .48 Introduction Congratulations on your purchase of the M-Audio Ozone. The M-Audio Ozone is an innovative product—a powerful combination of MIDI controller and audio interface with microphone and instrument preamps that will turn your computer into a virtual music production studio. You may use your M-Audio Ozone in conjunction with a USB-equipped PC or Macintosh computer and appropriate music software to enter a full range of MIDI note and controller information, as well as record and play back your voice, guitar, or external sound modules.
    [Show full text]
  • Impact of Cabin Ozone Concentrations on Passenger Reported Symptoms in Commercial Aircraft
    View metadata,Downloaded citation and from similar orbit.dtu.dk papers on:at core.ac.uk Dec 21, 2017 brought to you by CORE provided by Online Research Database In Technology Impact of Cabin Ozone Concentrations on Passenger Reported Symptoms in Commercial Aircraft Bekö, Gabriel; Allen, Joseph G.; Weschler, Charles J.; Vallarino, Jose; Spengler, John D. Published in: PLOS ONE Link to article, DOI: 10.1371/journal.pone.0128454 Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Bekö, G., Allen, J. G., Weschler, C. J., Vallarino, J., & Spengler, J. D. (2015). Impact of Cabin Ozone Concentrations on Passenger Reported Symptoms in Commercial Aircraft. PLOS ONE, 10(5). DOI: 10.1371/journal.pone.0128454 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. RESEARCH ARTICLE Impact of Cabin Ozone Concentrations on Passenger Reported Symptoms in Commercial Aircraft Gabriel Bekö1*, Joseph G.
    [Show full text]
  • Impact of Cabin Ozone Concentrations on Passenger Reported Symptoms in Commercial Aircraft
    Impact of Cabin Ozone Concentrations on Passenger Reported Symptoms in Commercial Aircraft The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Bekö, Gabriel, Joseph G. Allen, Charles J. Weschler, Jose Vallarino, and John D. Spengler. 2015. “Impact of Cabin Ozone Concentrations on Passenger Reported Symptoms in Commercial Aircraft.” PLoS ONE 10 (5): e0128454. doi:10.1371/journal.pone.0128454. http:// dx.doi.org/10.1371/journal.pone.0128454. Published Version doi:10.1371/journal.pone.0128454 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:17295574 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA RESEARCH ARTICLE Impact of Cabin Ozone Concentrations on Passenger Reported Symptoms in Commercial Aircraft Gabriel Bekö1*, Joseph G. Allen2, Charles J. Weschler1,3, Jose Vallarino2, John D. Spengler2 1 International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby, Denmark, 2 Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America, 3 Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, United States of America * [email protected] Abstract Due to elevated ozone concentrations at high altitudes, the adverse effect of ozone on air OPEN ACCESS quality, human perception and health may be more pronounced in aircraft cabins. The asso- Citation: Bekö G, Allen JG, Weschler CJ, Vallarino J, ciation between ozone and passenger-reported symptoms has not been investigated under Spengler JD (2015) Impact of Cabin Ozone real conditions since smoking was banned on aircraft and ozone converters became more Concentrations on Passenger Reported Symptoms in Commercial Aircraft.
    [Show full text]
  • Ozone Depletion, Developing Countries, and Human Rights: Seeking Better Ground on Which to Fight for Protection of the Ozone Layer
    Journal of Natural Resources & Environmental Law Volume 10 Issue 1 Journal of Natural Resources & Article 6 Environmental Law, Volume 10, Issue 1 January 1994 Ozone Depletion, Developing Countries, and Human Rights: Seeking Better Ground on Which to Fight for Protection of the Ozone Layer Victor Williams City University of New York Follow this and additional works at: https://uknowledge.uky.edu/jnrel Part of the Environmental Law Commons, and the Human Rights Law Commons Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Williams, Victor (1994) "Ozone Depletion, Developing Countries, and Human Rights: Seeking Better Ground on Which to Fight for Protection of the Ozone Layer," Journal of Natural Resources & Environmental Law: Vol. 10 : Iss. 1 , Article 6. Available at: https://uknowledge.uky.edu/jnrel/vol10/iss1/6 This Article is brought to you for free and open access by the Law Journals at UKnowledge. It has been accepted for inclusion in Journal of Natural Resources & Environmental Law by an authorized editor of UKnowledge. For more information, please contact [email protected]. Ozone Depletion, Developing Countries, and Human Rights: Seeking Better Ground on Which to Fight for Protection of the Ozone Layer VICTOR WILLIAMS* I urge you not to take a complacent view of the situation. The state of depletion of the ozone layer continues to be alarming.... In February, 1993, the ozone levels over North America and most of Europe were 20 percent below normal.... Even now, millions of tons of CFC Ichlorofluorocarbon] products are en route to their fatal stratospheric rendezvous...
    [Show full text]
  • Brownie's THIRD LUNG
    BrMARINEownie GROUP’s Owner’s Manual Variable Speed Hand Carry Hookah Diving System ADVENTURE IS ALWAYS ON THE LINE! VSHCDC Systems This manual is also available online 3001 NW 25th Avenue, Pompano Beach, FL 33069 USA Ph +1.954.462.5570 Fx +1.954.462.6115 www.BrowniesMarineGroup.com CONGRATULATIONS ON YOUR PURCHASE OF A BROWNIE’S SYSTEM You now have in your possession the finest, most reliable, surface supplied breathing air system available. The operation is designed with your safety and convenience in mind, and by carefully reading this brief manual you can be assured of many hours of trouble-free enjoyment. READ ALL SAFETY RULES AND OPERATING INSTRUCTIONS CONTAINED IN THIS MANUAL AND FOLLOW THEM WITH EACH USE OF THIS PRODUCT. MANUAL SAFETY NOTICES Important instructions concerning the endangerment of personnel, technical safety or operator safety will be specially emphasized in this manual by placing the information in the following types of safety notices. DANGER DANGER INDICATES AN IMMINENTLY HAZARDOUS SITUATION WHICH, IF NOT AVOIDED, WILL RESULT IN DEATH OR SERIOUS INJURY. THIS IS LIMITED TO THE MOST EXTREME SITUATIONS. WARNING WARNING INDICATES A POTENTIALLY HAZARDOUS SITUATION WHICH, IF NOT AVOIDED, COULD RESULT IN DEATH OR INJURY. CAUTION CAUTION INDICATES A POTENTIALLY HAZARDOUS SITUATION WHICH, IF NOT AVOIDED, MAY RESULT IN MINOR OR MODERATE INJURY. IT MAY ALSO BE USED TO ALERT AGAINST UNSAFE PRACTICES. NOTE NOTE ADVISE OF TECHNICAL REQUIREMENTS THAT REQUIRE PARTICULAR ATTENTION BY THE OPERATOR OR THE MAINTENANCE TECHNICIAN FOR PROPER MAINTENANCE AND UTILIZATION OF THE EQUIPMENT. REGISTER YOUR PRODUCT ONLINE Go to www.BrowniesMarineGroup.com to register your product.
    [Show full text]
  • MAINTAINING MILITARY READINESS by MANAGING OZONE DEPLETING SUBSTANCES Guidelines for Armed Forces in Developing Countries
    MAINTAINING MILITARY READINESS BY MANAGING OZONE DEPLETING SUBSTANCES Guidelines for armed forces in developing countries United Nations Environment Programme Multilateral Fund for the Division of Technology, Industry and Economics Implementation of the OzonAction Programme Montreal Protocol Copyright © UNEP September 1999 This document, or any portion thereof, may be reproduced for non-commercial reasons, provided that the reproduced portion includes reference to the source (UNEP TIE OzonAction Programme under the Multilateral Fund). Disclaimer The United Nations Environment Programme (UNEP) and the writers and reviewers of this guide, as well as their employers, do not guarantee the effectiveness, worker safety, or environmental acceptability of any of the technical or policy options described in this document. While the information given here is believed to be accurate, it is necessarily presented in summary only. The decision to implement any of the alternatives described in this guide is a complex one that requires careful consideration of a wide range of situation-specific parameters, many of which may not be addressed here. The responsibility for that decision and its consequences rests exclusively with the individual or entity electing to implement the adopted alternative. UNEP, the writers and reviewers of this guide and their employers do not make any warranty or representation, either express or implied, with respect to its accuracy, completeness or usefulness; nor do they accept any liability for the consequences arising from the use of, or reliance upon, any information, material, or procedure described, including (but not limited to) any claims regarding health, safety, environmental effects, efficacy, performance, or cost made by the supplier of the information.
    [Show full text]
  • Swimming Pool 1 Swimming Pool
    Swimming pool 1 Swimming pool A swimming pool, swimming bath, wading pool, paddling pool, or simply a pool, is a container filled with water intended for swimming or water-based recreation. There are many standard sizes, the largest of which is the Olympic-size swimming pool. A pool can be built either above or in the ground, and from materials such as concrete (also known as gunite), metal, plastic or fiberglass. Pools that may be used by many people or by the general public are called public, while pools used exclusively by a few people or in a home are called private. Many Backyard swimming pool health clubs, fitness centers and private clubs have public pools used mostly for exercise. Many hotels have pools available for their guests. Hot tubs and spas are pools with hot water, used for relaxation or therapy, and are common in homes, hotels, clubs and massage parlors. Swimming pools are also used for diving and other water sports, as well as for the training of lifeguards and astronauts. History The "Great Bath" at the site of Mohenjo-Daro in modern-day Pakistan was most likely the first swimming pool, dug during the 3rd millennium BC. This pool is A private swimming pool in Tagaytay, Philippines 12 by 7 meters, is lined with bricks and was covered with a tar-based sealant.[1] Ancient Greeks and Romans built artificial pools for athletic training in the palaestras, for nautical games and for military exercises. Roman emperors had private swimming pools in which fish were also kept, hence one of the Latin words for a pool, piscina.
    [Show full text]
  • Environmental Protection Agency 40 CFR Part 81 40 CFR Parts 50, 51, and 81 8-Hour Ozone National Ambient Air Quality Standards; Final Rules
    Friday, April 30, 2004 Part II Environmental Protection Agency 40 CFR Part 81 40 CFR Parts 50, 51, and 81 8-Hour Ozone National Ambient Air Quality Standards; Final Rules VerDate jul<14>2003 22:43 Apr 29, 2004 Jkt 203001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\30APR2.SGM 30APR2 23858 Federal Register / Vol. 69, No. 84 / Friday, April 30, 2004 / Rules and Regulations ENVIRONMENTAL PROTECTION when exposed to ozone pollution. In Business Information (CBI) or other AGENCY this document, EPA is also information whose disclosure is promulgating the first deferral of the restricted by statute. Certain other 40 CFR Part 81 effective date, to September 30, 2005, of material, such as copyrighted material, [OAR–2003–0083; FRL–7651–8] the nonattainment designation for Early is not placed on the Internet and will be Action Compact areas that have met all publicly available only in hard copy RIN 2060– milestones through March 31, 2004. form. Publicly available docket Finally, we are inviting States to submit materials are available either Air Quality Designations and by July 15, 2004, requests to reclassify electronically in EDOCKET or in hard Classifications for the 8-Hour Ozone areas if their design value falls within copy at the Docket, EPA/DC, EPA West, National Ambient Air Quality five percent of a high or lower Room B102, 1301 Constitution Ave., Standards; Early Action Compact classification. This rule does not NW., Washington, DC. The Public Areas With Deferred Effective Dates establish or address State and Tribal Reading Room is open from 8:30 a.m.
    [Show full text]
  • Draft Connecticut 2021 Air Monitoring Network Plan
    Connecticut 2021 Annual Air Monitoring Network Plan Connecticut Department of Energy and Environmental Protection Bureau of Air Management The Department of Energy and Environmental Protection (DEEP) is an affirmative action/equal opportunity employer and service provider. In conformance with the Americans with Disabilities Act, DEEP makes every effort to provide equally effective services for persons with disabilities. Individuals with disabilities who need this information in an alternative format, to allow them to benefit and/or participate in the agency’s programs and services, should call 860-424-3035 or e-mail the ADA Coordinator, at [email protected]. Persons who are hearing impaired should call the State of Connecticut relay number 711. Connecticut 2021 Annual Air Monitoring Network Plan ii Table of Contents Table of Contents ...................................................................................................................... ii Introduction ............................................................................................................................ 4 Background ............................................................................................................................. 4 Network Overview .................................................................................................................... 5 Proposed Network Changes ....................................................................................................... 6 Monitoring Site Information ......................................................................................................
    [Show full text]
  • The QBO Impacts on Tides and the SAO
    The QBO impacts on tides and the SAO Anne Smith Nick Pedatella Rolando Garcia NCAR NCAR is sponsored by the US National Science Foundation QBO variation in amplitude of DW1 tide QBO-E =>> easterly (westward) SABER tidal T’ QBO-W=>> westerly (eastward) Xu et al., JGR, 2009 HRDI tidal v’ Burrage et al., GRL, 1995 E W E W Multiple observations show Ascension Is. radar (8°S) that the diurnal tide amplitude Davis et al. ACP 2013 in the upper mesosphere varies in phase with the QBO winds in the tropical lower stratosphere. 2 tool for investigating the mechanism: WACCM4 • WACCM4 is the NCAR Whole Atmosphere Community Climate Model. • NOTE: This version of WACCM does not spontaneously generate a QBO. • QBO is imposed by nudging to QBO winds over the pressure range 100-0.3 hPa. • Winds for nudging are based on Singapore radiosonde data as compiled by Freie Universität Berlin. • Current simulations are 12 years (2002-2013) – longer simulations are in progress but not yet complete. 3 DW1 amplitude in the MLT vs QBO wind SABER all months SABER March-April DW1 amplitude in WACCM is smaller than that in SABER and other observations – a long-standing problem. WACCM all months WACCM March-April 4 WACCM QBO variation in DW1 tide Use WACCM to explore processes that contribute to the QBO in tidal amplitude: QBO-W: solid – stratospheric ozone (and therefore heating) varies QBO-E: dashed with QBO – direct impact of stratospheric zonal wind on tide forcing or propagation – mean winds and waves pressure above the QBO region may range of have a coordinated QBO interannual variation due to variability in wave forcing or background atmosphere QBO-W = westerly (eastward, positive) QBO-E = easterly (westward, negative) 5 At what altitude does the QBO tidal signal originate? SABER (obs) WACCM snapshot of tidal temperature perturbations Both obs and WACCM indicate that difference in QBO-W and QBO-E already exists in the stratosphere.
    [Show full text]