Progress Repor T

Total Page:16

File Type:pdf, Size:1020Kb

Progress Repor T Copertina 2011 (7-9):Cpertina 4/9 7-09-2012 15:59 Pagina 1 2011 Original Modified PROGRESS REPORT PROGRESS 1011 1010 109 108 107 2011 Euratom–ENEA Association Euratom–ENEA Association fusion activities fusion activities 2011 Progress Report ITALIAN NATIONAL AGENCY FOR NEW TECHNOLOGIES ENERGY AND SUSTAINABLE ECONOMIC DEVELOPMENT Nuclear Fusion Unit Copertina 2011 (7-9):Cpertina 4/9 7-09-2012 15:59 Pagina 2 This report was prepared by the Scientific Publications Office from contributions provided by the scientific and technical staff of ENEA’s Nuclear Fusion Unit Scientific editors: Paola Batistoni, Gregorio Vlad Cover, artwork and design/composition: Marisa Cecchini See http://www.fusione.enea.it for copy of this report Original Modified Original a) and modified b) layouts of the in–port RNC cassettes 1011 1010 109 108 107 Fast neutron maps (see page 057) Published by: ENEA - Servizio Diffusione Tecnologie Edizioni Scientifiche, Centro Ricerche Frascati, C.P. 65 00044 Frascati Rome (Italy) 20112011 ProgressProgress ReportReport Euratom–ENEA Association Fusion Activities Contents 005 Preface 007 Magnetic Confinement 007 Introduction 008 FTU Facility 008 Summary of the machine operation 009 FTU Experimental Results 009 Density limit dependence on the toroidal magnetic field 011 Electron cyclotron 013 Lower hybrid 015 Liquid Lithium Limiter experiments 016 Diagnostic developments 021 Experimental international collaborations 024 Theory 025 Nonlinear studies on beta induced Alfvén eigenmode driven by energetic particles using eXtended version of HMGC 026 Nonlinear dynamics of shear Alfvén modes 027 Electron–fishbone simulations using XHMGC 028 Orbit theory and equilibrium distribution function for Alfvén wave stability studies and related energetic particle transports in FAST 029 Benchmark activity for the HYMAGYC code 030 Theoretical and numerical studies of wave–packet propagation in tokamak plasmas 030 Analytical and numerical studies for the propagating and mode converted lower hybrid waves 030 Gyrokinetic theory of parametric decays of kinetic Alfvén waves 031 Geodesic acoustic mode excitation by a spatially broad energetic particle beam 031 Study of self–organized critical phenomena in large systems 032 Plasmas in stellar accretion disks 033 Contribution to the F4E task for optimization of the ITER magnetic diagnostics 034 Integrated Tokamak Modeling Task Force activities 034 Non–thermal fusion reactor concept 035 JET Collaborations 035 Characterizations of the L–mode domain 036 Pellet ELM pacing 036 Nonlinear effects associated to lower hybrid wave propagation 037 Detection of dust following plasma disruptions 037 L–H power threshold studies: Be/W Vs C 037 ITER ramp–up/down similarity experiment 038 Deployment and commissioning of the current limit avoidance system for the JET eXtreme shape controller 038 Experimental results on the optimization of the magnetic field configuration for JET breakdown 040 Effects of the input polarization on JET polarimeter lateral chords 040 Preliminary investigations of equilibrium reconstruction quality during ELMy and ELM–free phases on JET 040 Statistical modelling of plasma shape influence on the power threshold to access the H–mode 041 Fusion Advanced studies Torus 041 Introduction 042 FAST Main Objectives 043 FAST Scientific Rationale and Plasma Physics Scenarios 044 Power Exhaust Problem 045 High Plasma Current Operation 049 Technology Programme 046 Introduction 002 047 Divertor, First Wall, Vacuum Vessel and Shield 047 Manufacturing technology for the ITER divertor inner vertical target 047 Development of plasma spray technique for the deposition of thick W coatings on fusion relevant substrates 048 Manufacturing and testing of a HETS module for DEMO divertor 049 Magnet and Power Supply 049 Pre–Compression rings final design qualification 050 Design verification of the electron cyclotron power supply system for ITER 050 Goal Oriented Training Programme in Power Supply Engineering 051 Remote Handling and Metrology 051 ITER in Vessel VIewing System 053 Neutronics 053 Neutronics experiment on HCLL–TBM mock–up 055 Nuclear data experiments and techniques 056 Neutron spectrometry 056 Neutronic analysis of the ITER equatorial port plug 1 058 Studies on the design of the ITER radial neutron camera 059 Materials 059 Development of a multi–scale methodology for composite structural modelling and validation of modelling procedure by mechanical testing 060 Erosion–corrosion tests of SiCf/SiC composites into LiPb 061 Safety and Environment, Power Plant Conceptual Studies and Socio Economics 061 RAMI analysis for scrubber column modules and related part of ITER TC–DS 062 Identification of Safety Important Class for ITER components 063 Definition of RAMI guidelines for DEMO systems 064 Breeder Blanket and Fuel Cycle 064 European Breeding Blanket Test Facility 065 Training activities 065 Broader Approach 065 JT–60SA 068 International Fusion Materials Irradiation Facility 075 JET Fusion Technology 075 JET housekeeping wastes detritiating 076 Shutdown dose rate benchmark experiment at JET to validate the three–dimensional advanced–D1S method 077 Preliminary estimation of the impact of the new ITER–like wall on shutdown dose rate at JET 078 Benchmarking of CAD to MCNP interface 079 Cryogenics 079 Liquid helium service 081 Superconductivity 081 Introduction 082 Cable–in–Conduit Conductor Manufacturing and Testing 082 Fabrication of ITER reactor and JT–60SA tokamak CICC 082 Test of ENEA NbTi joint 082 Quality control monitoring of NbTi strands for JT–60SA TF coils 082 Low Temperature Superconducting Materials 082 Direct measurement of transversal resistance in Nb3Sn strands 083 Susceptibility measurements for determining the transversal resistivity 083 X–ray diffraction measurements 084 Critical current dependence on axial strain in stainless steel jacketed Nb3Sn wires 085 Evolution of the pinning force of NbTi filaments as a function of isothermal annealing time 085 High temperature Superconductors Materials 085 Influence of Pd interlayer thickness on Ni–W substrate oxidation mechanism 003 086 Buffer layer for YBCO based coated conductors deposited by Nd:YAG pulsed laser 087 MgO–based buffer layer architecture for YBCO coated conductor 088 MOD–LZO buffer layer 089 Inertial Fusion 089 ABC Facility 091 Fusion & Industry 093 Quality Assurance 094 Publications & Events 094 Publications 094 Articles 102 Articles in course of publication 104 Contributions to conferences 110 Workshops and Seminars 110 Workshops 110 Seminars 111 Patents 112 Miscellaneous (*) 112 Hydrogen Transport through Nanostructured Electrodes for Energy Applications 113 Pd–Based Membranes 114 AGILE and LOFT 116 Organization Chart 117 Abbreviation & Acronyms (*) Not in Association framework 004 Preface In 2011 ENEA was continuing the effort in the fusion program allocating a substantial amount of resources to fulfil its work program. The most important milestones both in physics and technology were accomplished. The effort in contributing to the R&D necessary for the ITER procurement was increased in the most challenging areas. ENEA is, indeed, strongly committed for the success of the fusion program in general and ITER in particular being well aware of the crucial importance of the fusion Labs role still for long time. Furthermore, in 2011 ENEA was looking for international cooperation in order to prepare its participation to Horizon 2020 when the program will need strong synergies among the main international stakeholders, with the aim to open a new phase where, besides a successful and in time ITER construction a strong commitments in tackling the issues still open for DEMO has to be undertaken starting a well–focussed technology program. In this frame, ENEA is continuing the design of FAST that has been proposed in view of a robust and effective accompanying program to reduce ITER operating risk and in preparation for DEMO. The physics program has been continued with FTU as well as in developing theoretical models. Others scientific and technology facilities have been further developed like the active cooled liquid lithium limiter. The strong collaboration with industry continues for both R&D and the ITER procurement, being the main effort devoted to the In Vessel Viewing System and the radial Neutron Camera, for the former, and to the divertor components and superconducting magnet for the latter. ENEA has also an important role for the Italian contribution to the Broader Approach being in charge for the construction of the toroidal magnet and power supply of JT–60SA as well as the development of the IFMIF target and advanced materials. In 2011 the equipment for coil production has been procured. The R&D related to IFMIF target and the activities on Sic/SiC in the frame of IFERC have been progressed significantly. ENEA is also continuing the physics and technology research on inertial fusion in the frame of the keep in touch activities within the Euratom program and is now collaborating with national and international Labs. The aim is also to participate to HiPER research infrastructure. ENEA is also active in supporting industries in participating to the ITER through an information network dedicated to the procurement calls. (Euratom–ENEA Association Head of Research Unit) Frascati, December 2011 Aldo Pizzuto 005 chapter 1 Magnetic Confinement In 2011, FTU operations were limited and mostly centered on high–density ohmic plasmas and MHD control by ECRH. The 8 GHz lower hybrid system was indeed unavailable due to failure of two
Recommended publications
  • Engineering Optimization of Stellarator Coils Lead to Improvements in Device Maintenance
    2015 IEEE 26th Symposium on Fusion Engineering (SOFE 2015) Austin, Texas, USA 31 May – 4 June 2015 IEEE Catalog Number: CFP15SOF-POD ISBN: 978-1-4799-8265-3 Copyright © 2015 by the Institute of Electrical and Electronics Engineers, Inc All Rights Reserved Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved. ***This publication is a representation of what appears in the IEEE Digital Libraries. Some format issues inherent in the e-media version may also appear in this print version. IEEE Catalog Number: CFP15SOF-POD ISBN (Print-On-Demand): 978-1-4799-8265-3 ISBN (Online): 978-1-4799-8264-6 ISSN: 1078-8891 Additional Copies of This Publication Are Available From: Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: [email protected] Web: www.proceedings.com TABLE OF CONTENTS ENGINEERING OPTIMIZATION OF STELLARATOR COILS LEAD TO IMPROVEMENTS IN DEVICE MAINTENANCE ..................................................................................................................................................1 T. Brown, J. Breslau, D. Gates, N. Pomphrey, A. Zolfaghari NSTX TOROIDAL FIELD COIL TURN TO TURN SHORT DETECTION .................................................................7 S. Ramakrishnan, W.
    [Show full text]
  • Overview of Versatile Experiment Spherical Torus (VEST)
    Overview of Versatile Experiment Spherical Torus (VEST) Y.S. Hwang and VEST team March 29, 2017 CARFRE and CATS Dept. of Nuclear Engineering Seoul National University 23rd IAEA Technical MeetingExperimental on Researchresults and plans of Using VEST Small Fusion Devices, Santiago, Chille Outline Versatile Experiment Spherical Torus (VEST) . Device and discharge status Start-up experiments . Low loop voltage start-up using trapped particle configuration . EC/EBW heating for pre-ionization . DC helicity injection Studies for Advanced Tokamak . Research directions for high-beta and high-bootstrap STs . Preparation of long-pulse ohmic discharges . Preparation for heating and current drive systems . Preparation of profile diagnostics Long-term Research Plans Summary 1/36 VEST device and Machine status VEST device and Machine status 2/36 VEST (Versatile Experiment Spherical Torus) Objectives . Basic research on a compact, high- ST (Spherical Torus) with elongated chamber in partial solenoid configuration . Study on innovative start-up, non-inductive H&CD, high and innovative divertor concept, etc Specifications Present Future Toroidal B Field [T] 0.1 0.3 Major Radius [m] 0.45 0.4 Minor Radius [m] 0.33 0.3 Aspect Ratio >1.36 >1.33 Plasma Current [kA] ~100 kA 300 Elongation ~1.6 ~2 Safety factor, qa ~6 ~5 3/36 History of VEST Discharges • #2946: First plasma (Jan. 2013) • #10508: Hydrogen glow discharge cleaning (Nov. 2014) Ip of ~70 kA with duration of ~10 ms • #14945: Boronization with He GDC (Mar. 2016) Maximum Ip of ~100 kA • # ??:
    [Show full text]
  • Time Evaluation of Diamagnetic Loop and Mirnov Oscillations in a Major Plasma Disruption and Comparison with a Normal Shot
    International Nano Letters https://doi.org/10.1007/s40089-018-0259-x ORIGINAL ARTICLE Time evaluation of diamagnetic loop and Mirnov oscillations in a major plasma disruption and comparison with a normal shot R. Sadeghi1 · Mahmood Ghoranneviss1 · M. K. Salem1 Received: 21 November 2018 / Accepted: 7 December 2018 © The Author(s) 2018 Abstract In this paper, plasma disruption was investigated in IR-T1 tokamak. Moreover, the time evaluation of plasma parameters such as plasma current, Ip; loop voltage, Vloop; power heating; and safety factor was illustrated. The results of diamagnetic loop and Mirnov oscillations in a major disruption were compared with their results in a normal shot. In addition, plasma disruption in diferent tokamaks was investigated and the results were compared with the IR-T1 tokamak. Keywords Disruption · Runaway electrons · Mirnov coils · Diamagnetic loop · Tokamak · MHD instability Introduction tokamak disruptions cause plasma confinement to be destroyed by restriction of current and density which ends Among various tools of magnetic confnement, tokamak to large mechanical stresses. Plasma disruption is caused containing hot plasma is one of the best and developed by strong stochastic magnetic feld formed due to nonlin- devices [1]. Tokamaks are divided into two groups: frst, the earity excited low-mode number magneto–hydro–dynamics large tokamaks for studying large plasmas such as DIII-D (MHD) modes. The safety factor (q) is very important in [2] and Tore–Supra [3] with high-cost testing conditions and determining stability and transport theory [9–13]. The paper second, small tokamaks such as STOR-M [4] and ISTTOK is organized as follows: in Sect.
    [Show full text]
  • Edge Turbulence in ISTTOK: a Multi-Code Fluid Validation B Dudson, W Gracias, R Jorge, a Nielsen, J Olsen, P Ricci, C Silva, P
    Edge turbulence in ISTTOK: a multi-code fluid validation B Dudson, W Gracias, R Jorge, A Nielsen, J Olsen, P Ricci, C Silva, P. Tamain, G. Ciraolo, N Fedorczak, et al. To cite this version: B Dudson, W Gracias, R Jorge, A Nielsen, J Olsen, et al.. Edge turbulence in ISTTOK: a multi-code fluid validation. Plasma Physics and Controlled Fusion, IOP Publishing, 2021. hal-03179634 HAL Id: hal-03179634 https://hal.archives-ouvertes.fr/hal-03179634 Submitted on 24 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Edge turbulence in ISTTOK: a multi-code fluid validation B. D. Dudson1, W. A. Gracias2, R. Jorge3;4, A. H. Nielsen5, J. M. B. Olsen5, P. Ricci3, C. Silva4, P. Tamain6, G. Ciraolo6, N. Fedorczak6, D. Galassi3;7, J. Madsen5, F. Militello8, N. Nace6, J. J. Rasmussen5, F. Riva3;8, E. Serre7 1York Plasma Institute, Department of Physics, University of York YO10 5DQ, UK 2Universidad Carlos III de Madrid, Leganés, 28911, Madrid, Spain 3École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland 4Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal 5Department of Physics, Technical University of Denmark, Fysikvej, DK-2800 Kgs.-Lyngby, Denmark 6IFRM, CEA Cadarache, F-13108 St.
    [Show full text]
  • H-Mode Transition Physics Close to DN on MAST and Its Applications to Other Tokamaks
    20th IAEA FUSION ENERGY CONFERENCE 1-6 November 2004 Vilamoura, Portugal Organized by the International Atomic Energy Agency Hosted by the Government of Portugal through: INSTITUTO SUPERIOR TÉCNICO Centro de Fusão Nuclear www.cfn.ist.utl.pt Book of Abstracts IAEA-CN-116 20th IAEA Fusion Energy Conference 2004 Book of Abstracts Contents Overview (OV) 1 OV/1-1 ·Overview of JT-60U Progress towards Steady-state Advanced Tokamak . 2 OV/1-2 ·Overview of JET results . 2 OV/1-3 ·Development of Burning Plasma and Advanced Scenarios in the DIII-D Tokamak 2 OV/1-4 ·Confinement and MHD stability in the Large Helical Device . 2 OV/1-5 ·Overview of ASDEX Upgrade Results . 3 OV/2-1 ·Overview of Zonal Flow Physics . 3 OV/2-2 ·Steady-state operation of Tokamaks: key physics and technology developments on Tore Supra. 3 OV/2-3 ·Progress Towards High Performance Plasmas in the National Spherical Torus Experiment (NSTX) . 4 OV/2-4 ·Overview of MAST results . 4 OV/2-5 ·Overview of Alcator C-Mod Research Program . 5 OV/3-1 ·Recent Advances in Indirect Drive ICF Target Physics . 5 OV/3-2 ·Laser Fusion research with GEKKO XII and PW laser system at Osaka . 5 OV/3-3 ·Direct-Drive Inertial Confinement Fusion Research at the Laboratory for Laser Energetics: Charting the Path to Thermonuclear Ignition . 5 OV/3-4 ·Acceleration Technology and Power Plant Design for Fast Ignition Heavy Ion Inertial Fusion Energy . 6 OV/3-5Ra ·Progress on Z-Pinch Inertial Fusion Energy . 6 OV/3-5Rb ·Wire Array Z pinch precursors, implosions and stagnation .
    [Show full text]
  • Italy . Frascati Tokamak Upgrade . Superconductors
    it enea the italian fusion programme is coordinated by EnEa (agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile). EnEa works with linked third parties: universities, research institutes, and industries. institutes carrying out fusion research along with EnEa include plasma physics institute (ifp), Consorzio rfX, national research Council of italy (Cnr), national institute for nuclear physics (infn) and university of padova. about 600 professionals work on fusion research in institutions across italy. enea • EnEa centre at frascati houses the frascati tokamak upgrade (ftu) tokamak, a high- magnetic-field, high-plasma-density tokamak; it investigates radio-frequency plasma heating, control techniques and plasma-wall interaction with liquid metal walls • frascati neutron generator, a medium intensity 14-mev neutron generator, is used for experimental validation of fusion nuclear data and codes. • studies and development of superconductor materials are carried out at the EnEa superconductivity laboratory • EnEa’s high heat flux Components laboratory set up and tested the manufacturing process and a dedicated facility for the fabrication of full scale itEr divertor target prototypes • Design and experimental validation of liquid metal technology for breeding blankets can be done at EnEa centre at Brasimone. ConsoRZio RFX • Consorzio rfX staff are involved in the scientific exploitation and upgrade of the rfX-mod experiment, a flexible device which can be operated both as a high current reversed field pinch
    [Show full text]
  • Tokamak Energy April 2019
    Faster Fusion through Innovations M Gryaznevich and Tokamak Energy Ltd. Team FusionCAT Webinar 14 September 2020 © 2020 Tokamak Energy Tokamak 20202020 © Energy Tokamak Fusion Research – Public Tokamaks JET GLOBUS-M Oxford, UK StPetersburg, RF COMPASS KTM Prague, CZ (1) Kurchatov, KZ (3) T15-M Alcator C-Mod Moscow STOR-M Cambridge, MA MAST Saskatoon, SK Oxford, UK ASDEX KSTAR ITER(1)(2) / WEST Garching, DE Daejeon, KR LTX / NSTX Cadarache, FR FTU HL-2 (1) Pegasus Princeton, NJ Frascati, IT JT-60SA DIII-D Madison, WI TCV Chengdu, CN QUEST Naka, JP San Diego, CA ISTTOK Lausanne, CH Kasuga, JP Lisbon, PT SST-1 / ADITY EAST Gandhinagar, IN Hefei, CN Conventional Tokamak • Fusion research is advancing Spherical Tokamak • However, progress towards Fusion Power is constrained Note: Tokamaks are operating unless indicated otherwise. (1) Under construction. (2) The International Thermonuclear Experimental Reactor (“ITER”) megaproject is supported by China, the European Union, India, Japan, Korea, Russia and the United States. © 2020© Energy Tokamak (3) No longer in use. 2 Fusion Development – Private Funding Cambridge, MA Langfang, PRC Vancouver, BC Los Angeles, CA Orange County, CA • Common goal of privately and publicly Oxford, UK Oxford, UK funded Fusion research is to develop technologies and Fusion Industry • At TE, we have identified the key technology Conventional Tokamak Spherical Tokamak gaps needed to create a commercial fusion Non-Tokamak Technology reactor and then used Technology Roadmapping as an approach chart our path. © 2020©
    [Show full text]
  • Interface of EPICS with Marte for Real-Time Application
    1 Interface of EPICS with MARTe for Real-time Application October 23, 2012 Sangwon Yun Interface of EPICS with MARTe for Real-time Applications, October 23, 2012 2 Outlines Introduction ITER Task Overview of main technical subjects Multi-threaded Application Real-Time executor (MARTe) Portable Channel Access Server (pCAS) Interface of EPICS with MARTe The result of performance evaluation of MARTe Conclusions Acknowledgements and references Interface of EPICS with MARTe for Real-time Applications, October 23, 2012 3 Introduction ITER Task CODAC HPC (High Performance Computer) Dedicated computers running plasma control algorithms The Plasma Control System(PCS) requires the hard real-time operation The hard real-time control system requires the predictability in response time and deterministic upper bound in latency. In this regard, RTOS and real-time software framework are required to achieve those ITER Task : Evaluation and Demonstration of ITER CODAC Technologies at KSTAR Subtask : Implement density feedback control and verify its performance in a running device • To collect elements for decision making on PCS software framework • Deploy different PCS software framework based on KSTAR PCS on modified Linux and MARTe on RTOS for comparison KSTAR PCS Modified Linux RTOS (Based on RHEL) (MRG Realtime) See: Fast Controller Workshop, Feb 28, 2011. ITER IO Interface of EPICS with MARTe for Real-time Applications, October 23, 2012 4 Introduction MARTe framework for Hard Real-time Control System MARTe is a solution to be considered for a Real-time control system • The three considered system histogram The optimized reference program EPICS IOC MARTe application • Test conditions Run the system by providing an external sampling clock of 1 kHz 30,000 cycles Priority of the thread for ADC has been set to Latency distribution the highest CPU affinity (excepts EPICS IOC) • Result Reference EPICS IOC MARTe MARTe provides a shorter and, above all, Prog.
    [Show full text]
  • Imaging and Probe Techniques for Wave Dispersion Estimates in Magnetized Plasmas
    Imaging and Probe Techniques for Wave Dispersion Estimates in Magnetized Plasmas by A. D. Light B.A./B.S., Case Western Reserve University, 2005 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Physics 2013 This thesis entitled: Imaging and Probe Techniques for Wave Dispersion Estimates in Magnetized Plasmas written by A. D. Light has been approved for the Department of Physics Prof. Tobin Munsat Prof. Martin Goldman Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. Light, A. D. (Ph.D., Physics) Imaging and Probe Techniques for Wave Dispersion Estimates in Magnetized Plasmas Thesis directed by Prof. Tobin Munsat Fluctuations in magnetized laboratory plasmas are ubiquitous and complex. In addition to deleterious effects, like increasing heat and particle transport in magnetic fusion energy devices, fluctuations also provide a diagnostic opportunity. Identification of a fluctuation with a particular wave or instability gives detailed information about the properties of the underlying plasma. In this work, diagnostics and spectral analysis techniques for fluctuations are developed and applied to two different laboratory plasma experiments. The first part of this dissertation discusses imaging measurements of coherent waves in the Controlled Shear Decorrelation Experiment (CSDX) at the University of California, San Diego. Visible light from ArII line emission is collected at high frame rates using an intensified digital camera.
    [Show full text]
  • Book of Abstracts Contribution: T1 / Beam Plasmas and Inertial Fusion
    Book of Abstracts Contribution: T1 / Beam Plasmas and Inertial Fusion Exploring HED physics, ICF dynamics and lab astrophysics with advanced nuclear diagnostics Chikang Li Massachusetts Institute of Technology, Cambridge, MA 02139, USA Significant progress has recently been made in developing advanced nuclear diagnostics for the OMEGA laser facility and the National Ignition Facility (NIF). Both self-emitted fusion products and backlighting nuclear particles have been measured and used to study a large range of basic physics of high-energy-density (HED) plasmas. The highlights of these achievements are manifested by numerous recent publications. For ignition science in inertial-confinement fusion (ICF) experiments, for example, these works have helped to advance our understanding of kinetic effects in exploding-pusher ICF implosions and our understanding of NIF capsule implosion dynamics and symmetry. For basic physics in HED plasmas and laboratory astrophysics, our research contributed to the understanding of nuclear plasma science, the generation and reconnection of self-generated spontaneous electromagnetic fields and associated plasma instabilities, high-Mach-number plasma jets, Weibel-mediated electromagnetic collisionless shocks, and charged-particle stopping power in various laser-produced HED plasmas. In this Tutorials and Topical Lecture, we will present details of these researches. The work described herein was performed in part at the LLE National Laser User’s Facility (NLUF), and was supported in part by US DOE, LLNL and LLE. 3rd European Conference on Plasma Diagnostics (ECPD), 6-9 May 2019, Lisbon, Portugal https://www.ipfn.tecnico.ulisboa.pt/ECPD2019/ Contribution: T2 / Basic and Astrophysical Plasmas Detection of the missing baryons by studying the lines from the Warm Hot Intergalactic Medium (WHIM) F.
    [Show full text]
  • EX/P5-8 Effects of Viscosity on Magnetohydrodynamic Behaviour
    1 EX/P5-8 Effects of Viscosity on Magnetohydrodynamic Behaviour During Limiter Biasing on the CT-6B Tokamak P. Khorshid 1), L. Wang 2), M. Ghoranneviss 3), X.Z. Yang 2), C.H. Feng 2) 1) Department of Physics, Islamic Azad University, Mashhad, Iran, 2) Institute of Physics, Chinese Academy of Sciences, Beijing, China 3) Plasma Physics Research Center, Islamic Azad University, Tehran, Iran E-mail: [email protected] Abstract. Effects of viscosity on magnetohydrodynamics behaviour during limiter biasing in the CT-6B Tokamak has been investigated. The results shown that subsequent to the application of a positive bias, a decrease followed by an increase in the frequency of magnetic field fluctuations was observed. With contribution of viscous force effects in the radial force balance equation for Limiter Biasing, in terms of the nonstationarity model, it allows us to identify the understanding physics responsible for change in the Mirnov oscillations that could be related to poloidal rotation velocity and radial electric field. It could be seen that the time scale of responses to biasing is important. The response of ∇pi, decrease of poloidal rotation velocity, the edge electrostatics and magnetic fluctuations to external field have been investigated. The results shown that momentum balance equation with considering viscous force term can be use for modeling of limiter biasing in the tokamak. 1. Introduction Many experiments have shown the importance of the radial electric field in improved confinement states and several theories can explain the transition mechanism. There are several methods for controlling the radial electric field externally [1,2]. Edge biasing experiments have been found to be important in modifying edge turbulence and transport, but the mechanism of biasing penetration in edge fluctuations and its levels are different with respect to devices operation.
    [Show full text]
  • THE BIG STEP from ITER to DEMO J. Ongena , R.Koch, Ye.O
    THE BIG STEP FROM ITER TO DEMO J. Ongena , R.Koch, Ye.O.Kazakov Laboratorium voor Plasmafysica - Laboratoire de Physique des Plasmas Koninklijke Militaire School - Ecole Royale Militaire Association"EURATOM - Belgian State", B-1000 Brussels, Belgium Partner in the Trilateral Euregio Cluster (TEC) N. Bekris European Fusion Development Agreement JET Close Support Unit, Culham Science Centre Culham, OX14 3DB, United Kingdom D.Mazon Institut de Recherche sur la Fusion par Confinement Magnetique CEA Cadarache, 13108 St Paul-lez-Durance, France ABSTRACT ITER. Reactor studies are also being developed for Helical Devices (see e.g. [1-4]). However, a decision on a next step Extrapolation of the knowledge base towards a future stellarator/helical device can only take place when the main fusion power reactor is discussed. Although fusion research results of the current large helical devices in operation or has achieved important milestones since the start and construction have been obtained. The largest helical device continues achieving successes, we show that there are still currently in operation is LHD (Large Helical Device, in the important challenges that have to be addressed before the National Institute for Fusion Science (NIFS), close to construction and operation of an economical fusion power Nagoya, Japan). The construction of the largest stellarator reactor. Both physics and technological questions have to in the world Wendelstein 7-X (Max-Planck Institute, be solved. ITER is a significant step that will lead to major Greifswald, Germany) is nearly finished with first progress; for a DEMO reactor however, there will still be operations foreseen for beginning 2015. In this paper, we outstanding physics and engineering questions that require will therefore restrict ourselves to the discussion of a further R&D.
    [Show full text]