Bioprospecting of Endophytic Fungi from Certain Medicinal Plants

Total Page:16

File Type:pdf, Size:1020Kb

Bioprospecting of Endophytic Fungi from Certain Medicinal Plants BIOPROSPECTING OF ENDOPHYTIC FUNGI FROM CERTAIN MEDICINAL PLANTS THESIS SUBMITTED TO BHARATI VIDYAPEETH DEEMED UNIVERSITY, PUNE FOR THE AWARD OF DOCTOR OF PHILOSOPHY (Ph. D.) IN MICROBIOLOGY UNDER FACULTY OF SCIENCE BY MONALI GULABRAO DESALE UNDER THE GUIDANCE OF DR. MUKUND G. BODHANKAR DEAN, FACULTY OF SCIENCE BHARATI VIDYAPEETH DEEMED UNIVERSITY YASHWANTRAO MOHITE COLLEGE PUNE May 2016 CERTIFICATE This is to certify that the work incorporated in the thesis entitled “Bioprospecting of Endophytic Fungi From Certain Medicinal Plants” submitted by Monali G. Desale for the award of the Degree of Doctor of Philosophy in Microbiology under the Faculty of Science of Bharati Vidyapeeth Deemed University, Pune was carried out in the Microbiology laboratory of Bharati Vidyapeeth Deemed University Yashwantrao Mohite College, Pune. Date:- ( Dr. K. D. Jadhav ) Principal, Bharati Vidyapeeth Deemed University Yashwantrao Mohite College, Pune CERTIFICATE This is to certify that the work incorporated in the thesis entitled “Bioprospecting of Endophytic Fungi From Certain Medicinal Plants” submitted by Monali G. Desale for the award of the degree of Doctor of Philosophy in Microbiology under the Faculty of Science of Bharati Vidyapeeth Deemed University, Pune was carried out under my supervision. Date: (Dr. Mukund G. Bodhankar) Dean, Faculty of Science Department of Microbiology Bharati Vidyapeeth Deemed University Yashwantrao Mohite College, Pune DECLARATION BY CANDIDATE I hereby declare that the thesis entitled “Bioprospecting of Endophytic Fungi From Certain Medicinal Plants” submitted by me to the Bharati Vidyapeeth Deemed University, Pune for the degree of Doctor of Philosophy (Ph.D.) in Microbiology under the Faculty of Science is original piece of work carried out by me under the supervision of Dr. M. G. Bodhankar. I further declare that it has not been submitted to this or any other university or institution for the award of any degree or diploma. I also confirm that all the material which I have borrowed from other sources and incorporated in this thesis is duly acknowledged. If any material is not duly acknowledged and found incorporated in thesis, it is entirely my responsibility. I am fully aware of the implications of any such act which might have been committed by me advertently or inadvertently. Date: (Monali G. Desale) Research Student Bharati Vidyapeeth Deemed University Yashwantrao Mohite College, Pune. ACKNOWLEDGEMENT I would like to place on record my deep sense of gratitude to my guide Dr. Mukund G. Bodhankar, Dean, Faculty of Science, Microbiology Department, Bharati Vidyapeeth Deemed University, Yashwantrao Mohite College, Pune for his support, guidance and encouragement without which this work would not have completed. I also take this opportunity to thank Prof. Dr. Shivajirao Kadam, Vice-Chancellor, Bharati Vidyapeeth Deemed University, Pune for creating an atmosphere conducive to research in all institutions of University which helped me a lot during the course of Ph. D. work. I also profusely thank Dr. K. D. Jadhav, Principal, Bharati Vidyapeeth Deemed University Yashwantrao Mohite College, Pune for his support and permission to perform experimental and thesis work in the laboratory of the college. I would like to express my sincere gratitude to Dr. Mrs. V. R. Sapre from Microbiology department of the college for her cooperation in completing the part of the work. I would also like to express my sincere gratitude to Dr. S. K. Singh, Scientist, Agharkar Research Institute (ARI), Pune for his support and guidance in morphological identification of endophytic fungi. I express my sincere thanks to Mr. Sachin Purohit, Managing Director, GeneOmbio Technologies, Pune and the team of Microbial Identification section specially Dr. Amol Raut, Mr. Yashawant Chavan, Mr. Asif Kawathekar for their prompt help in molecular identification. I place on record my sincere thanks to Dr. Niraj Vyawahare, Principal, Pad. D. Y. Patil College of Pharmacy, Pune and Dr. Santosh Gandhi, Professor, Department of Analytical Chemistry, AISSMS College of Pharmacy, Pune who lent a helping hand in chemical elucidation of the bioactive metabolite. I also thank Ms. Prajakta Pathade of Botanical survey of India, Pune for helping me in the part of the work. I would also like to express my sincere thanks to subject experts Prof. B. P. Kapadnis and Principal Dr. G. R. Pathade for their expert and critical suggestions and positive criticism. The work would have been incomplete without the help rendered in various ways by all staff of Department of microbiology including Mrs. Jape, Mr. Santosh Kharge, Mr. Patole and Mr. Golve. I would also like to express special thanks to all my colleagues, friends and teaching as well as non-teaching staff who kept my spirits high during the testing period of laboratory work. Though not connected directly with the work, my acknowledgment would be incomplete without mentioning all my family members. I express my deep gratitude for my parents in law, husband, parents and specially kids who allowed me to complete the work uninterruptedly. Date: (Monali G. Desale) TABLE OF CONTENTS Page Abstract I Chapter 1 : Introduction 1 Chapter 2 : Objectives 6 Chapter 3 : Review of Literature 2.1 Definition 7 2.2 Distribution and biodiversity of endophytic fungi 9 2.3 Bioprospecting of microbial endophytes and their natural products for 11 various pharmaceutical activities 2.4 Antibacterial activities of endophytic fungi 14 2.5 Antifungal activities of endophytic fungi 15 2.6 Anticancer activities of endophytic fungi 15 2.7 Antiviral activities of endophytic fungi 16 2.8 Diversity and studies of endophytic fungi in India 17 2.9 Fungal endophytes from medicinal plants with reference to India 19 2.10 Therapeutic properties and endophytic fungi of Ocimum sanctum 19 2.11 Therapeutic properties and endophytic fungi of Vitex negundo 20 2.12 Therapeutic properties and endophytic fungi of Barleria prionitis 22 Chapter 4 : Materials and Methods 3.1 Selection of plant species 51 3.2 Localities/Sites for collection of plant samples 54 3.3 Collection of plant samples 54 3.4 Isolation of endophytic fungi 54 3.5 Media used for isolation of endophytic fungi 57 3.6 Calculation of colonization rate, isolation rate and density of colonization 57 3.7 Preservation of culture 58 3.8 Identification of endophytic fungi 58 3.8.1 Morphological identification 58 3.8.2 Molecular identification 58 3.9 Cultivation of fungi in different media for the production of metabolites 60 3.10 Fermentation, extraction and isolation of secondary metabolites 61 3.11 Screening of endophytic fungi for antibacterial activity 61 3.11.1 Microorganisms used for antibacterial activity 61 3.11.2 Preparation of test sample 61 3.11.3 Agar well diffusion method 61 3.12 Process optimization of fermentation conditions for production of active 62 metabolites from selected endophytic fungi 3.13 Extraction and purification of secondary metabolites of selected endophytic 62 fungi for evaluation of antibacterial activity 3.14 Determination of minimum inhibitory concentration (MIC) 63 3.15 Chemical screening of selected endophytic fungal extract 63 3.15.1 Chromatographic analysis by High performance thin layer 63 chromatography (HPTLC) 3.15.1.a Instrumentation 63 3.15.1.b Chromatographic conditions 63 3.15.1.c Mobile phase 63 3.15.1.d Calculation of Rf values 64 3.15.2 Structural elucidation 64 Chapter 5 : Results 4.1 Biodiversity and taxonomical study of the endophytic fungi isolated from 65 Ocimum sanctum, Vitex negundo and Barleria prionitis 4.1.1 Plant-wise and plant part-wise distribution of endophytic fungi 65 4.1.2 Species-wise distribution of fungi among the three medicinal plants 68 4.1.3 The species, genera and other taxonomical details of the endophytic 71 fungi isolated from the three medicinal plants 4.1.4 Colonization rate and isolation rate of plant part samples 71 4.1.4.a Colonization rate and isolation rate of endophytic fungi in case of 74 Ocimum sanctum 4.1.4.b Colonization rate and isolation rate of endophytic fungi in case of 74 Vitex negundo 4.1.4.c Colonization rate and isolation rate of endophytic fungi in case of 74 Barleria prionitis 4.1.4.d Colonization rate and isolation rate of endophytic fungi for all three 76 medicinal plants taken together 4.1.5 The density of colonization (rD%) or colonization frequency (CF%) of an 77 individual endophytic species in three medicinal plants 4.1.5.a The density of colonization (rD%) or colonization frequency (CF%) 77 of different species of endophytic fungi isolated from Ocimum sanctum 4.1.5.b The density of colonization (rD%) or colonization frequency (CF%) 78 of different species of endophytic fungi isolated from Vitex negundo 4.1.5.c The density of colonization (rD%) or colonization frequency (CF%) 79 of different species of endophytic fungi isolated from Barleriaprionitis 4.1.5.d The density of colonization (rD%) or colonization frequency (CF%) of different species of endophytic fungi isolated from all three medicinal 79 plants together 4.2. The identification of endophytic fungi 81 4.2.1 Molecular identification of Phomopsis sp. aff. P. archeri B. Sutton isolated 83 from culture no. 505 of Vitex negundo 4.2.2 Molecular identification of Phomopsis sp. aff. P. archeri B. Sutton isolated 86 from culture no. 582 of Barleria prionitis 4.2.3 Molecular identification of Alternaria raphani J.W. Groves and Skolko 89 isolated from culture no. 536 of Vitex negundo 4.3 Brief taxonomy of the other major endophytic fungi isolated from the different 92 parts of the three medicinal plants 4.4 Antibacterial screening of Fungal Endophytes 94 4.4.1 Analysis of antibacterial screening of fungal endophytes 108 4.4.2 Salient features of analysis of antibacterial screening of fungal endophytes 113 4.5 Process optimization for production of active metabolites from Phomopsis archeri B.
Recommended publications
  • Symptomology, Biology and Management of Alternaria Leaf Spot
    The Pharma Innovation Journal 2021; 10(6): 264-268 ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 Symptomology, biology and management of Alternaria TPI 2021; 10(6): 264-268 © 2021 TPI leaf spot of mustard (Brassica spp.) www.thepharmajournal.com Received: 24-04-2021 Accepted: 30-05-2021 Ramesh Kumar and Poonam Shete Ramesh Kumar Department of Plant Pathology, Abstract School of Agriculture, Lovely Oilseed Brassica spp. is one of the most important diseases of oilseed crop in the world. Rapeseed Professional University, mustard are susceptible to a number of diseases which is caused by the living (biotic) pathogen. It is also Phagwara, Punjab, India known as Alternaria black spot diseases surrounded with yellow colours on the leaves which is known to be the most destructive diseases in the world. This disease is generally characterised by the different Poonam Shete names which are as follows, Alternaria brassica, Alternaria brassicola and Alternaria raphani. Department of Plant Pathology, Alternaria leaf spot pathogen produces lesion around the leaves, stem, and the Silique which cause School of Agriculture, Lovely reduction in defoliation. These pathogens are seed borne, soil borne, and airborne diseases. Alternaria Professional University, leaf spot diseases caused by the heavy rainfall and the weather with the highest diseases incidence. The Phagwara, Punjab, India Conidia, age of the host plant is also responsible for severity of the diseases. This disease is more 0 prominent during the summer seasons where the temperature falls 27- 28 C. This paper also determines the development of Alternaria leaf blightin Mustard crop in relation to the pathogen such as taxonomy, biology, epidemiology and their management through biological, chemical, cultural and botanical approaches.
    [Show full text]
  • Pestalotiopsis—Morphology, Phylogeny, Biochemistry and Diversity
    Fungal Diversity (2011) 50:167–187 DOI 10.1007/s13225-011-0125-x Pestalotiopsis—morphology, phylogeny, biochemistry and diversity Sajeewa S. N. Maharachchikumbura & Liang-Dong Guo & Ekachai Chukeatirote & Ali H. Bahkali & Kevin D. Hyde Received: 8 June 2011 /Accepted: 22 July 2011 /Published online: 31 August 2011 # Kevin D. Hyde 2011 Abstract The genus Pestalotiopsis has received consider- are morphologically somewhat similar. When selected able attention in recent years, not only because of its role as GenBank ITS accessions of Pestalotiopsis clavispora, P. a plant pathogen but also as a commonly isolated disseminata, P. microspora, P. neglecta, P. photiniae, P. endophyte which has been shown to produce a wide range theae, P. virgatula and P. vismiae are aligned, most species of chemically novel diverse metabolites. Classification in cluster throughout any phylogram generated. Since there the genus has been previously based on morphology, with appears to be no living type strain for any of these species, conidial characters being considered as important in it is unwise to use GenBank sequences to represent any of distinguishing species and closely related genera. In this these names. Type cultures and sequences are available for review, Pestalotia, Pestalotiopsis and some related genera the recently described species P. hainanensis, P. jesteri, P. are evaluated; it is concluded that the large number of kunmingensis and P. pallidotheae. It is clear that the described species has resulted from introductions based on important species in Pestalotia and Pestalotiopsis need to host association. We suspect that many of these are be epitypified so that we can begin to understand the probably not good biological species.
    [Show full text]
  • Pima County Plant List (2020) Common Name Exotic? Source
    Pima County Plant List (2020) Common Name Exotic? Source McLaughlin, S. (1992); Van Abies concolor var. concolor White fir Devender, T. R. (2005) McLaughlin, S. (1992); Van Abies lasiocarpa var. arizonica Corkbark fir Devender, T. R. (2005) Abronia villosa Hariy sand verbena McLaughlin, S. (1992) McLaughlin, S. (1992); Van Abutilon abutiloides Shrubby Indian mallow Devender, T. R. (2005) Abutilon berlandieri Berlandier Indian mallow McLaughlin, S. (1992) Abutilon incanum Indian mallow McLaughlin, S. (1992) McLaughlin, S. (1992); Van Abutilon malacum Yellow Indian mallow Devender, T. R. (2005) Abutilon mollicomum Sonoran Indian mallow McLaughlin, S. (1992) Abutilon palmeri Palmer Indian mallow McLaughlin, S. (1992) Abutilon parishii Pima Indian mallow McLaughlin, S. (1992) McLaughlin, S. (1992); UA Abutilon parvulum Dwarf Indian mallow Herbarium; ASU Vascular Plant Herbarium Abutilon pringlei McLaughlin, S. (1992) McLaughlin, S. (1992); UA Abutilon reventum Yellow flower Indian mallow Herbarium; ASU Vascular Plant Herbarium McLaughlin, S. (1992); Van Acacia angustissima Whiteball acacia Devender, T. R. (2005); DBGH McLaughlin, S. (1992); Van Acacia constricta Whitethorn acacia Devender, T. R. (2005) McLaughlin, S. (1992); Van Acacia greggii Catclaw acacia Devender, T. R. (2005) Acacia millefolia Santa Rita acacia McLaughlin, S. (1992) McLaughlin, S. (1992); Van Acacia neovernicosa Chihuahuan whitethorn acacia Devender, T. R. (2005) McLaughlin, S. (1992); UA Acalypha lindheimeri Shrubby copperleaf Herbarium Acalypha neomexicana New Mexico copperleaf McLaughlin, S. (1992); DBGH Acalypha ostryaefolia McLaughlin, S. (1992) Acalypha pringlei McLaughlin, S. (1992) Acamptopappus McLaughlin, S. (1992); UA Rayless goldenhead sphaerocephalus Herbarium Acer glabrum Douglas maple McLaughlin, S. (1992); DBGH Acer grandidentatum Sugar maple McLaughlin, S. (1992); DBGH Acer negundo Ashleaf maple McLaughlin, S.
    [Show full text]
  • Novosti Sistematiki Nizshikh Rastenii 53(2): 315–332
    Новости систематики низших растений — Novosti sistematiki nizshikh rastenii 53(2): 315–332. 2019 Checklist of ascomycetous microfungi of the Nuratau Nature Reserve (Uzbekistan) I. M. Mustafaev, N. Yu. Beshko, M. M. Iminova Institute of Botany of Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan Corresponding author: I. M. Mustafaev, [email protected] Abstract. A checklist of ascomycetous microfungi of the Nuratau Nature Reserve (Nuratau Mountains, Uzbekistan) was compiled for the first time as a result of field research conducted in 2009–2017. In total, 197 species, 3 varieties and 51 forms of micromycetes belonging to 66 genera and 30 families have been identified. Among them 19 species (Asteromella tanaceti, Camarospori- um achilleae, Diplocarpon alpestre, Diplodia celtidis, Hendersonia ephedrae, Mycosphaerella artemi- siae, Neopseudocercosporella capsellae, Phoma hedysari, P. mororum, Phyllosticta prostrata, P. silenes, P. trifolii, Ramularia trifolii, Rhabdospora eremuri, Selenophoma nebulosa, Septoria cyperi, S. dauci, S. ranunculacearum, S. trifolii) and one form (Erysiphe cichoracearum f. tanaceti) were found for the first time for the mycobiota of Uzbekistan. 30 species of microfungi were recorded on 31 new host plants. The most abundant species are representatives of the cosmopolitan genera Ramularia, Sep- toria, Erysiphe, Leveillula, Mycosphaerella, Phoma, Cytospora, Sphaerotheca, Phyllosticta and Mars- sonina. The annotated checklist includes data on host plant, location, date and collection number of every species. Keywords: Ascomycetes, biodiversity, host plants, mycobiota, micromycetes, new records, Nuratau Mountains. чек-лист сумчатых микромицетов нуратинского природного заповедника (узбекистан) и. м. мустафаев, н. Ю. Бешко, м. м. иминова институт ботаники академии наук республики узбекистан, ташкент, узбекистан Автор для переписки: и. м. мустафаев, [email protected] Резюме.
    [Show full text]
  • The Scinerio of BARLERIA PRIONITIS Used As Herbal Medicine for Treatment of Many Diseases
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 01 | Jan 2020 www.irjet.net p-ISSN: 2395-0072 The Scinerio of BARLERIA PRIONITIS Used as Herbal Medicine for Treatment of Many Diseases Dr. Indrani Bhattacharya1, Pathan Fizanahmed Bismillakhan2, Shreya Vora3 1Assistant Professor, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat. 2Student, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat. 3Assistant Professor, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat . -----------------------------------------------------------------------------***------------------------------------------------------------------------- ABSTRACT:- Barleria prionitis is a species of plant in the family Acanthaceae. It is also known as Porcupine flower, Vajradanti is an erect, bushy, prickly undershrub exteding up to 0.6-1.5 m high and found throughout hotter parts of the country and also cultivated as a hedge plant. Barleria Prionitis is also used for different medicinal purposes in ayurveda. The diverse parts of Barleria prionitis it is are widely used to heal diseases by different ethnic communities. The whole plant or its parts like leaf, root, stem, bark and flower has been widely utilized for the cure of , whooping cough, catarrhal affections, swellings, inflammations, glandular swellings, toothache, urinary infection, fever, gastrointestinal infections, diuretic and also in the treatment of dental infections. Extracts and isolated
    [Show full text]
  • A Novel Family of Diaporthales (Ascomycota)
    Phytotaxa 305 (3): 191–200 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2017 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.305.3.6 Melansporellaceae: a novel family of Diaporthales (Ascomycota) ZHUO DU1, KEVIN D. HYDE2, QIN YANG1, YING-MEI LIANG3 & CHENG-MING TIAN1* 1The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, PR China 2International Fungal Research & Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Bail- ongsi, Kunming 650224, PR China 3Museum of Beijing Forestry University, Beijing 100083, PR China *Correspondence author email: [email protected] Abstract Melansporellaceae fam. nov. is introduced to accommodate a genus of diaporthalean fungi that is a phytopathogen caus- ing walnut canker disease in China. The family is typified by Melansporella gen. nov. It can be distinguished from other diaporthalean families based on its irregularly uniseriate ascospores, and ovoid, brown conidia with a hyaline sheath and surface structures. Phylogenetic analysis shows that Melansporella juglandium sp. nov. forms a monophyletic group within Diaporthales (MP/ML/BI=100/96/1) and is a new diaporthalean clade, based on molecular data of ITS and LSU gene re- gions. Thus, a new family is proposed to accommodate this taxon. Key words: diaporthalean fungi, fungal diversity, new taxon, Sordariomycetes, systematics, taxonomy Introduction The ascomycetous order Diaporthales (Sordariomycetes) are well-known fungal plant pathogens, endophytes and saprobes, with wide distributions and broad host ranges (Castlebury et al. 2002, Rossman et al. 2007, Maharachchikumbura et al. 2016).
    [Show full text]
  • Diaporthales), and the Introduction of Apoharknessia Gen
    STUDIES IN MYCOLOGY 50: 235–252. 2004. Phylogenetic reassessment of the coelomycete genus Harknessia and its teleomorph Wuestneia (Diaporthales), and the introduction of Apoharknessia gen. nov. Seonju Lee1, Johannes Z. Groenewald2 and Pedro W. Crous2* 1Department of Plant Pathology, University of Stellenbosch, P. Bag X1, Stellenbosch 7602, South Africa; 2Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands *Correspondence: Pedro W. Crous, [email protected] Abstract: During routine surveys for microfungi from the Fynbos of the Cape Floral Kingdom in South Africa, isolates of several Harknessia species were collected. Additional isolates of Harknessia spp. were collected from Eucalyptus leaves in South Africa, as well as elsewhere in the world where this crop is grown. Interspecific relationships of Harknessia species were inferred based on partial sequence of the internal transcribed spacer (ITS) nuclear ribosomal DNA (nrDNA), as well as the b- tubulin and calmodulin genes. From these data, three new species are described, namely H. globispora from Eucalyptus, H. protearum from Leucadendron and Leucospermum, and H. capensis from Brabejum stellatifolium and Eucalyptus sp. Further- more, based on large subunit nrDNA sequence data, Harknessia is shown to be heterogeneous, and a new genus, Apoharknes- sia, is introduced for A. insueta, which is distinguished from H. eucalypti, the type species of Harknessia, by having an apical conidial appendage. A morphologically similar genus, Dwiroopa, which is characterized by several prominent germ slits along the sides of its conidia, is shown to cluster basal to Harknessia. Species of Harknessia, and their teleomorphs accommodated in Wuestneia, are shown to represent an undescribed family in the Diaporthales, as is Apoharknessia, for which no teleomorph is known.
    [Show full text]
  • Phytochemical and Pharmacological Profile of Barleria Prionitis Linn. – Review
    Indo American Journal of Pharmaceutical Research, 2017 ISSN NO: 2231-6876 PHYTOCHEMICAL AND PHARMACOLOGICAL PROFILE OF BARLERIA PRIONITIS LINN. – REVIEW Wankhade P. P*, Dr. Ghiware N. B, Shaikh Haidar Ali, Kshirsagar P. M Department of Pharmacology, Center for research in Pharmaceutical Sciences, Nanded Pharmacy College, Nanded. ARTICLE INFO ABSTRACT Article history Barleria prionitis have been utilized for basic and curative health care since time immemorial. Received 19/03/2017 Barleria prionitis L. is one of the important herbal being used in Ayurvedic system of Available online medicine. In traditional system of medicines part of the Barleria prionitis plant is used for the 30/04/2017 treatment of various diseases like toothache, fever, inflammation, gastrointestinal disorders, expectorant, boils, glandular swellings, catarrhal affections, ulcers, tonic and diuretic. A wide Keywords variety of biologically active constituents such as glycosides, flavonoid, saponin, steroid and Barleria Prionitis, tannins are present in his plant. The plant contains balerenone, prioniside A and B, lupeol, 6- Porcupine Flower, hydroxyflavone, barlerin. This plant exhibits antioxidant, antibacterial, anti-inflammatory, Phytochemical Constituents, anti-arthritic, hepatoprotective, antifungal, antiviral, mast cell stabilizing, antifertility and Pharmacological Properties. gastoprotective activity. This review will focus on the traditional uses, Phytochemical constituents isolated from the plant and pharmacological properties of different parts of Barleria
    [Show full text]
  • Natural Products and Molecular Genetics Underlying the Antifungal
    Natural products and molecular genetics underlying the antifungal activity of endophytic microbes by Walaa Kamel Moatey Mohamed Mousa A Thesis Presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy In Plant Agriculture Guelph, Ontario, Canada ©Walaa K.M.M. Mousa, 2016 i ABSTRACT Natural products and molecular genetics underlying the antifungal activity of endophytic microbes Walaa K. Mousa Advisory Committee: University of Guelph Dr. Manish N. Raizada (Advisor) Dr. Ting Zhou (Co-advisor) Dr. Adrian Schwan Dr. Katarina Jordan Microbes are robust and promiscuous machines for the biosynthesis of antimicrobial compounds which combat serious crop and human pathogens. A special subset of microbes that inhabit internal plant tissues without causing disease are referred to as endophytes. Endophytes can protect their hosts against pathogens. I hypothesized that plants which grow without synthetic pesticides, including the wild and ancient relatives of modern crops, and the marginalized crops grown by subsistence farmers, host endophytes that have co-evolved to combat host-specific pathogens. To test this hypothesis, I explored endophytes within the ancient Afro-Indian crop finger millet, and diverse maize/teosinte genotypes from the Americas, for anti-fungal activity against Fusarium graminearum. F. graminearum leads to devastating diseases in cereals including maize and wheat and is associated with accumulation of mycotoxins including deoxynivalenol (DON). I have identified fungal and bacterial endophytes, their secreted natural products and/or genes with anti-Fusarium activity from both maize and finger millet. I have shown that some of these endophytes can efficiently suppress F. graminearum in planta and dramatically reduce DON during seed storage when introduced into modern maize and wheat.
    [Show full text]
  • Beltrania-Like Taxa from Thailand
    Cryptogamie, Mycologie, 2017, 38 (3): 301-319 © 2017 Adac. Tous droits réservés Beltrania-like taxa from Thailand Chuan-Gen LIN a, d,Kevin D. HYDE a, d, Saisamorn LUMYONG b &Eric H. C. MCKENZIE c* aCenter of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand bDepartment of Biology,Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand cLandcareResearch Manaaki Whenua, Private Bag 92170, Auckland, New Zealand dSchool of Science, Mae Fah Luang University,Chiang Rai 57100, Thailand Abstract – Four Beltrania-like taxa, viz., Beltrania rhombica, Beltraniella fertilis, Beltraniopsis longiconidiophora sp. nov. and Hemibeltrania cinnamomi were identified during asurvey of hyphomycetes in Thailand. Each species is provided with adescription and amolecular analysis. The new species is introduced based on morphological and molecular differences and compared with similar taxa. Beltraniella fertilis and H. cinnamomi are new records for Thailand. Beltrania-complex /Beltraniaceae /Phylogeny /Taxonomy /Xylariomycetidae InTroducTIon The family Beltraniaceae Nann. was introduced by Nannizzi in 1934 to accommodate the genus Beltrania Penz. and some similar genera, and the tribe Beltranieae was treated as asynonym of this family (Pirozynski, 1963). Presently, eight genera, viz., Beltrania, Beltraniella Subram., Beltraniopsis Bat. &J.L. Bezerra, Hemibeltrania Piroz., Parapleurotheciopsis P.M. Kirk, Porobeltraniella Gusmão, Pseudobeltrania Henn. and Subramaniomyces Varghese &V.G. Rao, are accepted in the family (Crous et al.,2015b; Maharachchikumbura et al.,2015, 2016; Rajeshkumar et al.,2016a). The conidia of these genera are very distinctive, often being biconic, with or without ahyaline equatorial, subequatorial or supraequatorial band, and with or without swollen separating cells. The unbranched or branched conidiophores and/or setae arise from radially lobed basal cells (Ellis, 1971, 1976; Seifert et al.,2011).
    [Show full text]
  • A Fljeristic SURVJ I'm
    A FLJeRISTIC SURVJ i'M DISTRIBUTION OF THIS OOCUMEKT IS UNLMTEQ "SoelNtfttMA-- l^t A FLORISTIC SURVEY OF YUCCA MOUNTAIN AND VICINITY NYE COUNTY, NEVADA by Wesley E. Niles Patrick J. Leary James S. Holland Fred H. Landau December, 1995 Prepared for U. S. Department of Energy, Nevada Operations Office under Contract No. DE/NV DE-FC08-90NV10872 MASTER DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi• bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer• ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom• mendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DISCS-AIMER Portions <ff this document may lie illegible in electronic image products. Images are produced from the best available original document ABSTRACT A survey of the vascular flora of Yucca Mountain and vicinity, Nye County, Nevada, was conducted from March to June 1994, and from March to October 1995. An annotated checklist of recorded taxa was compiled. Voucher plant specimens were collected and accessioned into the Herbarium at the University of Nevada, Las Vegas.
    [Show full text]
  • Chapter 1 General Introduction
    MICROPROPAGATION AND MEDICINAL PROPERTIES OF BARLERIA GREENII AND HUERNIA HYSTRIX BY STEPHEN OLUWASEUN AMOO (M.Sc. OBAFEMI AWOLOWO UNIVERSITY, NIGERIA) Submitted in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY Research Centre for Plant Growth and Development School of Biological and Conservation Sciences University of KwaZulu-Natal, Pietermaritzburg November 2009 TABLE OF CONTENTS STUDENT DECLARATION ................................................................................... vii DECLARATION BY SUPERVISORS ................................................................... viii FACULTY OF SCIENCE & AGRICULTURE DECLARATION 1 - PLAGIARISM.... ix FACULTY OF SCIENCE & AGRICULTURE DECLARATION 2 - PUBLICATIONS x ACKNOWLEDGEMENTS ..................................................................................... xii LIST OF FIGURES ............................................................................................... xiii LIST OF TABLES .................................................................................................xvii LIST OF ABBREVIATIONS .................................................................................. xix ABSTRACT….. ....................................................................................................xxii Chapter 1 General introduction ........................................................................ 1 1.1 Use of plants in horticulture and traditional medicine .......................... 1 1.2 The need for conservation of plant species ..........................................
    [Show full text]