What If What I Need Is Not in Powerai (Yet)? What You Need to Know to Build from Scratch?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Open Source Copyrights
Kuri App - Open Source Copyrights: 001_talker_listener-master_2015-03-02 ===================================== Source Code can be found at: https://github.com/awesomebytes/python_profiling_tutorial_with_ros 001_talker_listener-master_2016-03-22 ===================================== Source Code can be found at: https://github.com/ashfaqfarooqui/ROSTutorials acl_2.2.52-1_amd64.deb ====================== Licensed under GPL 2.0 License terms can be found at: http://savannah.nongnu.org/projects/acl/ acl_2.2.52-1_i386.deb ===================== Licensed under LGPL 2.1 License terms can be found at: http://metadata.ftp- master.debian.org/changelogs/main/a/acl/acl_2.2.51-8_copyright actionlib-1.11.2 ================ Licensed under BSD Source Code can be found at: https://github.com/ros/actionlib License terms can be found at: http://wiki.ros.org/actionlib actionlib-common-1.5.4 ====================== Licensed under BSD Source Code can be found at: https://github.com/ros-windows/actionlib License terms can be found at: http://wiki.ros.org/actionlib adduser_3.113+nmu3ubuntu3_all.deb ================================= Licensed under GPL 2.0 License terms can be found at: http://mirrors.kernel.org/ubuntu/pool/main/a/adduser/adduser_3.113+nmu3ubuntu3_all. deb alsa-base_1.0.25+dfsg-0ubuntu4_all.deb ====================================== Licensed under GPL 2.0 License terms can be found at: http://mirrors.kernel.org/ubuntu/pool/main/a/alsa- driver/alsa-base_1.0.25+dfsg-0ubuntu4_all.deb alsa-utils_1.0.27.2-1ubuntu2_amd64.deb ====================================== -
Mochi-JCST-01-20.Pdf
Ross R, Amvrosiadis G, Carns P et al. Mochi: Composing data services for high-performance computing environments. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 35(1): 121–144 Jan. 2020. DOI 10.1007/s11390-020-9802-0 Mochi: Composing Data Services for High-Performance Computing Environments Robert B. Ross1, George Amvrosiadis2, Philip Carns1, Charles D. Cranor2, Matthieu Dorier1, Kevin Harms1 Greg Ganger2, Garth Gibson3, Samuel K. Gutierrez4, Robert Latham1, Bob Robey4, Dana Robinson5 Bradley Settlemyer4, Galen Shipman4, Shane Snyder1, Jerome Soumagne5, and Qing Zheng2 1Argonne National Laboratory, Lemont, IL 60439, U.S.A. 2Parallel Data Laboratory, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A. 3Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada 4Los Alamos National Laboratory, Los Alamos NM, U.S.A. 5The HDF Group, Champaign IL, U.S.A. E-mail: [email protected]; [email protected]; [email protected]; [email protected]; [email protected] E-mail: [email protected]; [email protected]; [email protected]; [email protected] E-mail: [email protected]; [email protected]; [email protected]; {bws, gshipman}@lanl.gov E-mail: [email protected]; [email protected]; [email protected] Received July 1, 2019; revised November 2, 2019. Abstract Technology enhancements and the growing breadth of application workflows running on high-performance computing (HPC) platforms drive the development of new data services that provide high performance on these new platforms, provide capable and productive interfaces and abstractions for a variety of applications, and are readily adapted when new technologies are deployed. The Mochi framework enables composition of specialized distributed data services from a collection of connectable modules and subservices. -
Luarocks Fostering an Ecosystem of Lua Modules
LuaRocks fostering an ecosystem of Lua modules Hisham Muhammad [email protected] @hisham_hm FOSDEM !"# $russels% $elgium &hat is LuaRocks 'ackage manager... like d(kg (a(t*get+% RPM% etc. like Ruby-ems, Python eggs, npm% C'/0% etc. ...for Lua e1tension modules written in Lua (.lua files) or ,inary modules (.so4.dll files) Fostering an ecosystem of Lua modules Some uni5ue challenges ...related to Lua as a language ...related to Lua as a community Lessons learned ...on building an ecosystem / one*slide introduction to Lua function process(filename, fn, ...) local f = io.open(filename) local rets = {} for line in f:lines() do rets[#rets+1] = { fn(line, ...) } end f:close() return rets end matches = process("file.txt", string.find, "foo") for i, match in ipairs(matches) do print(i, table.concat(match, ", ")) end / one*slide introduction to Lua function process(filename, fn, ...) local f = io.open(filename) local rets = {} o,6ects for line in f:lines() do rets[#rets+1] = { fn(line, ...) } end f:close() return rets end matches = process("file.txt", string.find, "foo") for i, match in ipairs(matches) do print(i, table.concat(match, ", ")) end / one*slide introduction to Lua function process(filename, fn, ...) local f = io.open(filename) local rets = {} for line in f:lines() do rets[#rets+1] = { fn(line, ...) } end f:close() return rets 3rst*class functions end matches = process("file.txt", string.find, "foo") for i, match in ipairs(matches) do print(i, table.concat(match, ", ")) end / one*slide introduction to Lua function process(filename, fn, ...) -
Tarantool Выпуск 1.7.2
Tarantool Выпуск 1.7.2 мар. 14, 2019 Оглавление 1 Что нового? 1 1.1 Что нового в Tarantool 1.7?....................................1 2 Общие сведения 2 2.1 Сервер приложений + СУБД...................................2 2.2 Возможности СУБД........................................3 3 Практикум 5 3.1 Практические задания на Lua..................................5 3.2 Практическое задание на C.................................... 17 4 Руководство пользователя 21 4.1 Предисловие............................................. 21 4.2 Начало работы........................................... 22 4.3 Функционал СУБД......................................... 25 4.4 Сервер приложений........................................ 58 4.5 Администрирование серверной части.............................. 72 4.6 Коннекторы............................................. 108 4.7 Вопросы и ответы......................................... 120 5 Справочники 121 5.1 Справочник по встроенной библиотеке............................. 121 5.2 Справочник по сторонним библиотекам............................. 228 5.3 Справочник по настройке..................................... 247 6 Руководство участника проекта 257 6.1 Справочник по C API....................................... 257 6.2 Детали реализации......................................... 280 6.3 Сборка и участие в проекте.................................... 293 6.4 Соглашения по разработке.................................... 298 Lua Module Index 329 i ГЛАВА 1 Что нового? Здесь собрана информация о существенных изменениях, которые -
Enforcing Abstract Immutability
Enforcing Abstract Immutability by Jonathan Eyolfson A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Electrical and Computer Engineering Waterloo, Ontario, Canada, 2018 © Jonathan Eyolfson 2018 Examining Committee Membership The following served on the Examining Committee for this thesis. The decision of the Examining Committee is by majority vote. External Examiner Ana Milanova Associate Professor Rensselaer Polytechnic Institute Supervisor Patrick Lam Associate Professor University of Waterloo Internal Member Lin Tan Associate Professor University of Waterloo Internal Member Werner Dietl Assistant Professor University of Waterloo Internal-external Member Gregor Richards Assistant Professor University of Waterloo ii I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. iii Abstract Researchers have recently proposed a number of systems for expressing, verifying, and inferring immutability declarations. These systems are often rigid, and do not support “abstract immutability”. An abstractly immutable object is an object o which is immutable from the point of view of any external methods. The C++ programming language is not rigid—it allows developers to express intent by adding immutability declarations to methods. Abstract immutability allows for performance improvements such as caching, even in the presence of writes to object fields. This dissertation presents a system to enforce abstract immutability. First, we explore abstract immutability in real-world systems. We found that developers often incorrectly use abstract immutability, perhaps because no programming language helps developers correctly implement abstract immutability. -
A Dataset for Github Repository Deduplication
A Dataset for GitHub Repository Deduplication Diomidis Spinellis Audris Mockus Zoe Kotti [email protected] {dds,zoekotti}@aueb.gr University of Tennessee Athens University of Economics and Business ABSTRACT select distinct p1, p2 from( select project_commits.project_id as p2, GitHub projects can be easily replicated through the site’s fork first_value(project_commits.project_id) over( process or through a Git clone-push sequence. This is a problem for partition by commit_id empirical software engineering, because it can lead to skewed re- order by mean_metric desc) as p1 sults or mistrained machine learning models. We provide a dataset from project_commits of 10.6 million GitHub projects that are copies of others, and link inner join forkproj.all_project_mean_metric each record with the project’s ultimate parent. The ultimate par- on all_project_mean_metric.project_id = ents were derived from a ranking along six metrics. The related project_commits.project_id) as shared_commits projects were calculated as the connected components of an 18.2 where p1 != p2; million node and 12 million edge denoised graph created by direct- Listing 1: Identification of projects with common commits ing edges to ultimate parents. The graph was created by filtering out more than 30 hand-picked and 2.3 million pattern-matched GitHub contains many millions of copied projects. This is a prob- clumping projects. Projects that introduced unwanted clumping lem for empirical software engineering. First, when data contain- were identified by repeatedly visualizing shortest path distances ing multiple copies of a repository are analyzed, the results can between unrelated important projects. Our dataset identified 30 end up skewed [27]. Second, when such data are used to train thousand duplicate projects in an existing popular reference dataset machine learning models, the corresponding models can behave of 1.8 million projects. -
Conda-Build Documentation Release 3.21.5+15.G174ed200.Dirty
conda-build Documentation Release 3.21.5+15.g174ed200.dirty Anaconda, Inc. Sep 27, 2021 CONTENTS 1 Installing and updating conda-build3 2 Concepts 5 3 User guide 17 4 Resources 49 5 Release notes 115 Index 127 i ii conda-build Documentation, Release 3.21.5+15.g174ed200.dirty Conda-build contains commands and tools to use conda to build your own packages. It also provides helpful tools to constrain or pin versions in recipes. Building a conda package requires installing conda-build and creating a conda recipe. You then use the conda build command to build the conda package from the conda recipe. You can build conda packages from a variety of source code projects, most notably Python. For help packing a Python project, see the Setuptools documentation. OPTIONAL: If you are planning to upload your packages to Anaconda Cloud, you will need an Anaconda Cloud account and client. CONTENTS 1 conda-build Documentation, Release 3.21.5+15.g174ed200.dirty 2 CONTENTS CHAPTER ONE INSTALLING AND UPDATING CONDA-BUILD To enable building conda packages: • install conda • install conda-build • update conda and conda-build 1.1 Installing conda-build To install conda-build, in your terminal window or an Anaconda Prompt, run: conda install conda-build 1.2 Updating conda and conda-build Keep your versions of conda and conda-build up to date to take advantage of bug fixes and new features. To update conda and conda-build, in your terminal window or an Anaconda Prompt, run: conda update conda conda update conda-build For release notes, see the conda-build GitHub page. -
Luarocks Past, Present and Future
LuaRocks past, present and future Hisham Muhammad Prologue: what is LuaRocks? ● A package manager for Lua modules ● Modules written in Lua (.lua), binary Lua modules (.so/.dll) and Lua scripts ● Usual features you would expect from a package manager ○ luarocks install <module> ○ luarocks remove <module> ○ ... Rocks and rockspecs ● Rock: a LuaRocks package ○ archive files (actually .zip files) ○ *.src.rock - contains source code ○ *.win32-x86.rock - “binary rock”, contains compiled binaries for a given platform ● Rockspec: a package specification file ○ A declarative Lua script, with rules on how to build and package rocks ○ *.rockspec - a Lua file containing some tables A rockspec Part I The past: a short history of LuaRocks Origins ● Kepler Project: research project to develop a platform for web development using Lua ○ combining modules that already existed (LuaSocket, CGILua) and adding the missing pieces ○ For more of the story, read Yuri Takhteyev’s book, “Coding Places” :) ● I started (re)writing Unix makefiles to automate the packaging/install process ● Common patterns emerged LuaRocks 0.x-1.x: a bumpy start ● 0.x was a gradual evolution ○ the goal for 1.0 was for it to be able to build all Kepler modules ● The rockspec format is unchanged since 1.0 ○ We really care about compatibility ○ Learning the format and writing a rockspec are not disposable efforts ● We got many things right, but we also got some of them wrong... Annoyances in LuaRocks 1.x ● LuaRocks 1.0 did not use the standard Lua layout for modules ○ It wasn’t clear that -
Mlsm: Making Authenticated Storage Faster in Ethereum
mLSM: Making Authenticated Storage Faster in Ethereum Pandian Raju1 Soujanya Ponnapalli1 Evan Kaminsky1 Gilad Oved1 Zachary Keener1 Vijay Chidambaram1;2 Ittai Abraham2 1University of Texas at Austin 2VMware Research Abstract the LevelDB [15] key-value store. We show that reading a single key (e.g., the amount of ether in a given account) Ethereum provides authenticated storage: each read can result in 64 LevelDB reads, while writing a single returns a value and a proof that allows the client to verify key can lead to a similar number of LevelDB writes. In- the value returned is correct. We experimentally show ternally, LevelDB induces extra write amplification [23], that such authentication leads to high read and write am- further increasing overall amplification. Such write and × plification (64 in the worst case). We present a novel read amplification reduces throughput (storage band- data structure, Merkelized LSM (mLSM), that signifi- width is wasted by the amplification), and write ampli- cantly reduces the read and write amplification while still fication in particular significantly reduces the lifetime of allowing client verification of reads. mLSM significantly devices such as Solid State Drives (SSDs) which wear increases the performance of the storage subsystem in out after a limited number of write cycles [1, 16, 20]. Ethereum, thereby increasing the performance of a wide Thus, reducing the read and write amplification can both range of Ethereum applications. increase Ethereum throughput and reduce hardware re- 1 Introduction placement costs. Modern crypto-currencies such as Bitcoin [21] and We trace the read and write amplification in Ethereum Ethereum [26] seek to provide a decentralized, to the fact that it provides authenticated storage. -
Tarantool Выпуск 1.7.4
Tarantool Выпуск 1.7.4 мар. 14, 2019 Оглавление 1 Что нового в Tarantool 1.7?2 2 What’s new in Tarantool 1.6.9 after February 15, 2017?4 3 What’s new in Tarantool 1.6?5 4 Общие сведения 6 4.1 Сервер приложений + СУБД...................................6 4.2 Возможности СУБД........................................7 5 Руководство пользователя8 5.1 Предисловие.............................................8 5.2 Начало работы...........................................9 5.3 Функционал СУБД......................................... 13 5.4 Сервер приложений........................................ 30 5.5 Администрирование серверной части.............................. 58 5.6 Репликация............................................. 76 5.7 Коннекторы............................................. 96 5.8 Вопросы и ответы......................................... 107 6 Справочники 109 6.1 Built-in modules reference..................................... 109 6.2 Справочник по сторонним библиотекам............................. 244 6.3 Справочник по настройке..................................... 263 6.4 Utility tarantoolctl .......................................... 280 6.5 Tips on Lua syntax......................................... 280 7 Практикум 282 7.1 Практические задания на Lua.................................. 282 7.2 Практическое задание на C.................................... 294 7.3 libslave tutorial........................................... 299 8 Contributor’s Guide 303 8.1 Справочник по C API....................................... 303 8.2 Internals.............................................. -
An Efficient Algorithm for Type-Directed Structural Diffing
An Efficient Algorithm for Type-Directed Structural Diffing VICTOR CACCIARI MIRALDO, Utrecht University, The Netherlands WOUTER SWIERSTRA, Utrecht University, The Netherlands Effectively computing the difference between two version of a source file has become an indispensable part of software development. The de facto standard tool used by most version control systems is the UNIX diff utility, that compares two files on a line-by-line basis without any regard forthe structure of the data stored in these files. This paper presents an alternative datatype generic algorithm for computing the difference between two values of any algebraic datatype. This algorithm maximizes sharing between the source and target trees, while still running in linear time. Finally, this paper demonstrates that by instantiating this algorithm to the Lua abstract syntax tree and mining the commit history of repositories found on GitHub, the resulting patches can often be merged automatically, even when existing technology has failed. Additional Key Words and Phrases: Generic Programming, diff, Version Control, Haskell 1 INTRODUCTION The UNIX diff [13] is an essential tool in modern software development. It has seen a number of use cases ever since it was created and lies at the heart of today’s Software Version Control Systems. Tools such as git, mercurial and darcs, that enable multiple developers to collaborate effectively, are all built around the UNIX diff utility, which is used to compute a patch between two versions of a file. It compares files on a line-by-line basis attempting to share as many lines as possible between the source and the destination files. -
Enrico Tassi Lua Workshop 2013 [email protected]
LuaLua and Enrico Tassi Lua workshop 2013 [email protected] Toulouse – 23 Nov Roadmap ● Debian: an opportunity for Lua ● Packaging Lua ● Packaging Lua batteries ● It's not all a bed of roses Who am I? ● Daily job: researcher in CS @ Inria ● completely unrelated topics (type theory, interactive provers, Coq, …) ● I love developing software! ● and I used Lua for some of my projects ● I support free software ● Debian developer since 2006 ● I read lua-l, but I don't post very often What is Debian? ● A project that builds a free OS ● A long tradition in assembling components ● QA: written policies, automatic checks, ... ● An opportunity for Lua: ● Debian is popular with many derivatives ● It supports “exotic” architectures ● It is huge (30K packages, 17K match “^lib”) ● It is tested (compilation & installation time) The beginning lua40 (4.0-1) unstable; urgency=low * Initial Release. * Added support for shared libraries -- Daniel Silverstone <[email protected]> Mon, 11 Feb 2002 Where are we now? Which packages depend on Lua 5.1 aegisub geany-plugin-lua libtolua++5.1-dev pax-britannica apache2-bin genometools libwreport2 pdns-backend-lua aqualung gimp-gluas lighttpd-mod-cml pepper asc gnuplot-x11 love postgresql-9.3-pllua asterisk-modules grafx2 lsyncd premake awesome gringo lua-augeas prosody bam hedgewars luakit python-lua blobby highlight megaglest qcontrol boswars httest monotone radare-common btanks ibus-pinyin mpv ruby-luabridge celestia-gnome instead mudlet simgrid conky-std kamailio-lua-modules mysql-proxy syncmaildir crawl