The Penikat Intrusion, Finland: Geochemistry, Geochronology, and Origin of Platinum– Palladium Reefs W

Total Page:16

File Type:pdf, Size:1020Kb

The Penikat Intrusion, Finland: Geochemistry, Geochronology, and Origin of Platinum– Palladium Reefs W J OURNAL OF Journal of Petrology, 2018, 1–40 doi: 10.1093/petrology/egy051 P ETROLOGY Advance Access Publication Date: 25 May 2018 Original Article The Penikat Intrusion, Finland: Geochemistry, Geochronology, and Origin of Platinum– Palladium Reefs W. D. Maier1*, T. Halkoaho2, H. Huhma3, E. Hanski4 and S.-J. Barnes5 1School of Earth and Ocean Sciences, Cardiff University, Cardiff, UK; 2Geological Survey of Finland, Kuopio, Finland; 3Geological Survey of Finland, Espoo, Finland; 4Oulu Mining School, Oulu, Finland; 5Universite´ du Que´bec a` Chicoutimi, Quebec, Canada *Corresponding author. E-mail: [email protected] Received November 21, 2016; Accepted May 8, 2018 ABSTRACT The Palaeoproterozoic Penikat layered ultramafic–mafic intrusion in northern Finland is one of the most richly mineralized layered intrusions on Earth, containing at least six platinum-group element (PGE) enriched horizons exposed along >20 km of strike, amongst them the SJ reef, which at 3–7 ppm Pt þ Pd over a width of 1–2 m is surpassed by few other PGE reefs globally in terms of its endowment in PGE. Important PGE enrichments also occur in the PV reef (average 2Á6 ppm Pd, 4 ppm Pt over 1Á1 m) and AP1 reef (average 6Á2 ppm Pd, 1Á7 ppm Pt over 0Á7 m). Here we present new major and high-precision trace element and Nd isotope data from a traverse across the intru- sion, and a new U–Pb age of 2444 6 8 Ma for the intrusion. We show that the PGE reefs formed by predominantly orthomagmatic processes as, for example, reflected by well-defined positive corre- lations between Pt þ Pd and Os þ Ir þ Ru contents. Late-magmatic fluids played no significant role in concentrating PGE. There are at least six cyclic units in the intrusion, displaying a progressive upward decrease in differentiation indices Mg# and Cr/V. Subdued stratigraphic variations in in- compatible trace element ratios (Ce/Sm mostly 5–10) and Nd isotope compositions (eNd –3 to –1) indicate that mixing of magmas of distinct lineage, or in situ contamination with country rocks, was not required to form the PGE reefs. There is also no evidence for addition of external sulphur to the magma, based on S/Se ratios at, or below, primitive mantle levels. Instead, we propose that sulphide melt saturation at Penikat was reached in response to fractionation of a siliceous, high- magnesium basalt, and that the sulphides were concentrated through hydrodynamic phase sort- ing, consistent with bonanza-style PGE grades in large potholes. Key words: platinum-group elements; chromite; Palaeoproterozoic; layered intrusion; Finland INTRODUCTION relatively little studied, with few contributions having Layered intrusions host the bulk of global resources in appeared in the literature since the early 1990s, follow- platinum-group elements (PGE) that are crucial in the ing the discovery of the mineralization in the late 1980s. production of vehicle exhaust catalytic converters and In this study, we first review the geology and PGE min- many other applications in, for example, the chemical eralization styles of the Penikat intrusion. We then pre- and electrical industry. However, at present only four sent new U–Pb zircon data to refine the age of the intrusions globally are mined for PGE as the main prod- intrusion using in situ laser ablation inductively coupled uct, namely Bushveld (South Africa), Great Dyke plasma mass spectrometry analysis, and new whole- (Zimbabwe), Stillwater (USA) and Lac des Iles (Canada). rock major and trace element as well as Nd isotopic Among sub-economic intrusions, the Penikat intrusion data to propose a new model for the origin of the PGE is perhaps the most richly mineralized, yet it remains reefs. VC The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: [email protected] 1 Downloaded from https://academic.oup.com/petrology/advance-article-abstract/doi/10.1093/petrology/egy051/5004663 by Cardiff University user on 03 August 2018 2 Journal of Petrology, 2018, Vol. 0, No. 0 2Á44–2Á50 Ga layered intrusions in the and greenstone belts in northeastern Finland, closely Fennoscandian Shield associated with the coeval 2Á44 Ga Koillismaa and The northeastern part of the Fennoscandian Shield Akanvaara layered intrusions. Magmatism was trig- hosts more than two dozen Palaeoproterozoic layered gered by plume-driven aborted break-up of the mafic–ultramafic intrusions (Fig. 1). Uranium–lead zircon Archaean Kenorland supercontinent (Amelin et al., and Sm–Nd whole-rock data have yielded a mean age 1995; Hanski et al., 2001; Hanski & Huhma, 2005) and for the Finnish intrusions of 2440 Ma (Huhma et al., was concentrated in linear belts tracing intracratonic rift 1990, 2018). In Russia, the ages of the intrusions span a zones (Fig. 1). In Finland and neighbouring Sweden, wider range, from c. 2450 to 2500 Ma (for a summary, several intrusive belts or clusters can be distinguished see Hanski & Melezhik, 2012), possibly reflecting two (Alapieti et al., 1990; Iljina & Hanski, 2005), including distinct mantle plume events, analogous to the 2445– those in central Lapland (Koitelainen and Akanvaara 2490 Ma Matachewan and 2510 Ma Mistassini events of intrusions), northwestern Lapland (Tsohkoaivi, the Superior craton (Ernst & Bleeker, 2010), which was Kelottija¨ rvi, Kurkovare, Keukiskero), and in north–cen- probably attached to Fennoscandia at the time. tral Finland. The last is the most mineralized, compris- The intrusions were formed by bimodal igneous ac- ing an 300 km long, west–east-trending belt named tivity, resulting in mafic and felsic, plutonic and extru- the Tornio–Na¨ra¨ nka¨ vaara belt (TNB), which includes sive rocks in Finland and NW Russia. Magnesian Penikat, the target of this study, as well as the Tornio, basaltic to dacitic volcanic rocks are exposed in the Kemi, Portimo, Koillismaa and Na¨ra¨ nka¨ vaara intrusions. Vetreny belt, whereas felsic volcanic rocks (Hanski, The compositions of the intrusions vary from ultramafic 2012) and rapakivi-type granite batholiths (Ra¨mo¨& dominated (Tornio and Na¨ra¨ nka¨ vaara) to mafic–ultra- Luukkonen, 2001) occur in the Imandra Varzuga belt mafic interlayered (Kemi, Penikat, Portimo), to Fig. 1. Simplified geological map of part of the Fennoscandian Shield, highlighting location of 2Á44–2Á5 Ga layered intrusions. Figure modified after Alapieti & Lahtinen (1989). Downloaded from https://academic.oup.com/petrology/advance-article-abstract/doi/10.1093/petrology/egy051/5004663 by Cardiff University user on 03 August 2018 Journal of Petrology, 2018, Vol. 0, No. 0 3 predominantly mafic (Koillismaa). Based on similarities (Fig. 3). As a whole, the intrusion is relatively mafic, in their stratigraphy (Iljina & Hanski, 2005; Karinen with ultramafic rocks (i.e. those containing >90% dark et al., 2015), some of the intrusions, or parts of them, minerals) making up <10% of the stratigraphy (Fig. 3). may represent dismembered fragments of one or sev- Most of the rocks are gabbronorites with about 40–60% eral larger magmatic bodies. The footwall to most plagioclase and 10–20% orthopyroxene and clinopyrox- of the intrusions consists of Archaean granite ene each, as well as accessory Cr-spinel, magnetite, gneiss basement rocks, whereas the hanging-wall quartz, and phlogopite. Trace phases include sulphides, rocks consist of Palaeoproterozoic metavolcanic rocks K-feldspar, apatite, loveringite and others (Alapieti & or younger supracrustal sequences deposited on a Lahtinen, 1989; Halkoaho, 1993). The paucity of ultra- Palaeoproterozoic erosional unconformity (e.g. Alapieti mafic rocks constitutes a major difference from the et al., 1989, 1990; Karinen, 2010). This may imply a rela- Kemi intrusion, located immediately to the SW, which tively shallow emplacement depth followed by tilting, contains c. 1000 m of massive lherzolite, plagioclase- faulting, rapid uplift and partial erosion of the intru- bearing websterite–olivine websterite and plagioclase- sions. Gravity and seismic surveys indicate that the bearing clinopyroxenite, in addition to gabbroic rocks intrusions plunge underneath the Proterozoic cover (Alapieti et al., 1986, 1989). Further major differences rocks for several kilometres (Kukkonen et al., 2010; Iljina from Kemi include the relatively low abundance of chro- & Salmirinne, 2011). mitite seams, measuring centimetres to decimetres at The Finnish layered intrusions contain a wide range Penikat versus tens of metres at Kemi, and the relative of PGE mineralization styles, including narrow silicate- enrichment in PGE (up to tens of ppm at Penikat versus hosted reefs at Penikat and Portimo that are analogous <500 ppb at Kemi; Linkermann, 2011). In comparison to the Merensky Reef of the Bushveld Complex, wide with many other layered intrusions such as Bushveld contact-style reefs at Portimo and Koillismaa, analo- and Stillwater, anorthosites are rare at Penikat and gous to the Platreef of the Bushveld, PGE-bearing chro- mostly consist of thin, centimetre- to decimetre-wide mitite layers at Kemi, Koitelainen, Akanvaara and bands. However, these can be traced along the entire Penikat, analogous to those in many other layered intru- strike of the intrusion. Massive ilmenomagnetite or sions, and an unusual style of vein-hosted footwall min- apatite-rich seams are absent. eralization (i.e. the Kilvenja¨ rvi offset veins at Portimo; Based on CIPW norms, the intrusion has been subdi- Andersen et al., 2006), that has rarely been identified in vided into five megacyclic units (MCU I–V) that can be other layered intrusions. None of the intrusions is cur- traced across most blocks, with the exception of MCU III rently exploited for PGE, but an exploration programme (discontinuous in the Ala-Penikka block), and MCU V in the Suhanko block of the Portimo intrusion is at an (largely absent in the Keski-Penikka and Sompuja¨ rvi advanced feasibility stage (Puritch et al., 2007). blocks, probably owing to erosion) (Fig. 2). All units are characterized by relatively pyroxene-rich rocks at the base and gabbroic rocks in their upper portions (Fig.
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Design Rules for Discovering 2D Materials from 3D Crystals
    Design Rules for Discovering 2D Materials from 3D Crystals by Eleanor Lyons Brightbill Collaborators: Tyler W. Farnsworth, Adam H. Woomer, Patrick C. O'Brien, Kaci L. Kuntz Senior Honors Thesis Chemistry University of North Carolina at Chapel Hill April 7th, 2016 Approved: ___________________________ Dr Scott Warren, Thesis Advisor Dr Wei You, Reader Dr. Todd Austell, Reader Abstract Two-dimensional (2D) materials are championed as potential components for novel technologies due to the extreme change in properties that often accompanies a transition from the bulk to a quantum-confined state. While the incredible properties of existing 2D materials have been investigated for numerous applications, the current library of stable 2D materials is limited to a relatively small number of material systems, and attempts to identify novel 2D materials have found only a small subset of potential 2D material precursors. Here I present a rigorous, yet simple, set of criteria to identify 3D crystals that may be exfoliated into stable 2D sheets and apply these criteria to a database of naturally occurring layered minerals. These design rules harness two fundamental properties of crystals—Mohs hardness and melting point—to enable a rapid and effective approach to identify candidates for exfoliation. It is shown that, in layered systems, Mohs hardness is a predictor of inter-layer (out-of-plane) bond strength while melting point is a measure of intra-layer (in-plane) bond strength. This concept is demonstrated by using liquid exfoliation to produce novel 2D materials from layered minerals that have a Mohs hardness less than 3, with relative success of exfoliation (such as yield and flake size) dependent on melting point.
    [Show full text]
  • Cnsa-Esa Workshop on Chinese- European Cooperation in Lunar Science 16 - 18 July 2018
    CNSA-ESA WORKSHOP ON CHINESE- EUROPEAN COOPERATION IN LUNAR SCIENCE 16 - 18 JULY 2018 Programme Time Duration Presenter Title Day 1, Monday, 16 July 09:30 00:05 Welcome and Introductions 09:35 00:15 CNSA Missions and plans 09:50 00:15 ESA Missions and plans 10:05 00:10 Discussion 10:15 00:25 Yongliao Zou Proposal science goals and its payloads for China future lunar research station 10:50 00:15 Break 11:05 00:45 Interactive session: Science, instrumentation and enabling infrastructure of an international Lunar Research Station 11:50 00:15 Xiaohua Tong Detecting Hazardous Obstacles in Landing Site for Chang-E Spacecraft by the Use of a New Laser Scanning imaging System 12:05 01:00 Lunch 1 Lunar Sample Science Part 1 13:05 00:25 Wim van New Petrological Views of the Moon Enabled By Westrenen Apollo Sample Return 13:30 00:15 Xiaohui Fu Petrography and mineralogy of lunar feldspathic breccia Northwest Africa 11111 13:45 00:15 A.C. Zhang Applications of SEM-EBSD in lunar petrology: ‘Cr- Zr-Ca armalcolite’ is loveringite 14:00 00:15 Yanhao Lin Evidence for extensive degassing in the early Moon from a lunar hygrometer based on plagioclase-melt partitioning of water 14:15 00:15 Hongping Deng Primordial Earth mantle heterogeneity caused by the Moon-forming giant impact 14:30 00:25 Alessandro The deficiency of HSEs in The Moon relative to Morbidelli The Earth and The history of Lunar bombardment 14:55 00:15 Romain Tartèse Recent advances and future challenges in lunar geochronology 15:10 00:15 Break 15:25 00:25 Marc Chaussidon Lunar soils as archives of the isotopic composition of the Sun and of the impact history of the Moon 15:50 00:15 M.
    [Show full text]
  • Cleusonite, (Pb,Sr)(U4+,U6+)(Fe2+,Zn
    Eur. J. Mineral. 2005, 17, 933–942 4+ 6+ 2+ 2+ 3+ Cleusonite, (Pb,Sr)(U ,U )(Fe ,Zn)2(Ti,Fe ,Fe )18(O,OH)38, a new mineral species of the crichtonite group from the western Swiss Alps PIERRE-ALAIN WÜLSER1,2,4,5*, NICOLAS MEISSER1,2,JOEL¨ BRUGGER4,5,KURT SCHENK3,STEFAN ANSERMET 1,6, MICHEL BONIN3 and FRANCOIS ¸ BUSSY2 1Mus´ee Cantonal de G´eologie, CH-1015 Lausanne, Switzerland 2Institut de Min´eralogie et G´eochimie, Universit´e de Lausanne, CH-1015 Lausanne, Switzerland 3LaboratoiredeCristallographie 1, EPFL, Dorigny, CH-1015 Lausanne, Switzerland 4Cooperative Research Centre for Landscape Environments and Mineral Exploration (CRC-LEME) & School of Earth and Environmental Sciences, The University of Adelaide, North Terrace, Adelaide, AU-5000 Australia 5Division of Mineralogy, South Australian Museum, North Terrace, Adelaide, AU-5000 Australia 6Mus´ee Cantonal d’Histoire Naturelle de Sion, CH-1950 Sion, Switzerland *Corresponding author, e-mail: [email protected] 4+ 6+ 2+ 2+ 3+ Abstract: Cleusonite, (Pb,Sr)(U ,U )(Fe ,Zn)2 (Ti,Fe ,Fe )18 (O,OH)38, is a new member of the crichtonite group. It was found at two occurrences in greenschist facies metamorphosed gneissic series of the Mont Fort and Siviez-Mischabel Nappes in Valais, Switzerland (Cleuson and Bella Tolla summit), and named after the type locality. It occurs as black opaque cm-sized tabular crystals with a bright sub-metallic lustre. The crystals consist of multiple rhombohedra and hexagonal prisms that are generally twinned. Measured density is 4.74(4) g/cm3 and can be corrected to 4.93(12) g/cm3 for macroscopic swelling due to radiation damage; the calculated density varies from 5.02(6) (untreated) to 5.27(5) (heat-treated crystals); the difference is related to the cell swelling due +4 +6 to the metamictisation.
    [Show full text]
  • Characterization of the Mineralized Albitite Bodies at Biggejavri, Kautokeino Greenstone Belt, Finnmark, Northern Norway
    CHARACTERIZATION OF THE MINERALIZED ALBITITE BODIES AT BIGGEJAVRI, KAUTOKEINO GREENSTONE BELT, FINNMARK, NORTHERN NORWAY by Lyndsey N. Fisher A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Geochemistry). Golden, Colorado Date ____________________________ Signature: ____________________________ Lyndsey Fisher Signature: ____________________________ Dr. Katharina Pfaff Thesis Advisor Golden, Colorado Date ____________________________ Signature: ____________________________ Dr. Wendy Bohrson Professor and Department Head Department of Geology and Geological Engineering ii ABSTRACT The Kautokeino Greenstone Belt in Finnmark, Northern Norway is host to the Biggejavri U-REE occurrence and the Bidjovagge Cu-Au deposit. The Biggejavri U-REE occurrence is hosted in albitite lenses within the amphibolite unit of the Suoluvuopmi Formation whereas the Bidjovagge Cu-Au deposit is hosted in shear structures crosscutting albitite lenses in the amphibolite of the Časkejas Formation in the west. Both Biggejavri and Bidjovagge occur in the same stratigraphic sequence, comprised of amphibolites, mica and graphitic schists, metadolerites and albitite lenses, with the high Mg amphibolite only occurring at Biggejavri. The Biggejavri U-REE occurrence is unique in its mineralogy with the predominant ore mineral 3+ 3+ being davidite-loveringite ((La,Ce,Ca)(Y,U)(Ti,Fe )20O38-(Ca,Ce)(Ti,Fe ,Cr,Mg)21O38). The aim of this study is to better understand the formation of the complex mineralogy observed in the Biggejavri area. Amphibole from all units of the Biggejavri U-REE occurrence as well as the Bidjovagge Cu-Au deposit were analyzed using FE-SEM, automated mineralogy, EPMA, and LA-ICP-MS.
    [Show full text]
  • Shin-Skinner January 2018 Edition
    Page 1 The Shin-Skinner News Vol 57, No 1; January 2018 Che-Hanna Rock & Mineral Club, Inc. P.O. Box 142, Sayre PA 18840-0142 PURPOSE: The club was organized in 1962 in Sayre, PA OFFICERS to assemble for the purpose of studying and collecting rock, President: Bob McGuire [email protected] mineral, fossil, and shell specimens, and to develop skills in Vice-Pres: Ted Rieth [email protected] the lapidary arts. We are members of the Eastern Acting Secretary: JoAnn McGuire [email protected] Federation of Mineralogical & Lapidary Societies (EFMLS) Treasurer & member chair: Trish Benish and the American Federation of Mineralogical Societies [email protected] (AFMS). Immed. Past Pres. Inga Wells [email protected] DUES are payable to the treasurer BY January 1st of each year. After that date membership will be terminated. Make BOARD meetings are held at 6PM on odd-numbered checks payable to Che-Hanna Rock & Mineral Club, Inc. as months unless special meetings are called by the follows: $12.00 for Family; $8.00 for Subscribing Patron; president. $8.00 for Individual and Junior members (under age 17) not BOARD MEMBERS: covered by a family membership. Bruce Benish, Jeff Benish, Mary Walter MEETINGS are held at the Sayre High School (on Lockhart APPOINTED Street) at 7:00 PM in the cafeteria, the 2nd Wednesday Programs: Ted Rieth [email protected] each month, except JUNE, JULY, AUGUST, and Publicity: Hazel Remaley 570-888-7544 DECEMBER. Those meetings and events (and any [email protected] changes) will be announced in this newsletter, with location Editor: David Dick and schedule, as well as on our website [email protected] chehannarocks.com.
    [Show full text]
  • Loveringite from the Last-Yavr Mafic-Ultramafic Intrusion, Kola Peninsula; a Second Occurrence in Russia
    Loveringite from the Last-Yavr mafic-ultramafic intrusion, Kola Peninsula; a second occurrence in Russia AND REW Yu. BA RKOV, YEVGENY E. SAVCHENKO, YURII P. MEN'SHIKOV & LARISSA P. BARKOVA Barkov, A. Yu., Savchenko, Ye. E., Men'shikov, Yu, P. & Barkova, L. P. : Loveringite from the Last-Yavr mafic-ultramafic intrusion, Kola Peninsula; a second occurrence in Russia. Norsk Geologisk Tidsskrift, Vol. 76, pp. 115-120. Oslo 1996. ISSN 0029- 196X. Loveringite, (Ca, REE)(Ti, Fe, Cr),1038 (a member of the crichtonite group) occurs in orthocumulates (plagioclase-bearing orthopyroxenites) of the Last-Yavr intrusion, which obviously represents a fragment of the Proterozoic Fedorova Tundra-Pana Tundra layered intrusion. The occurrence is situated immediately adjacent to the Archaean wall rocks at a lower structural leve! of the intrusion. The loveringite is closely associated with a typical intercumulus assemblage (phlogopite, quartz, albite-rich plagioclase, ilmenite, rutile and Ca-amphibole). Its composition is characterized by a relatively low con tent of REE and high concentrations of Cr and Mg. The rellectance values are in good agreement with published data; VHN 100= 912-1085. The unit-cell dimensions are a= 10.40 (3), c= 20.83 (6) Å. A. Yu. Barkov•, Ye. E. Savchenko, Yu. P. Men'sh ikov & L. P. Barkova, Geological In stitute, Kola Science Centre, Russian Academy of Sciences, 14 Fersman Street, 184200 Apatity, Russia. • Present address: Department of Geosciences and Astronomy, Un iversity of Oulu, FTN-90570 Oulu, Finland. Introduction between the hetter known Fedorova Tundra and Pana Tundra intrusions (Fig. l). The intrusions are located Loveringite, (Ca, REE)(Ti, Fe, Crb 038, a rare member between Archaean granitoids and the Palaeoproterozoic of the crichtonite group, was first described by Seidorechensky volcanogenic-sedimentary sequence.
    [Show full text]
  • Dessauite, (Sr,Pb)(Y,U)(Ti,Fe )20O38, a New Mineral of the Crichtonite Group from Buca Della Vena Mine, Tuscany, Italy
    American Mineralogist, Volume 82, pages 807±811, 1997 31 Dessauite, (Sr,Pb)(Y,U)(Ti,Fe )20O38, a new mineral of the crichtonite group from Buca della Vena mine, Tuscany, Italy PAOLO ORLANDI,1 MARCO PASERO,1 GIUSEPPE DUCHI,2 AND FILIPPO OLMI3 1Dipartimento di Scienze della Terra, UniversitaÁ di Pisa, Via S. Maria 53, I-56126 Pisa, Italy 2Via dei Lecci 77/i, I-55049 Viareggio (LU), Italy 3Consiglio Nazionale delle Ricerche, Centro di Studio per la Minerogenesi e la Geochimica Applicata, Via La Pira 4, I-50121 Firenze, Italy ABSTRACT Dessauite, a new mineral in the crichtonite group, occurs within cavities in calcite veins as tabular {001} rhombohedral, black, millimeter-sized crystals at Buca della Vena Mine, Apuan Alps (Tuscany, Italy). It is associated with derbylite, hematite, rutile, karelianite, siderite, and calcite. Dessauite is trigonal, space group R3, with a 5 9.197(1) AÊ , a5 68.75(2)8. Optically, dessauite is opaque and shows low bire¯ectance and very weak ple- ochroism. Electron microprobe analyses led to the following simpli®ed chemical formula: 31 (Sr,Pb)(Y,U)(Ti,Fe )20O38. The crystal structure of dessauite was re®ned from single-crys- tal X-ray diffraction data to R 5 0.065. Dessauite is isostructural with the others members of the crichtonite group; a peculiar structural feature is the presence of additional, partially occupied octahedral sites. A comparison of the crystal-chemical formulas of all the min- erals within the crichtonite group is presented. In view of the structural information, the analytical data have been re-arranged on the basis of the crystal-chemical formula ABC18T2O38, rather than AM21O38.
    [Show full text]
  • “Mohsite” of Colomba: Identification As Dessauite-(Y)
    Hindawi Publishing Corporation International Journal of Mineralogy Volume 2014, Article ID 287069, 6 pages http://dx.doi.org/10.1155/2014/287069 Research Article ‘‘Mohsite’’ of Colomba: Identification as Dessauite-(Y) Erica Bittarello,1 Marco E. Ciriotti,2 Emanuele Costa,1 and Lorenzo Mariano Gallo3 1 DipartimentodiScienzedellaTerra,ViaTommasoValpergaCaluso35,10125Torino,Italy 2 Associazione Micromineralogica Italiana, Via San Pietro 55, 10073 Devesi-Cirie,` Torino, Italy 3 Museo Regionale di Scienze Naturali, Via Giovanni Giolitti 36, 10123 Torino, Italy Correspondence should be addressed to Emanuele Costa; [email protected] Received 11 November 2013; Revised 6 March 2014; Accepted 20 March 2014; Published 8 April 2014 Academic Editor: Elena Belluso Copyright © 2014 Erica Bittarello et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. During a reorganization of the mineralogical collection of Turin University, old samples of the so-called mohsite of Colomba were found. “Mohsite” was discredited in 1979 by Kelly et al., as a result of some analyses performed on the equivalent material coming from the French region of Hautes-Alpes, but the original samples found in similar geological setting in Italy were lost and never analysed with modern equipment. After more than a century, the rediscovered samples of Professor Colomba were analysed by means of SEM-EDS analysis, microRaman spectroscopy, and X-ray diffraction. The results have demonstrated that the historical samples studied by Colomba are Pb-free dessauite-(Y), and pointed to an idealized crystal chemical formula 2+ 3+ 3+ (Sr0.70Na0.25Ca0.09)Σ=1.04(Y0.62U0.18Yb0.09Sc0.08)Σ=0.97 Fe2 (Ti12.66Fe4.78V0.26)Σ=17.70O38 and unit-cell parameters a = 10.376(3) A,˚ c = 3 20.903(6) A,˚ and V = 1949(1) A˚ .
    [Show full text]
  • DISCOVERY of METEORITIC LOVERINGITE, Ca(Ti,Fe,Cr,Mg)21O38, in an ALLENDE CHONDRULE: LATE-STAGE CRYSTALLIZATION in a MELT DROPLET
    44th Lunar and Planetary Science Conference (2013) 1443.pdf DISCOVERY OF METEORITIC LOVERINGITE, Ca(Ti,Fe,Cr,Mg)21O38, IN AN ALLENDE CHONDRULE: LATE-STAGE CRYSTALLIZATION IN A MELT DROPLET. Chi Ma1,2, John R. Beckett1, Harold C. Connolly, Jr.3,4,5, and George R. Rossman1; 1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena CA 91125, [email protected]; 3Department of Physical Sciences, Kingsborough College of the City University of New York, Brooklyn NY 100235; 4Department of Earth and Planetary Sciences, AMNH, New York, NY 10024; 5Lunar and Planetary Laboratory, University of Arizona, Tucson AZ 85721. Introduction: During our nanomineralogy investi- gation of the Allende CV3 meteorite, we identified loveringite, Ca(Ti,Fe,Cr,Mg)21O38, along with zircono- lite and ilmenite in a barred olivine chondrule ALL-C1. We used electron probe microanalysis (EPMA), high- resolution scanning electron microscope (SEM), ener- gy dispersive X-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD) to characterize its com- position and structure. In terrestrial rocks, loveringite occurs as a late-crystallizing phase in layered intru- sions, ophiolites, and peridotites and their metamor- phosed equivalents [e.g., 1-3]. Here, we describe the first confirmed occurrence of meteoritic loveringite and Fig. 1. Backscatter electron (BSE) image showing consider the origin of this and associated phases within an overview of the loveringite containing Allende the chondrule. chondrule ALL-C1. Loveringites marked by arrows. Appearance, Chemistry and Crystallography: Chondrule ALL-C1 is composed of a central region of barred olivine crystals (Fo85) surrounded by a rim of euhedral to subhedral olivine of similar composition.
    [Show full text]
  • Mathiasite-Loveringite and Priderite in Mantle Xenoliths from the Alto Paranaíba Igneous Province, Brazil: Genesis and Constraints on Mantle Metasomatism
    Cent. Eur. J. Geosci. • 6(4) • 2014 • 614-632 DOI: 10.2478/s13533-012-0197-5 Central European Journal of Geosciences Mathiasite-loveringite and priderite in mantle xenoliths from the Alto Paranaíba Igneous Province, Brazil: genesis and constraints on mantle metasomatism Topical issue Vidyã V. Almeida1;2∗, Valdecir de A. Janasi2, Darcy P. Svisero2, Felix Nannini2;3 1 Geological Survey of Brazil (CPRM, SUREG SP), Rua Costa, 55, CEP 01304-010, São Paulo, SP, Brazil 2 Departamento de Mineralogia e Geotectônica, Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, CEP 05508-080, São Paulo, SP, Brazil 3 Geological Survey of Brazil (CPRM, SUREG RE), Av. Sul, 2291, CEP 50770-011, Recife, PE, Brazil Received 01 April 2014; accepted 05 July2014 Abstract: Alkali-bearing Ti oxides were identified in mantle xenoliths enclosed in kimberlite-like rocks from Limeira 1 alkaline intrusion from the Alto Paranaíba Igneous Province, southeastern Brazil. The metasomatic mineral assemblages include mathiasite-loveringite and priderite associated with clinopyroxene, phlogopite, ilmenite and rutile. Mathiasite-loveringite (55-60 wt.% TiO2; 5.2-6.7 wt.% ZrO2) occurs in peridotite xenoliths rimming chromite (∼50 wt.% Cr2O3) and subordinate ilmenite (12-13.4 wt.% MgO) in double reaction rim coronas. Priderite (Ba/(K+Ba)< 0:05) occurs in phlogopite-rich xenoliths as lamellae within Mg-ilmenite (8.4-9.8 wt.% MgO) or as intergrowths in rutile crystals that may be included in sagenitic phlogopite. Mathiasite-loveringite was formed by reaction of peridotite primary minerals with alkaline melts. The priderite was formed by reaction of peridotite minerals with ultrapotassic melts.
    [Show full text]
  • IMA–CNMNC Approved Mineral Symbols
    Mineralogical Magazine (2021), 85, 291–320 doi:10.1180/mgm.2021.43 Article IMA–CNMNC approved mineral symbols Laurence N. Warr* Institute of Geography and Geology, University of Greifswald, 17487 Greifswald, Germany Abstract Several text symbol lists for common rock-forming minerals have been published over the last 40 years, but no internationally agreed standard has yet been established. This contribution presents the first International Mineralogical Association (IMA) Commission on New Minerals, Nomenclature and Classification (CNMNC) approved collection of 5744 mineral name abbreviations by combining four methods of nomenclature based on the Kretz symbol approach. The collection incorporates 991 previously defined abbreviations for mineral groups and species and presents a further 4753 new symbols that cover all currently listed IMA minerals. Adopting IMA– CNMNC approved symbols is considered a necessary step in standardising abbreviations by employing a system compatible with that used for symbolising the chemical elements. Keywords: nomenclature, mineral names, symbols, abbreviations, groups, species, elements, IMA, CNMNC (Received 28 November 2020; accepted 14 May 2021; Accepted Manuscript published online: 18 May 2021; Associate Editor: Anthony R Kampf) Introduction used collection proposed by Whitney and Evans (2010). Despite the availability of recommended abbreviations for the commonly Using text symbols for abbreviating the scientific names of the studied mineral species, to date < 18% of mineral names recog- chemical elements
    [Show full text]