US 2012/0052539 A1 Favre Et Al

Total Page:16

File Type:pdf, Size:1020Kb

US 2012/0052539 A1 Favre Et Al US 20120052539A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0052539 A1 FaVre et al. (43) Pub. Date: Mar. 1, 2012 (54) PROCESS FOR MAKING ATRIGLYCERIDE (30) Foreign Application Priority Data COMPOSITION May 11, 2009 (EP) .................................. O9251287.0 (76) Inventors: Thomas Louis Francois Favre, AZ Wormerveer (NL); Henry Kos, AZ Publication Classification Wormerveer (NL); Krishnadath (51) Int. Cl. Bhaggan, AZ Wormerveer (NL); CI2P 7/64 (2006.01) Sylvain Jacques Fages, Orbe (CH) (52) U.S. Cl. ........................................................ 435/134 (21) Appl. No.: 13/319,403 (57) ABSTRACT (22) PCT Filed: May 10, 2010 A process for preparing a triglyceride composition compris ing from 50 to 80% by weight StC)Stand from 5 to 20% by (86). PCT No.: PCT/EP201 O/OO2865 weight StCO comprises reacting triolein with stearic acid in the presence of a 1.3-specific lipase from Rhizopus Oryzae to S371 (c)(1), form interesterified glycerides and fractionating the interest (2), (4) Date: Nov. 8, 2011 erified triglycerides. US 2012/0052539 A1 Mar. 1, 2012 PROCESS FOR MAKING ATRIGLYCERIDE O010 Seriburietal, JAOCS, vol 75, no 4, 1998, 511-516 COMPOSITION discloses the transesterification of triolein and Stearic acid using lipases from Rhizomucor miehei or Candida antarctica. (0011 U.S. Pat. No. 6,090,598 discloses an enzymatic pro 0001. This invention relates to a process for making a cess for interesterification of fats and oils using distillation. triglyceride composition and to the composition obtainable There is no disclosure of an example for producing StGStand by the process. the only mention of the production of this triglyceride is 0002 Triglycerides comprise three fatty acid moieties starting from a stearic acid ester. bonded to a glycerol backbone. When a triglyceride contains 0012. There remains a need for processes for the forma two or more different fatty acid moieties, its properties, tion of StOSttriglycerides, in particular compositions that are including its physical and chemical properties as well as similar to shea Stearin in terms of the triglycerides that they physiological characteristics, may depend on the position on contain. There is also a need for processes that do not involve the glycerol backbone at which each of the fatty acids is the formation of undesirable side products that need to be attached in the molecule. Therefore, it can be desirable to removed from the product. control processes for producing triglycerides such that the 0013. Accordingly, the present invention provides a pro different fatty acid residues are selectively attached at differ cess for preparing a triglyceride composition comprising ent positions on the glycerol backbone. from 50 to 80% by weight StC)Stand from 5 to 20% by weight 0003) 1,3-Distearoyl 2-oleoyl glyceride (also known as StOO, which process comprises reacting triolein with stearic StOSt) is a valuable commercial product. For example, it may acid in the presence of a 1.3-specific lipase from Rhizopus be used, either alone or together with other glycerides such as Oryzae to form interesterified glycerides and fractionating the 1,3-dipalmitoyl 2-oleoylglyceride, as a cocoa butter equiva interesterified triglycerides. lent or substitute (CBE). 0014. Also provided by the invention is a triglyceride 0004 Shea butter is used commercially as a source of composition comprising from 50 to 80% by weight StC)Stand StOSt. Shea butter is obtained from the shea butter tree Buty up to 20% by weight StCO obtainable by the process of the rospermum parkii. Shea Stearin, the higher melting fraction invention. which is obtained by fractionation of shea butter, is enriched 0015. It has surprisingly been found that it is possible to in StCSt but contains other triglycerides such as StCO and produce a triglyceride composition that is similar to shea StLSt (where L represents linoleic acid). Thus, Shea stearin is stearin. This effect is achieved by using the 1.3-specific lipase used to produce cocoa butter equivalents (CBEs). The avail from Rhizopus Oryzae for the reaction of triolein with stearic ability of Shea stearin is dependent on the supply of Shea acid and Subsequently fractionating the product. nutS. 0016. The reaction between triolein and stearic acid is 0005 EP-A-0882797 relates to the preparation of ABA typically carried out at a temperature of from 45 to 85°C. symmetrical triglycerides from 2-monoglycerides using a Preferably, the step of reacting the triolein with stearic acid is 1.3-selective lipase. carried out at a temperature of from 65 to 80° C., more 0006 U.S. Pat. No. 5.288,619 describes an enzymatic preferably from 65 to 75°C., even more preferably from 68 to transesterification method for preparing a margarine oil hav 73°C. It has unexpectedly been found that surprisingly good ing both low trans-acid and low intermediate chain fatty acid results are obtained at these relatively higher reaction tem content. The method includes the steps of providing a trans peratures. It was Surprising that the lipase retains sufficient esterification reaction mixture containing a stearic acid activity at these high temperatures to catalyse the reaction Source material and an edible liquid vegetable oil, transesteri effectively. The ability to carry out the reaction at these high fying the Stearic acid source material and the vegetable oil temperatures permits the use of Stearic acid as a starting using a 1.3-positionally specific lipase, and then finally material for the process rather than its esters which have lower hydrogenating the fatty acid mixture to provide a recycle melting points. This, in turn, means that the side products Stearic acid source material for a recyclic reaction with the produced from the Stearoyl esters during the reaction can be vegetable oil. avoided. 0007 U.S. Pat. No. 4,268,527 discloses a method for pro 0017. The reaction of the triolein with the stearic acid is ducing a cocoa butter substitute (CBE) by transesterification preferably carried out at atmospheric pressure i.e., in a non of fats and oils containing glycerides rich in the oleyl moiety pressurised system. The reaction may be carried out in a at the 2-position with an alcohol ester of stearic acid and/or packed bed reactor. The reaction is preferably carried out as a palmitic acid in the presence of a lipase having reaction continuous process. specificity to the 1.3-position of triglycerides and not more 0018. The reaction of triolein with stearic acid is prefer than 0.18% by weight of water based on the total weight of the ably carried out in the complete or substantial absence of reaction mixture. A cocoa butter substitute, rich in 1,3-dis added organic solvents, such as alcohols and/or ketones hav tearyl-2-oleyl compound and 1-palmityl-2-oleyl-3-Stearyl ing from 1 to 6 carbon atoms. Typically, alcohols and/or compound is said to be obtained. ketones having from 1 to 6 carbon atoms will be absent from 0008 EP-A-0245076 describes the preparation of edible the reaction mixture or, if present, they will be present in an fats by the reaction of high oleic sunflower oil with stearic amount of less than 1% by weight, more preferably less than acid in the presence of a lipase. The resulting composition, 0.5% by weight, such as less than 0.1% by weight, based on after wet fractionation, is significantly different from shea the weight of the reaction mixture. stearin in its StOSt and StOO contents. 0019. The lipase that is used in the invention is from Rhizo 0009 Nakaya et al. Biotechnology Techniques, Vol 12, no pus Oryzae. The lipase may be produced in Rhizopus Oryzae 12, 1998, 881-884 describes the transesterification reaction itself or produced recombinantly using a different host cell. between triolein and Stearic acid using an immobilised lipase The lipase may be modified, for example by the substitution from Mucor miehei in supercritical CO. or deletion of up to 10% of the amino acid residues in the US 2012/0052539 A1 Mar. 1, 2012 enzyme (i.e., the lipase may have at least 90% identity with 0028. The weight ratio of stearic acid to the starting mate the wild type enzyme) without loss of lipase activity, but it is rial comprising triolein is preferably in the range of from 1:1 preferably the wild type enzyme. The lipase from Rhizopus to 1:2. Oryzae is commercially available from Amano as Lipase D. 0029. The reaction of the triolein with the stearic acid is 0020. The lipase is preferably immobilised on a support. typically carried out for a time of from 20 to 200 hours, more The support is preferably a polymer, more preferably a preferably from 30 to 150 hours. microporous polymer, such as a microporous polypropylene 0030. After the triolein has been reacted with the stearic polymer (e.g., a homopolymer), for example as sold under the acid, the product is fractionated. Fractionation can be dry or trade mark Accurel. The preferred loading of the lipase onto wet but preferably the product is wet fractionated i.e., frac the support is in the range of from 0.1 to 25% by weight of tionated in the presence of a solvent. More preferably, the wet enzyme based on the weight of the Support, more preferably fractionation is carried out using acetone. from 0.3 to 10% by weight, such as from 0.5 to 5% by weight. 0031. The fractionation process can involve one fraction Theoretically (i.e., assuming the immobilisation has no effect ation step or two or more fractionation steps at different on the activity of the enzyme), the activity of the immobilised temperatures. enzyme (i.e., enzyme plus support) is preferably from 10,000 0032 Preferably, the reaction product is fractionated to 10,000,000 U/g, more preferably from 100,000 to 1,000, using acetone in a two-stage fractionation process.
Recommended publications
  • Tailored Microstructure of Colloidal Lipid Particles for Pickering Emulsions with Tunable Properties
    Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2017 Supporting information. Tailored Microstructure of Colloidal Lipid Particles for Pickering Emulsions with Tunable Properties Anja A.J. Schröder1,2, Joris Sprakel2, Karin Schroën1, Claire C. Berton-Carabin1 1. Laboratory of Food Process Engineering, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands. 2. Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands. Email addresses: [email protected], [email protected], [email protected], [email protected] S1 S1. Tripalmitin CLP dispersions produced with 0.5% w/w (left) and 1% w/w (right) Tween40 in the aqueous phase. S2. Fatty acid composition of palm stearin. Component name Percentage average C14:0 1.16 C16:0 82.18 C18:0 5.12 C18:1 9.03 C18:2 1.83 C18:3 0.02 C20:0 0.32 C22:0 0.25 C22:1 0.04 C24:0 0.05 S3. Hydrodynamic diameter (z-average) measured by dynamic light scattering, and, D[4,3], D[3,2], D10, D50 and D90 measured by static light scattering of CLPs composed of (a) tripalmitin, (b) tripalmitin/tricaprylin 4:1, (c) palm stearin. S2 Type of z-average PdI D[4,3] A D[3,2] D10 D50 D90 lipid (μm) (μm) (μm) (μm) (μm) (μm) Tripalmitin 0.162 ± 0.112 ± 0.130 ± 0.118 ± 0.082 ± 0.124 ± 0.184 ± 0.005 0.02 0.004 0.003 0.002 0.004 0.005 Tripalmitin/ 0.130 ± 0.148 ± 0.131 ± 0.117 ± 0.080 ± 0.124 ± 0.191 ± tricaprylin 0.011 0.02 0.003 0.001 0.004 0.002 0.010 (4:1) Palm 0.158 ± 0.199 ± 0.133 ± 0.119 ± 0.081 ± 0.127 ± 0.195 ± stearin 0.007 0.02 0.002 0.002 0.005 0.000 0.010 A B S4.
    [Show full text]
  • Zahnmedizinische Produkte Und Ihre Inhaltsstoffe
    Medikamente Zahnmedizinische Produkte III–8.3 Zahnmedizinische Produkte und ihre Inhaltsstoffe Produktname Anbieter/ Inhaltsstoffe Verwendung Hersteller/ (Elemente in Massen-%, Vertrieb seit x = keine Angabe) Adaptic LC Johnson & John­ Ba-Glas Kunststoff son AH 26 DeTrey Dentsply Pulver: Silber, Wismutoxid, Methenamin, Wurzelkanal- Titandioxid, Harz: Epoxybisphenolharz Füllungsmasse Alba KF Heraeus/Heraeus/ Pd: 40,0; Ag: 53,0; Sn: x; Zn: 3,5; In: 2,0 Zahnlegierung 1988 Alba Lot 810 Heraeus Kulzer Au: 10,00; Pd: 1,00; Cu: 11,00; Ag: 69,00; Dentallot In: 6,00; Zn: 3,00 Alba Lot 880 Heraeus Kulzer Au: 12,00; Pd: 4,00; Cu: 11,00; Ag: 69,00; Dentallot In: 4,00 Alba SG Heraeus/Heraeus/ Au: 10,0; Pd: 21,0; Ag: 57,0; Cu: 10,0; Zn: Zahnlegierung 1953 2,0 Albabond Heraeus/Heraeus/ Pd: 60,5; Ag: 28,0; Sn: 3,0; In: 7,0; Ga: x Zahnlegierung 1980 Albabond A Heraeus/Heraeus/ Pd: 57,0; Ag: 32,8; Sn: 6,8; In: 3,4 Zahnlegierung 1989 Albabond E Heraeus/Heraeus/ Au: 1,6; Pd: 78,4; Cu: 11,0; Sn: x; In: x; Ga: Zahnlegierung 1983 7,5 Albabond EH Heraeus/Heraeus/ Au: 2,0; Pd: 79,0; Cu: 10,0; Ga: 8,8 Zahnlegierung 1984 Albabond GF Heraeus/Heraeus/ Pd: 60,5; Ag: 19,5; Cu: 7,5; Sn: 3,0; In: 9,5 Zahnlegierung 1987 Albabond U Heraeus/Heraeus/ Au: 2,0; Pd: 75,0; Cu: 9,5; Sn: 3,0; In: 7,0; Zahnlegierung 1982 Ga: 3,5 Albiotic Upjohn Lincomycin Antibiotikum Aleram 2 Allgemeine Gold- Au: x; Pd: 78,5; Cu: 10,5; Sn: x; Ga: 8,0 Zahnlegierung u.
    [Show full text]
  • Effect of the Lipase Inhibitor Orlistat and of Dietary Lipid on the Absorption Of
    Downloaded from https://doi.org/10.1079/BJN19950090 British Journal of Nutrition (1995), 73, 851-862 851 https://www.cambridge.org/core Effect of the lipase inhibitor orlistat and of dietary lipid on the absorption of radiolabelled triolein, tri-y-linolenin and tripalmitin in mice BY DOROTHEA ISLER, CHRISTINE MOEGLEN, NIGEL GAINS AND MARCEL K. MEIER . IP address: Pharma Division, Preclinical Research, F. Hoffmann-La Roche Ltd, CH-4002 Basel, Switzerland (Received 8 November 1993 - Revised 12 September 1994 - Accepted 7 October 1994) 170.106.40.139 Orlistat, a selective inhibitor of gastrointestinal lipases, was used to investigate triacylglycerol absorption. Using mice and a variety of emulsified dietary lipids we found that the absorption of , on radiolabelled tripalmitin (containing the fatty acid 16: 0), but not of triolein (18 :ln-9) or tri-y-linolenin 27 Sep 2021 at 17:57:17 (18:3n-6), was incomplete from meals rich in esterified palmitate. Further, the absorption of radiolabelled triq-linolenin, from both saturated and unsaturated dietary triacylglycerols, was 1.3- to 2 fold more potently inhibited by orlistat than that of triolein and tripalmitin. These radiolabelled triacylglycerols, which have the same fatty acid in all three positions, may not always be accurate markers of the absorption of dietary triacylglycerols. Orlistat was more effective at inhibiting the absorption of radiolabelled triacylglycerols with which it was codissolved than those added separately, , subject to the Cambridge Core terms of use, available at which indicates that equilibration between lipid phases in the stomach may not always be complete. The saturation of the dietary lipid had little or no effect on the potency of orlistat.
    [Show full text]
  • Triglyceride Transesterification in Heterogeneous Reaction System with Calcium Oxide As Catalyst
    Rev. Fac. Ing. Univ. Antioquia N.° 57 pp. 7-13. Enero, 2011 Triglyceride transesterification in heterogeneous reaction system with calcium oxide as catalyst Transesterificación de triglicéridos en el sistema de reacción heterogénea con óxido de calcio como catalizador Mónica Becerra Ortega, Aristóbulo Centeno Hurtado, Sonia Azucena Giraldo Duarte* Centro de Investigaciones en Catálisis (CICAT). Escuela de Ingeniería Química. Universidad Industrial de Santander (UIS). Carrera 27 Calle 9. Bucaramanga. Colombia (Recibido el 03 de febrero de 2010. Aceptado el 15 de octubre de 2010) Abstract In this work, the behavior of the CaO as a potential catalyst for the transesterification of triglyceride towards biodiesel production was studied. The effect of the alcohol type, the ratio of alcohol/triacetin, the amount of catalyst, and the chain length of triglyceride on the catalytic behavior of CaO was analyzed. Total conversion was obtained at room temperature with a 6:1 molar ratio of methanol to triacetin over 1% of CaO, after 1 h. It was demonstrated that the whole reaction occurs in heterogeneous phase. During five reaction cycles the CaO maintained a high catalytic activity, showing its good stability. Additionally, it was established that the length of the triglyceride used influenced the transesterification reaction yield due to the steric hindrances and diffusional limitations in the fluid phase. ----- Keywords: Biodiesel, triacetin, basic catalysis, triolein Resumen En este trabajo se estudió el comportamiento del CaO como potencial catalizador en la transesterificación de trigliceridos para la producción de biodiesel. Se analizó el efecto del tipo de alcohol, la relación molar alcohol/triacetina, la cantidad de catalizador y el tamaño de la cadena del triglicérido sobre su comportamiento catalítico.
    [Show full text]
  • Properties of Fatty Acids in Dispersions of Emulsified Lipid and Bile Salt and the Significance of These Properties in Fat Absorption in the Pig and the Sheep
    Downloaded from Br. y. Nutr. (1969), 23, 249 249 https://www.cambridge.org/core Properties of fatty acids in dispersions of emulsified lipid and bile salt and the significance of these properties in fat absorption in the pig and the sheep BY C. P. FREEMAN . IP address: Unilever Research Laboratory, Colworth House, Sharnbrook, Bedford (Received I July 1968-Accepted 25 October 1968) 170.106.35.76 I. The behaviour of fatty acids in dilute bile salt solution and in dispersions of triglyceride in bile salt solution was examined. The properties of fatty acids in bile salt solution were defined in terms of their saturation ratio, and of the critical micellar concentration of bile , on salt for each fatty acid as solute. The partition of fatty acids between the oil phase and the micellar phase of the dispersions was defined as the distribution coefficient K M/O. The 25 Sep 2021 at 20:48:57 phases were separated by ultracentrifugation. 2. Of the fatty acids examined, palmitic and stearic acids behaved in bile salt solution as typical non-polar solutes. Lauric, oleic and linoleic acids had properties similar to typical amphiphiles. The effectiveness of these and other amphiphiles was expressed in terms of an amphiphilic index. 3. The trans-fatty acids, vaccenic acid and linolelaidic acid possessed solubility properties similar to their &-isomers. The properties of elaidic acid were intermediate between those , subject to the Cambridge Core terms of use, available at of the non-polar and the amphiphilic solutes. 4. The distribution coefficients of fatty acids differed less significantly than their solubilities in bile salt solution, but were influenced to some extent by the composition of the oil phase.
    [Show full text]
  • Differences in Labelled Triolein Turnover After Oral Administration Between
    Downloaded from https://www.cambridge.org/core British Journal of Nutrition (2005), 93, 53–58 DOI: 10.1079/BJN20041296 q The Authors 2005 Differences in labelled triolein turnover after oral administration between . IP address: liver and adipose tissue of rats 170.106.33.42 Nobuko Iritani*, Tomoe Kimura, Hitomi Fukuda and Tomomi Sugimoto Faculty of Human and Cultural Studies, Tezukayama Gakuin University, 4-Cho, Harumidai, Sakai, Osaka 590-0113, Japan , on (Received 9 March 2004 – Revised 26 July 2004 – Accepted 7 September 2004) 28 Sep 2021 at 13:35:15 To investigate exogenous triacylglycerol turnover, the time courses for labelled triolein in the liver, plasma and epididymal adipose tissue (adipose tissue) after oral administration to rats fed a fat-free or 10 % corn oil diet for 3 d after fasting overnight were examined for 10 d. After the administration of labelled triolein to rats fed the fat-free diet, the incorporation (dpm/g) into total lipids of the liver and adipose tissue each reached the maximum in 8 h and was seven times higher in the adipose tissue than in the liver. The half-lives of total lipid radioactivities during the decreasing phases were 0·39 and 2·58 d, respectively, , subject to the Cambridge Core terms of use, available at in the rapid and slow phases of the decay curve in the liver, and 4·78 d in only one phase of the adipose tissue. Radioactivity after administration of labelled triolein was mostly found in the oleic acid in the tissues. The half-life of oleic acid was 3·92 d in the adipose tissues.
    [Show full text]
  • Food Scientist's Guide to Fats and Oils For
    FOOD SCIENTIST’S GUIDE TO FATS AND OILS FOR MARGARINE AND SPREADS DEVELOPMENT by KATHLEEN M. MORLOK B.S., University of Minnesota, 2005 A REPORT submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Food Science KANSAS STATE UNIVERSITY Manhattan, Kansas 2010 Approved by: Major Professor Kelly J.K. Getty Animal Sciences & Industry Abstract Fats and oils are an important topic in the margarine and spreads industry. The selection of these ingredients can be based on many factors including flavor, functionality, cost, and health aspects. In general, fat is an important component of a healthy diet. Fat or oil provides nine calories per gram of energy, transports essential vitamins, and is necessary in cellular structure. Major shifts in consumption of fats and oils through history have been driven by consumer demand. An example is the decline in animal fat consumption due to consumers’ concern over saturated fats. Also, consumers’ concern over the obesity epidemic and coronary heart disease has driven demand for new, lower calorie, nutrient-rich spreads products. Fats and oils can be separated into many different subgroups. “Fats” generally refer to lipids that are solid at room temperature while “oils” refer to those that are liquid. Fatty acids can be either saturated or unsaturated. If they are unsaturated, they can be either mono-, di-, or poly-unsaturated. Also, unsaturated bonds can be in the cis or trans conformation. A triglyceride, which is three fatty acids esterified to a glycerol backbone, can have any combination of saturated and unsaturated fatty acids. Triglycerides are the primary components of animal and vegetable fats and oils.
    [Show full text]
  • Encapsulation and Protection of Omega-3-Rich Fish Oils Using Food-Grade Delivery Systems
    foods Review Encapsulation and Protection of Omega-3-Rich Fish Oils Using Food-Grade Delivery Systems Vishnu Kalladathvalappil Venugopalan 1 , Lekshmi Ramadevi Gopakumar 2, Ajeeshkumar Kizhakkeppurath Kumaran 2, Niladri Sekhar Chatterjee 2, Vishnuja Soman 3, Shaheer Peeralil 2, Suseela Mathew 2, David Julian McClements 4,* and Ravishankar Chandragiri Nagarajarao 2 1 Centre for Marine Living Resources and Ecology (CMLRE), Ministry of Earth Sciences, Kochi 682508, India; [email protected] 2 Central Institute of Fisheries Technology (CIFT), Indian Council for Agricultural Research, Matsyapuri P.O, Kochi 682029, India; [email protected] (L.R.G.); [email protected] (A.K.K.); [email protected] (N.S.C.); [email protected] (S.P.); [email protected] (S.M.); [email protected] (R.C.N.) 3 Department of Chemical Oceanography, School of Marine Sciences, Cochin University of Science and Technology, Cochin 682016, India; [email protected] 4 Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA * Correspondence: [email protected] Abstract: Regular consumption of adequate quantities of lipids rich in omega-3 fatty acids is claimed to provide a broad spectrum of health benefits, such as inhibiting inflammation, cardiovascular diseases, diabetes, arthritis, and ulcerative colitis. Lipids isolated from many marine sources are a rich source of long-chain polyunsaturated fatty acids (PUFAs) in the omega-3 form which are claimed to have particularly high biological activities. Functional food products designed to enhance Citation: Venugopalan, V.K.; human health and wellbeing are increasingly being fortified with these omega-3 PUFAs because Gopakumar, L.R.; Kumaran, A.K.; of their potential nutritional and health benefits.
    [Show full text]
  • Nutritional Indices for Assessing Fatty Acids: a Mini-Review
    International Journal of Molecular Sciences Review Nutritional Indices for Assessing Fatty Acids: A Mini-Review Jiapeng Chen 1 and Hongbing Liu 1,2,* 1 Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; [email protected] 2 Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China * Correspondence: [email protected]; Tel.: +86-0532-82031823 Received: 30 June 2020; Accepted: 6 August 2020; Published: 8 August 2020 Abstract: Dietary fats are generally fatty acids that may play positive or negative roles in the prevention and treatment of diseases. In nature, fatty acids occur in the form of mixtures of saturated fatty acid (SFA), monounsaturated fatty acid (MUFA), and polyunsaturated fatty acid (PUFA), so their nutritional and/or medicinal values must be determined. Herein, we do not consider the P P P P P classic indices, such as SFA, MUFA, PUFA, n-6 PUFA, n-3 PUFA, and n-6 PUFA/n-3 PUFA; instead, we summarize and review the definitions, implications, and applications of indices used in recent years, including the PUFA/SFA, index of atherogenicity (IA), the index of thrombogenicity (IT), the hypocholesterolemic/hypercholesterolemic ratio (HH), the health-promoting index (HPI), the unsaturation index (UI), the sum of eicosapentaenoic acid and docosahexaenoic acid (EPA + DHA), fish lipid quality/flesh lipid quality (FLQ), the linoleic acid/α-linolenic acid (LA/ALA) ratio, and trans fatty acid (TFA). Of these nutritional indices, IA and IT are the most commonly used to assess the composition of fatty acids as they outline significant implications and provide clear evidence.
    [Show full text]
  • Preparation of Fatty Acids and Analysis of the Saponification Products of the Fatty Material of the Fifth and Sixth Genera _____
    BOOK III – CHAPTER 1 BOOK III PREPARATION OF SPECIES OF FATTY MATERIALS _____ CHAPTER 1 PREPARATION OF FATTY ACIDS AND ANALYSIS OF THE SAPONIFICATION PRODUCTS OF THE FATTY MATERIAL OF THE FIFTH AND SIXTH GENERA _____ 596. The fatty acids of the fatty material of the fifth and sixth genera are obtained by saponification but it is not necessary to carry out the saponification on purified samples of stearin, olein, phocenin, butyrin and hircin. It suffices to saponify tallow, fat, butterfat or oil, in other words, the substances formed of these immediate principles1. 152 ANIMALS OILS AND FATS SECTION 1 PREPARATION OF THE FATTY MATERIAL TO BE SAPONIFIED _____ § 1. PREPARATION OF HUMAN FAT, LARD, BEEF TALLOW, MUTTON TALLOW, ETC. 597. Remove most of the membranes enveloping the fat, place it with some water in a porcelain mortar and press with a pestle. Replace the water repeatedly until the washing water remains uncolored. When the fat has been washed, it is drained, then melted on a water bath and filtered through filter paper positioned between two stoves that are burning2. Because it is difficult to avoid the presence of some water in the molten fat poured on to the filter, it must be filtered a second time. The main purpose of filtering the fat is to remove the last traces of cellu- lar tissue. § 2. PREPARATION OF DOLPHIN OR PORPOISE OIL 598. This is extracted from the tissue in which it is contained more or less as described above. After this tissue has been cleaned as well as possible, it is cut into small pieces and placed with some water in a narrow flask.
    [Show full text]
  • ABSTRACTS 2018 AOCS ANNUAL MEETING and EXPO May 6–9, 2018
    ABSTRACTS 2018 AOCS ANNUAL MEETING AND EXPO May 6–9, 2018 BIO 1.1/IOP 1: Biorenewable Polymers Chairs: Richard D. Ashby, USDA, ARS, ERRC, USA; and Baki Hazer, Kapadokya University and Bülent Ecevit University, Turkey Synthesis of Resinic Acid and Lignin Derivative in large quantity and high yield via enzymatic Dimers for Copolymerization with Vegetable Oil- catalysis using a laccase. After chemical based Monomers Audrey Llevot*, LCPO, France modifications, the obtained dimers were tested The awareness of environmental in copolymerization with different fatty acid deterioration and our dependency on depleting derivatives. The thermomechanical properties of fossil feedstocks force research to find innovative the polymers will be discussed, as well as the solutions in order to design a more sustainable sustainability of their synthesis. future. With a worldwide plastic production of over 300 million metric tons per year, polymer Dual Cure Alkyds Mark D. Soucek*, University of science represents a very active field in the use of Akron, USA renewable feedstocks. Among the available A number of different approaches have bioresources, vegetable oils lead to a large been used to speed the curing/drying process: platform of aliphatic molecules and to a wide 1) reactive diluents, allyl ether; 2) change catalyst range of thermoplastic and thermoset polymers Fe based; 3) change curing mechanism, moisture, after modifications. In order to broaden the UV or Visible light. Light curable alkyds were palette of renewable polymers, other molecules synthesized by functionalizing hydroxyl need to be investigated and used to tune the terminated medium and long linseed oil alkyds thermomechanical properties of the vegetable with methacryloyl chloride or acryloyl chloride.
    [Show full text]
  • Characterization of Coconut Oil Fractions Obtained from Solvent
    Journal of Oleo Science Copyright ©2017 by Japan Oil Chemists’ Society doi : 10.5650/jos.ess16224 J. Oleo Sci. 66, (9) 951-961 (2017) Characterization of Coconut Oil Fractions Obtained from Solvent Fractionation Using Acetone Sopark Sonwai* , Poonyawee Rungprasertphol, Nantinee Nantipipat, Satinee Tungvongcharoan and Nantikan Laiyangkoon Department of Food Technology, Faculty of Engineering and Industrial Technology, Silpakorn University, THAILAND Abstract: This work was aimed to study the solvent fraction of coconut oil (CNO). The fatty acid and triacylglycerol compositions, solid fat content (SFC) and the crystallization properties of CNO and its solid and liquid fractions obtained from fractionation at different conditions were investigated using various techniques. CNO was dissolved in acetone (1:1 w/v) and left to crystallize isothermally at 10℃ for 0.5, 1 and 2 h and at 12℃ for 2, 3 and 6 h. The solid fractions contained significantly lower contents of saturated fatty acids of ≤ 10 carbon atoms but considerably higher contents of saturated fatty acids with > 12 carbon atoms with respect to those of CNO and the liquid fractions. They also contained higher contents of high-melting triacylglycerol species with carbon number ≥ 38. Because of this, the DSC crystallization onset temperatures and the crystallization peak temperatures of the solid fractions were higher than CNO and the liquid fractions. The SFC values of the solid fractions were significantly higher than CNO at all measuring temperatures before reaching 0% just below the body temperature with the fraction obtained at 12℃ for 2 h exhibiting the highest SFC. On the contrary, the SFC values of the liquid fractions were lower than CNO.
    [Show full text]