The Grothendieck Construction and Gradings for Enriched Categories
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Relations: Categories, Monoidal Categories, and Props
Logical Methods in Computer Science Vol. 14(3:14)2018, pp. 1–25 Submitted Oct. 12, 2017 https://lmcs.episciences.org/ Published Sep. 03, 2018 UNIVERSAL CONSTRUCTIONS FOR (CO)RELATIONS: CATEGORIES, MONOIDAL CATEGORIES, AND PROPS BRENDAN FONG AND FABIO ZANASI Massachusetts Institute of Technology, United States of America e-mail address: [email protected] University College London, United Kingdom e-mail address: [email protected] Abstract. Calculi of string diagrams are increasingly used to present the syntax and algebraic structure of various families of circuits, including signal flow graphs, electrical circuits and quantum processes. In many such approaches, the semantic interpretation for diagrams is given in terms of relations or corelations (generalised equivalence relations) of some kind. In this paper we show how semantic categories of both relations and corelations can be characterised as colimits of simpler categories. This modular perspective is important as it simplifies the task of giving a complete axiomatisation for semantic equivalence of string diagrams. Moreover, our general result unifies various theorems that are independently found in literature and are relevant for program semantics, quantum computation and control theory. 1. Introduction Network-style diagrammatic languages appear in diverse fields as a tool to reason about computational models of various kinds, including signal processing circuits, quantum pro- cesses, Bayesian networks and Petri nets, amongst many others. In the last few years, there have been more and more contributions towards a uniform, formal theory of these languages which borrows from the well-established methods of programming language semantics. A significant insight stemming from many such approaches is that a compositional analysis of network diagrams, enabling their reduction to elementary components, is more effective when system behaviour is thought of as a relation instead of a function. -
PULLBACK and BASE CHANGE Contents
PART II.2. THE !-PULLBACK AND BASE CHANGE Contents Introduction 1 1. Factorizations of morphisms of DG schemes 2 1.1. Colimits of closed embeddings 2 1.2. The closure 4 1.3. Transitivity of closure 5 2. IndCoh as a functor from the category of correspondences 6 2.1. The category of correspondences 6 2.2. Proof of Proposition 2.1.6 7 3. The functor of !-pullback 8 3.1. Definition of the functor 9 3.2. Some properties 10 3.3. h-descent 10 3.4. Extension to prestacks 11 4. The multiplicative structure and duality 13 4.1. IndCoh as a symmetric monoidal functor 13 4.2. Duality 14 5. Convolution monoidal categories and algebras 17 5.1. Convolution monoidal categories 17 5.2. Convolution algebras 18 5.3. The pull-push monad 19 5.4. Action on a map 20 References 21 Introduction Date: September 30, 2013. 1 2 THE !-PULLBACK AND BASE CHANGE 1. Factorizations of morphisms of DG schemes In this section we will study what happens to the notion of the closure of the image of a morphism between schemes in derived algebraic geometry. The upshot is that there is essentially \nothing new" as compared to the classical case. 1.1. Colimits of closed embeddings. In this subsection we will show that colimits exist and are well-behaved in the category of closed subschemes of a given ambient scheme. 1.1.1. Recall that a map X ! Y in Sch is called a closed embedding if the map clX ! clY is a closed embedding of classical schemes. -
DUAL TANGENT STRUCTURES for ∞-TOPOSES In
DUAL TANGENT STRUCTURES FOR 1-TOPOSES MICHAEL CHING Abstract. We describe dual notions of tangent bundle for an 1-topos, each underlying a tangent 1-category in the sense of Bauer, Burke and the author. One of those notions is Lurie's tangent bundle functor for presentable 1-categories, and the other is its adjoint. We calculate that adjoint for injective 1-toposes, where it is given by applying Lurie's tangent bundle on 1-categories of points. In [BBC21], Bauer, Burke, and the author introduce a notion of tangent 1- category which generalizes the Rosick´y[Ros84] and Cockett-Cruttwell [CC14] axiomatization of the tangent bundle functor on the category of smooth man- ifolds and smooth maps. We also constructed there a significant example: diff the Goodwillie tangent structure on the 1-category Cat1 of (differentiable) 1-categories, which is built on Lurie's tangent bundle functor. That tan- gent structure encodes the ideas of Goodwillie's calculus of functors [Goo03] and highlights the analogy between that theory and the ordinary differential calculus of smooth manifolds. The goal of this note is to introduce two further examples of tangent 1- categories: one on the 1-category of 1-toposes and geometric morphisms, op which we denote Topos1, and one on the opposite 1-category Topos1 which, following Anel and Joyal [AJ19], we denote Logos1. These two tangent structures each encode a notion of tangent bundle for 1- toposes, but from dual perspectives. As described in [AJ19, Sec. 4], one can view 1-toposes either from a `geometric' or `algebraic' point of view. -
Toward a Non-Commutative Gelfand Duality: Boolean Locally Separated Toposes and Monoidal Monotone Complete $ C^{*} $-Categories
Toward a non-commutative Gelfand duality: Boolean locally separated toposes and Monoidal monotone complete C∗-categories Simon Henry February 23, 2018 Abstract ** Draft Version ** To any boolean topos one can associate its category of internal Hilbert spaces, and if the topos is locally separated one can consider a full subcategory of square integrable Hilbert spaces. In both case it is a symmetric monoidal monotone complete C∗-category. We will prove that any boolean locally separated topos can be reconstructed as the classifying topos of “non-degenerate” monoidal normal ∗-representations of both its category of internal Hilbert spaces and its category of square integrable Hilbert spaces. This suggest a possible extension of the usual Gelfand duality between a class of toposes (or more generally localic stacks or localic groupoids) and a class of symmetric monoidal C∗-categories yet to be discovered. Contents 1 Introduction 2 2 General preliminaries 3 3 Monotone complete C∗-categories and booleantoposes 6 4 Locally separated toposes and square integrable Hilbert spaces 7 5 Statementofthemaintheorems 9 arXiv:1501.07045v1 [math.CT] 28 Jan 2015 6 From representations of red togeometricmorphisms 13 6.1 Construction of the geometricH morphism on separating objects . 13 6.2 Functorialityonseparatingobject . 20 6.3 ConstructionoftheGeometricmorphism . 22 6.4 Proofofthe“reduced”theorem5.8 . 25 Keywords. Boolean locally separated toposes, monotone complete C*-categories, recon- struction theorem. 2010 Mathematics Subject Classification. 18B25, 03G30, 46L05, 46L10 . email: [email protected] 1 7 On the category ( ) and its representations 26 H T 7.1 The category ( /X ) ........................ 26 7.2 TensorisationH byT square integrable Hilbert space . -
Monoidal Functors, Equivalence of Monoidal Categories
14 1.4. Monoidal functors, equivalence of monoidal categories. As we have explained, monoidal categories are a categorification of monoids. Now we pass to categorification of morphisms between monoids, namely monoidal functors. 0 0 0 0 0 Definition 1.4.1. Let (C; ⊗; 1; a; ι) and (C ; ⊗ ; 1 ; a ; ι ) be two monoidal 0 categories. A monoidal functor from C to C is a pair (F; J) where 0 0 ∼ F : C ! C is a functor, and J = fJX;Y : F (X) ⊗ F (Y ) −! F (X ⊗ Y )jX; Y 2 Cg is a natural isomorphism, such that F (1) is isomorphic 0 to 1 . and the diagram (1.4.1) a0 (F (X) ⊗0 F (Y )) ⊗0 F (Z) −−F− (X−)−;F− (Y− )−;F− (Z!) F (X) ⊗0 (F (Y ) ⊗0 F (Z)) ? ? J ⊗0Id ? Id ⊗0J ? X;Y F (Z) y F (X) Y;Z y F (X ⊗ Y ) ⊗0 F (Z) F (X) ⊗0 F (Y ⊗ Z) ? ? J ? J ? X⊗Y;Z y X;Y ⊗Z y F (aX;Y;Z ) F ((X ⊗ Y ) ⊗ Z) −−−−−−! F (X ⊗ (Y ⊗ Z)) is commutative for all X; Y; Z 2 C (“the monoidal structure axiom”). A monoidal functor F is said to be an equivalence of monoidal cate gories if it is an equivalence of ordinary categories. Remark 1.4.2. It is important to stress that, as seen from this defini tion, a monoidal functor is not just a functor between monoidal cate gories, but a functor with an additional structure (the isomorphism J) satisfying a certain equation (the monoidal structure axiom). -
1.2 Variable Object Models and the Graded Yoneda Lemma
Abstract In this thesis, I define and study the foundations of the new framework of graded category theory, which I propose as just one structure that fits under the general banner of what Andree Eheresman has called “dynamic category theory” [1]. Two approaches to defining graded categories are developed and shown to be equivalent formulations by a novel variation on the Grothendieck construction. Various notions of graded categorical constructions are studied within this frame- work. In particular, the structure of graded categories in general is then further elu- cidated by studying so-called “variable-object” models, and a version of the Yoneda lemma for graded categories. As graded category theory was originally developed in order to better understand the intuitive notions of absolute and relative cardinality – these notions are applied to the problem of vindicating the Skolemite thesis that “all sets, from an absolute perspective, are countable”. Finally, I discuss some open problems in this frame- work, discuss some potential applications, and discuss some of the relationships of my approach to existing approaches in the literature. This work is licensed under a Creative Commons “Attribution-NonCommercial-ShareAlike 3.0 Unported” license. To my friends, family, and loved ones – all that have stood by me and believed that I could make it this far. Acknowledgments There are many people here that I should thank for their role, both directly and in- directly, in helping me shape this thesis. Necessarily, just due to the sheer number of those who have had an impact on my personal and intellectual development through- out the years, there will have to be some omissions. -
A Whirlwind Tour of the World of (∞,1)-Categories
Contemporary Mathematics A Whirlwind Tour of the World of (1; 1)-categories Omar Antol´ınCamarena Abstract. This introduction to higher category theory is intended to a give the reader an intuition for what (1; 1)-categories are, when they are an appro- priate tool, how they fit into the landscape of higher category, how concepts from ordinary category theory generalize to this new setting, and what uses people have put the theory to. It is a rough guide to a vast terrain, focuses on ideas and motivation, omits almost all proofs and technical details, and provides many references. Contents 1. Introduction 2 2. The idea of higher category theory 3 2.1. The homotopy hypothesis and the problem with strictness 5 2.2. The 3-type of S2 8 2.3. Shapes for cells 10 2.4. What does (higher) category theory do for us? 11 3. Models of (1; 1)-categories 12 3.1. Topological or simplicial categories 12 3.2. Quasi-categories 13 3.3. Segal categories and complete Segal spaces 16 3.4. Relative categories 17 3.5. A1-categories 18 3.6. Models of subclasses of (1; 1)-categories 20 3.6.1. Model categories 20 3.6.2. Derivators 21 3.6.3. dg-categories, A1-categories 22 4. The comparison problem 22 4.1. Axiomatization 24 5. Basic (1; 1)-category theory 25 5.1. Equivalences 25 5.1.1. Further results for quasi-categories 26 5.2. Limits and colimits 26 5.3. Adjunctions, monads and comonads 28 2010 Mathematics Subject Classification. Primary 18-01. -
Arxiv:1608.02901V1 [Math.AT] 9 Aug 2016 Functors
STABLE ∞-OPERADS AND THE MULTIPLICATIVE YONEDA LEMMA THOMAS NIKOLAUS Abstract. We construct for every ∞-operad O⊗ with certain finite limits new ∞-operads of spectrum objects and of commutative group objects in O. We show that these are the universal stable resp. additive ∞-operads obtained from O⊗. We deduce that for a stably (resp. additively) symmetric monoidal ∞-category C the Yoneda embedding factors through the ∞-category of exact, contravari- ant functors from C to the ∞-category of spectra (resp. connective spectra) and admits a certain multiplicative refinement. As an application we prove that the identity functor Sp → Sp is initial among exact, lax symmetric monoidal endo- functors of the symmetric monoidal ∞-category Sp of spectra with smash product. 1. Introduction Let C be an ∞-category that admits finite limits. Then there is a new ∞-category Sp(C) of spectrum objects in C that comes with a functor Ω∞ : Sp(C) → C. It is shown in [Lur14, Corollary 1.4.2.23] that this functors exhibits Sp(C) as the universal stable ∞-category obtained from C. This means that for every stable ∞-category D, post-composition with the functor Ω∞ induces an equivalence FunLex D, Sp(C) → FunLex D, C , where FunLex denotes the ∞-category of finite limits preserving (a.k.a. left exact) functors. The question that we want to address in this paper is the following. Suppose C admits a symmetric monoidal structure. Does Sp(C) then also inherits some sort of symmetric monoidal structure which satisfies a similar universal property in the world of symmetric monoidal ∞-categories? This is a question of high practical importance in applications in particular for the construction of algebra structures on mapping spectra and the answer that we give will be applied in future work by the author. -
Presentably Symmetric Monoidal Infinity-Categories Are Represented
PRESENTABLY SYMMETRIC MONOIDAL 1-CATEGORIES ARE REPRESENTED BY SYMMETRIC MONOIDAL MODEL CATEGORIES THOMAS NIKOLAUS AND STEFFEN SAGAVE Abstract. We prove the theorem stated in the title. More precisely, we show the stronger statement that every symmetric monoidal left adjoint functor be- tween presentably symmetric monoidal 1-categories is represented by a strong symmetric monoidal left Quillen functor between simplicial, combinatorial and left proper symmetric monoidal model categories. 1. Introduction The theory of 1-categories has in recent years become a powerful tool for study- ing questions in homotopy theory and other branches of mathematics. It comple- ments the older theory of Quillen model categories, and in many application the interplay between the two concepts turns out to be crucial. In an important class of examples, the relation between 1-categories and model categories is by now com- pletely understood, thanks to work of Lurie [Lur09, Appendix A.3] and Joyal [Joy08] based on earlier results by Dugger [Dug01a]: On the one hand, every combinatorial simplicial model category M has an underlying 1-category M1. This 1-category M1 is presentable, i.e., it satisfies the set theoretic smallness condition of being accessible and has all 1-categorical colimits and limits. On the other hand, every presentable 1-category is equivalent to the 1-category associated with a combi- natorial simplicial model category [Lur09, Proposition A.3.7.6]. The presentability assumption is essential here since a sub 1-category of a presentable 1-category is in general not presentable, and does not come from a model category. In many applications one studies model categories M equipped with a symmet- ric monoidal product that is compatible with the model structure. -
Enhancing the Filtered Derived Category
Enhancing the filtered derived category Owen Gwilliam, https://people.mpim-bonn.mpg.de/gwilliam/, Max Planck Institute for Mathematics, Bonn Dmitri Pavlov, https://dmitripavlov.org/, Department of Mathematics and Statistics, Texas Tech University Contents 1. Introduction 2. Filtered objects in the language of stable ∞-categories 3. Filtered objects in the language of stable model categories 4. Comparison of the quasicategorical and the model categorical constructions 5. Filtered objects in the language of differential graded categories 6. Application: filtered operads and algebras over them 7. Application: filtered D-modules 8. References Abstract. The filtered derived category of an abelian category has played a useful role in subjects including geometric representation theory, mixed Hodge modules, and the theory of motives. We develop a natural generalization using current methods of homotopical algebra, in the formalisms of stable ∞-categories, sta- ble model categories, and pretriangulated, idempotent-complete dg categories. We characterize the filtered stable ∞-category Fil(C) of a stable ∞-category C as the left exact localization of sequences in C along the ∞-categorical version of completion (and prove analogous model and dg category statements). We also spell out how these constructions interact with spectral sequences and monoidal structures. As examples of this machinery, we construct a stable model category of filtered D-modules and develop the rudiments of a theory of filtered operads and filtered algebras over operads. 1 Introduction The filtered derived category plays an important role in the setting of constructible sheaves, D-modules, mixed Hodge modules, and elsewhere. Our goal is to revisit this construction using current technology for ho- motopical algebra, extending it beyond the usual setting of chain complexes (or sheaves of chain complexes). -
Download File
Cellular dg-categories and their applications to homotopy theory of A1-categories Oleksandr Kravets Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2020 © 2020 Oleksandr Kravets All Rights Reserved Abstract Cellular dg-categories and their applications to homotopy theory of A1-categories Oleksandr Kravets We introduce the notion of cellular dg-categories mimicking the properties of topological CW-complexes. We study the properties of such categories and provide various examples corre- sponding to the well-known geometrical objects. We also show that these categories are suitable for encoding coherence conditions in homotopy theoretical constructs involving A1-categories. In particular, we formulate the notion of a homotopy coherent monoid action on an A1-category which can be used in constructions involved in Homological Mirror Symmetry. Table of Contents Acknowledgments ........................................ iv Dedication ............................................ v Chapter 0: Introduction .................................... 1 0.1 Motivation....................................... 1 0.2 Idea and implementation ............................... 2 Chapter 1: Preliminaries .................................... 5 1.1 Chain complexes and dg-categories.......................... 6 1.2 A1-categories..................................... 10 1.2.1 A1-functors and transformations....................... 14 1.2.2 -
Notes on Category Theory
Notes on Category Theory Mariusz Wodzicki November 29, 2016 1 Preliminaries 1.1 Monomorphisms and epimorphisms 1.1.1 A morphism m : d0 ! e is said to be a monomorphism if, for any parallel pair of arrows a / 0 d / d ,(1) b equality m ◦ a = m ◦ b implies a = b. 1.1.2 Dually, a morphism e : c ! d is said to be an epimorphism if, for any parallel pair (1), a ◦ e = b ◦ e implies a = b. 1.1.3 Arrow notation Monomorphisms are often represented by arrows with a tail while epimorphisms are represented by arrows with a double arrowhead. 1.1.4 Split monomorphisms Exercise 1 Given a morphism a, if there exists a morphism a0 such that a0 ◦ a = id (2) then a is a monomorphism. Such monomorphisms are said to be split and any a0 satisfying identity (2) is said to be a left inverse of a. 3 1.1.5 Further properties of monomorphisms and epimorphisms Exercise 2 Show that, if l ◦ m is a monomorphism, then m is a monomorphism. And, if l ◦ m is an epimorphism, then l is an epimorphism. Exercise 3 Show that an isomorphism is both a monomorphism and an epimor- phism. Exercise 4 Suppose that in the diagram with two triangles, denoted A and B, ••u [^ [ [ B a [ b (3) A [ u u ••u the outer square commutes. Show that, if a is a monomorphism and the A triangle commutes, then also the B triangle commutes. Dually, if b is an epimorphism and the B triangle commutes, then the A triangle commutes.