Enriched Monoidal Categories I: Centers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Frobenius and the Derived Centers of Algebraic Theories
Frobenius and the derived centers of algebraic theories William G. Dwyer and Markus Szymik October 2014 We show that the derived center of the category of simplicial algebras over every algebraic theory is homotopically discrete, with the abelian monoid of components isomorphic to the center of the category of discrete algebras. For example, in the case of commutative algebras in characteristic p, this center is freely generated by Frobenius. Our proof involves the calculation of homotopy coherent centers of categories of simplicial presheaves as well as of Bousfield localizations. Numerous other classes of examples are dis- cussed. 1 Introduction Algebra in prime characteristic p comes with a surprise: For each commutative ring A such that p = 0 in A, the p-th power map a 7! ap is not only multiplica- tive, but also additive. This defines Frobenius FA : A ! A on commutative rings of characteristic p, and apart from the well-known fact that Frobenius freely gen- erates the Galois group of the prime field Fp, it has many other applications in 1 algebra, arithmetic and even geometry. Even beyond fields, Frobenius is natural in all rings A: Every map g: A ! B between commutative rings of characteris- tic p (i.e. commutative Fp-algebras) commutes with Frobenius in the sense that the equation g ◦ FA = FB ◦ g holds. In categorical terms, the Frobenius lies in the center of the category of commutative Fp-algebras. Furthermore, Frobenius freely generates the center: If (PA : A ! AjA) is a family of ring maps such that g ◦ PA = PB ◦ g (?) holds for all g as above, then there exists an integer n > 0 such that the equa- n tion PA = (FA) holds for all A. -
Types Are Internal Infinity-Groupoids Antoine Allioux, Eric Finster, Matthieu Sozeau
Types are internal infinity-groupoids Antoine Allioux, Eric Finster, Matthieu Sozeau To cite this version: Antoine Allioux, Eric Finster, Matthieu Sozeau. Types are internal infinity-groupoids. 2021. hal- 03133144 HAL Id: hal-03133144 https://hal.inria.fr/hal-03133144 Preprint submitted on 5 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Types are Internal 1-groupoids Antoine Allioux∗, Eric Finstery, Matthieu Sozeauz ∗Inria & University of Paris, France [email protected] yUniversity of Birmingham, United Kingdom ericfi[email protected] zInria, France [email protected] Abstract—By extending type theory with a universe of defini- attempts to import these ideas into plain homotopy type theory tionally associative and unital polynomial monads, we show how have, so far, failed. This appears to be a result of a kind of to arrive at a definition of opetopic type which is able to encode circularity: all of the known classical techniques at some point a number of fully coherent algebraic structures. In particular, our approach leads to a definition of 1-groupoid internal to rely on set-level algebraic structures themselves (presheaves, type theory and we prove that the type of such 1-groupoids is operads, or something similar) as a means of presenting or equivalent to the universe of types. -
Relations: Categories, Monoidal Categories, and Props
Logical Methods in Computer Science Vol. 14(3:14)2018, pp. 1–25 Submitted Oct. 12, 2017 https://lmcs.episciences.org/ Published Sep. 03, 2018 UNIVERSAL CONSTRUCTIONS FOR (CO)RELATIONS: CATEGORIES, MONOIDAL CATEGORIES, AND PROPS BRENDAN FONG AND FABIO ZANASI Massachusetts Institute of Technology, United States of America e-mail address: [email protected] University College London, United Kingdom e-mail address: [email protected] Abstract. Calculi of string diagrams are increasingly used to present the syntax and algebraic structure of various families of circuits, including signal flow graphs, electrical circuits and quantum processes. In many such approaches, the semantic interpretation for diagrams is given in terms of relations or corelations (generalised equivalence relations) of some kind. In this paper we show how semantic categories of both relations and corelations can be characterised as colimits of simpler categories. This modular perspective is important as it simplifies the task of giving a complete axiomatisation for semantic equivalence of string diagrams. Moreover, our general result unifies various theorems that are independently found in literature and are relevant for program semantics, quantum computation and control theory. 1. Introduction Network-style diagrammatic languages appear in diverse fields as a tool to reason about computational models of various kinds, including signal processing circuits, quantum pro- cesses, Bayesian networks and Petri nets, amongst many others. In the last few years, there have been more and more contributions towards a uniform, formal theory of these languages which borrows from the well-established methods of programming language semantics. A significant insight stemming from many such approaches is that a compositional analysis of network diagrams, enabling their reduction to elementary components, is more effective when system behaviour is thought of as a relation instead of a function. -
PULLBACK and BASE CHANGE Contents
PART II.2. THE !-PULLBACK AND BASE CHANGE Contents Introduction 1 1. Factorizations of morphisms of DG schemes 2 1.1. Colimits of closed embeddings 2 1.2. The closure 4 1.3. Transitivity of closure 5 2. IndCoh as a functor from the category of correspondences 6 2.1. The category of correspondences 6 2.2. Proof of Proposition 2.1.6 7 3. The functor of !-pullback 8 3.1. Definition of the functor 9 3.2. Some properties 10 3.3. h-descent 10 3.4. Extension to prestacks 11 4. The multiplicative structure and duality 13 4.1. IndCoh as a symmetric monoidal functor 13 4.2. Duality 14 5. Convolution monoidal categories and algebras 17 5.1. Convolution monoidal categories 17 5.2. Convolution algebras 18 5.3. The pull-push monad 19 5.4. Action on a map 20 References 21 Introduction Date: September 30, 2013. 1 2 THE !-PULLBACK AND BASE CHANGE 1. Factorizations of morphisms of DG schemes In this section we will study what happens to the notion of the closure of the image of a morphism between schemes in derived algebraic geometry. The upshot is that there is essentially \nothing new" as compared to the classical case. 1.1. Colimits of closed embeddings. In this subsection we will show that colimits exist and are well-behaved in the category of closed subschemes of a given ambient scheme. 1.1.1. Recall that a map X ! Y in Sch is called a closed embedding if the map clX ! clY is a closed embedding of classical schemes. -
The Elliptic Drinfeld Center of a Premodular Category Arxiv
The Elliptic Drinfeld Center of a Premodular Category Ying Hong Tham Abstract Given a tensor category C, one constructs its Drinfeld center Z(C) which is a braided tensor category, having as objects pairs (X; λ), where X ∈ Obj(C) and λ is a el half-braiding. For a premodular category C, we construct a new category Z (C) which 1 2 i we call the Elliptic Drinfeld Center, which has objects (X; λ ; λ ), where the λ 's are half-braidings that satisfy some compatibility conditions. We discuss an SL2(Z)-action el on Z (C) that is related to the anomaly appearing in Reshetikhin-Turaev theory. This construction is motivated from the study of the extended Crane-Yetter TQFT, in particular the category associated to the once punctured torus. 1 Introduction and Preliminaries In [CY1993], Crane and Yetter define a 4d TQFT using a state-sum involving 15j symbols, based on a sketch by Ooguri [Oog1992]. The state-sum begins with a color- ing of the 2- and 3-simplices of a triangulation of the four manifold by integers from 0; 1; : : : ; r. These 15j symbols then arise as the evaluation of a ribbon graph living on the boundary of a 4-simplex. The labels 0; 1; : : : ; r correspond to simple objects of the Verlinde modular category, the semi-simple subquotient of the category of finite dimen- πi r 2 sional representations of the quantum group Uqsl2 at q = e as defined in [AP1995]. Later Crane, Kauffman, and Yetter [CKY1997] extend this~ definition+ to colorings with objects from a premodular category (i.e. -
DUAL TANGENT STRUCTURES for ∞-TOPOSES In
DUAL TANGENT STRUCTURES FOR 1-TOPOSES MICHAEL CHING Abstract. We describe dual notions of tangent bundle for an 1-topos, each underlying a tangent 1-category in the sense of Bauer, Burke and the author. One of those notions is Lurie's tangent bundle functor for presentable 1-categories, and the other is its adjoint. We calculate that adjoint for injective 1-toposes, where it is given by applying Lurie's tangent bundle on 1-categories of points. In [BBC21], Bauer, Burke, and the author introduce a notion of tangent 1- category which generalizes the Rosick´y[Ros84] and Cockett-Cruttwell [CC14] axiomatization of the tangent bundle functor on the category of smooth man- ifolds and smooth maps. We also constructed there a significant example: diff the Goodwillie tangent structure on the 1-category Cat1 of (differentiable) 1-categories, which is built on Lurie's tangent bundle functor. That tan- gent structure encodes the ideas of Goodwillie's calculus of functors [Goo03] and highlights the analogy between that theory and the ordinary differential calculus of smooth manifolds. The goal of this note is to introduce two further examples of tangent 1- categories: one on the 1-category of 1-toposes and geometric morphisms, op which we denote Topos1, and one on the opposite 1-category Topos1 which, following Anel and Joyal [AJ19], we denote Logos1. These two tangent structures each encode a notion of tangent bundle for 1- toposes, but from dual perspectives. As described in [AJ19, Sec. 4], one can view 1-toposes either from a `geometric' or `algebraic' point of view. -
Arxiv:1204.3607V6 [Math.KT] 6 Nov 2015 At1 Ar N Waldhausen and Pairs 1
ON THE ALGEBRAIC K-THEORY OF HIGHER CATEGORIES CLARK BARWICK In memoriam Daniel Quillen, 1940–2011, with profound admiration. Abstract. We prove that Waldhausen K-theory, when extended to a very general class of quasicategories, can be described as a Goodwillie differential. In particular, K-theory spaces admit canonical (connective) deloopings, and the K-theory functor enjoys a simple universal property. Using this, we give new, higher categorical proofs of the Approximation, Additivity, and Fibration Theorems of Waldhausen in this context. As applications of this technology, we study the algebraic K-theory of associative rings in a wide range of homotopical contexts and of spectral Deligne–Mumford stacks. Contents 0. Introduction 3 Relation to other work 6 A word on higher categories 7 Acknowledgments 7 Part 1. Pairs and Waldhausen ∞-categories 8 1. Pairs of ∞-categories 8 Set theoretic considerations 9 Simplicial nerves and relative nerves 10 The ∞-category of ∞-categories 11 Subcategories of ∞-categories 12 Pairs of ∞-categories 12 The ∞-category of pairs 13 Pair structures 14 arXiv:1204.3607v6 [math.KT] 6 Nov 2015 The ∞-categories of pairs as a relative nerve 15 The dual picture 16 2. Waldhausen ∞-categories 17 Limits and colimits in ∞-categories 17 Waldhausen ∞-categories 18 Some examples 20 The ∞-category of Waldhausen ∞-categories 21 Equivalences between maximal Waldhausen ∞-categories 21 The dual picture 22 3. Waldhausen fibrations 22 Cocartesian fibrations 23 Pair cartesian and cocartesian fibrations 27 The ∞-categoriesofpair(co)cartesianfibrations 28 A pair version of 3.7 31 1 2 CLARK BARWICK Waldhausencartesianandcocartesianfibrations 32 4. The derived ∞-category of Waldhausen ∞-categories 34 Limits and colimits of pairs of ∞-categories 35 Limits and filtered colimits of Waldhausen ∞-categories 36 Direct sums of Waldhausen ∞-categories 37 Accessibility of Wald∞ 38 Virtual Waldhausen ∞-categories 40 Realizations of Waldhausen cocartesian fibrations 42 Part 2. -
Toward a Non-Commutative Gelfand Duality: Boolean Locally Separated Toposes and Monoidal Monotone Complete $ C^{*} $-Categories
Toward a non-commutative Gelfand duality: Boolean locally separated toposes and Monoidal monotone complete C∗-categories Simon Henry February 23, 2018 Abstract ** Draft Version ** To any boolean topos one can associate its category of internal Hilbert spaces, and if the topos is locally separated one can consider a full subcategory of square integrable Hilbert spaces. In both case it is a symmetric monoidal monotone complete C∗-category. We will prove that any boolean locally separated topos can be reconstructed as the classifying topos of “non-degenerate” monoidal normal ∗-representations of both its category of internal Hilbert spaces and its category of square integrable Hilbert spaces. This suggest a possible extension of the usual Gelfand duality between a class of toposes (or more generally localic stacks or localic groupoids) and a class of symmetric monoidal C∗-categories yet to be discovered. Contents 1 Introduction 2 2 General preliminaries 3 3 Monotone complete C∗-categories and booleantoposes 6 4 Locally separated toposes and square integrable Hilbert spaces 7 5 Statementofthemaintheorems 9 arXiv:1501.07045v1 [math.CT] 28 Jan 2015 6 From representations of red togeometricmorphisms 13 6.1 Construction of the geometricH morphism on separating objects . 13 6.2 Functorialityonseparatingobject . 20 6.3 ConstructionoftheGeometricmorphism . 22 6.4 Proofofthe“reduced”theorem5.8 . 25 Keywords. Boolean locally separated toposes, monotone complete C*-categories, recon- struction theorem. 2010 Mathematics Subject Classification. 18B25, 03G30, 46L05, 46L10 . email: [email protected] 1 7 On the category ( ) and its representations 26 H T 7.1 The category ( /X ) ........................ 26 7.2 TensorisationH byT square integrable Hilbert space . -
Monoidal Functors, Equivalence of Monoidal Categories
14 1.4. Monoidal functors, equivalence of monoidal categories. As we have explained, monoidal categories are a categorification of monoids. Now we pass to categorification of morphisms between monoids, namely monoidal functors. 0 0 0 0 0 Definition 1.4.1. Let (C; ⊗; 1; a; ι) and (C ; ⊗ ; 1 ; a ; ι ) be two monoidal 0 categories. A monoidal functor from C to C is a pair (F; J) where 0 0 ∼ F : C ! C is a functor, and J = fJX;Y : F (X) ⊗ F (Y ) −! F (X ⊗ Y )jX; Y 2 Cg is a natural isomorphism, such that F (1) is isomorphic 0 to 1 . and the diagram (1.4.1) a0 (F (X) ⊗0 F (Y )) ⊗0 F (Z) −−F− (X−)−;F− (Y− )−;F− (Z!) F (X) ⊗0 (F (Y ) ⊗0 F (Z)) ? ? J ⊗0Id ? Id ⊗0J ? X;Y F (Z) y F (X) Y;Z y F (X ⊗ Y ) ⊗0 F (Z) F (X) ⊗0 F (Y ⊗ Z) ? ? J ? J ? X⊗Y;Z y X;Y ⊗Z y F (aX;Y;Z ) F ((X ⊗ Y ) ⊗ Z) −−−−−−! F (X ⊗ (Y ⊗ Z)) is commutative for all X; Y; Z 2 C (“the monoidal structure axiom”). A monoidal functor F is said to be an equivalence of monoidal cate gories if it is an equivalence of ordinary categories. Remark 1.4.2. It is important to stress that, as seen from this defini tion, a monoidal functor is not just a functor between monoidal cate gories, but a functor with an additional structure (the isomorphism J) satisfying a certain equation (the monoidal structure axiom). -
RESEARCH STATEMENT 1. Introduction My Interests Lie
RESEARCH STATEMENT BEN ELIAS 1. Introduction My interests lie primarily in geometric representation theory, and more specifically in diagrammatic categorification. Geometric representation theory attempts to answer questions about representation theory by studying certain algebraic varieties and their categories of sheaves. Diagrammatics provide an efficient way of encoding the morphisms between sheaves and doing calculations with them, and have also been fruitful in their own right. I have been applying diagrammatic methods to the study of the Iwahori-Hecke algebra and its categorification in terms of Soergel bimodules, as well as the categorifications of quantum groups; I plan on continuing to research in these two areas. In addition, I would like to learn more about other areas in geometric representation theory, and see how understanding the morphisms between sheaves or the natural transformations between functors can help shed light on the theory. After giving a general overview of the field, I will discuss several specific projects. In the most naive sense, a categorification of an algebra (or category) A is an additive monoidal category (or 2-category) A whose Grothendieck ring is A. Relations in A such as xy = z + w will be replaced by isomorphisms X⊗Y =∼ Z⊕W . What makes A a richer structure than A is that these isomorphisms themselves will have relations; that between objects we now have morphism spaces equipped with composition maps. 2-category). In their groundbreaking paper [CR], Chuang and Rouquier made the key observation that some categorifications are better than others, and those with the \correct" morphisms will have more interesting properties. Independently, Rouquier [Ro2] and Khovanov and Lauda (see [KL1, La, KL2]) proceeded to categorify quantum groups themselves, and effectively demonstrated that categorifying an algebra will give a precise notion of just what morphisms should exist within interesting categorifications of its modules. -
The Monoidal Center Construction and Bimodules
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Pure and Applied Algebra 158 (2001) 325–346 www.elsevier.com/locate/jpaa The monoidal center construction and bimodules Peter Schauenburg Mathematisches Institut der Universitat Munchen, Theresienstr. 39, 80333 Munchen, Germany Received 29 January 1999; received in revised form 4 October 1999 Communicated by C. Kassel Abstract Let C be a cocomplete monoidal category such that the tensor product in C preserves colimits in each argument. Let A be an algebra in C. We show (under some assumptions including “faithful 2atness” of A) that the center of the monoidal category (ACA; ⊗A)ofA–A-bimodules ∼ is equivalent to the center of C (hence in a sense trivial): Z(ACA) = Z(C). Assuming A to be a commutative algebra in the center Z(C), we compute the center Z(CA) of the category of right A-modules (considered as a subcategory of ACA using the structure of A ∈ Z(C). We ÿnd ∼ Z(CA) = dys Z(C)A, the category of dyslectic right A-modules in the braided category Z(C). c 2001 Elsevier Science B.V. All rights reserved. MSC: 18D10; 16W30 1. Introduction Braided monoidal categories are situated at the intersection of quantum group theory and low-dimensional topology (more precisely invariants of knots and three-manifolds, see [12,4] for general references). They also provide a framework for generalizations of commutative algebra based on a 2ip of tensor factors more general than the ordinary 2ip (as proposed by Manin [6] for symmetric monoidal categories and well-established for the special case of Z=2Z-graded vector spaces) or generalizations of Hopf algebra theory [5]. -
Centers and Homotopy Centers in Enriched Monoidal Categories
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com Advances in Mathematics 230 (2012) 1811–1858 www.elsevier.com/locate/aim Centers and homotopy centers in enriched monoidal categories Michael Batanina,∗, Martin Marklb a Macquarie University, NSW 2109, Australia b Mathematical Institute of the Academy, Zitnˇ a´ 25, 115 67 Prague 1, Czech Republic Received 20 September 2011; accepted 12 April 2012 Available online 16 May 2012 Communicated by Ross Street Abstract We consider a theory of centers and homotopy centers of monoids in monoidal categories which themselves are enriched in duoidal categories. The duoidal categories (introduced by Aguiar and Mahajan under the name 2-monoidal categories) are categories with two monoidal structures which are related by some, not necessary invertible, coherence morphisms. Centers of monoids in this sense include many examples which are not ‘classical.’ In particular, the 2-category of categories is an example of a center in our sense. Examples of homotopy center (analogue of the classical Hochschild complex) include the Gray- category Gray of 2-categories, 2-functors and pseudonatural transformations and Tamarkin’s homotopy 2-category of dg-categories, dg-functors and coherent dg-transformations. ⃝c 2012 Elsevier Inc. All rights reserved. MSC: primary 18D10; 18D20; 18D50; secondary 55U40; 55P48 Keywords: Monoidal categories; Center; Hochschild complex; Operads; Deligne’s conjecture Contents 1. Introduction.................................................................................................................. 1812 2. Monoidal V -categories and duoidal V -categories.............................................................. 1814 ∗ Corresponding author. E-mail addresses: [email protected], [email protected] (M. Batanin), [email protected] (M.