Structural Reinterpretation of the Classic Simplon Tunnel Section of the Central Alps

Total Page:16

File Type:pdf, Size:1020Kb

Structural Reinterpretation of the Classic Simplon Tunnel Section of the Central Alps A. G. MILNES Geological Institute, Swiss Federal Institute of Technology, Zurich, Switzerland Structural Reinterpretation of the Classic Simplon Tunnel Section of the Central Alps ABSTRACT tained, and to some extent also the traditional names. However, it will be shown that the The basement nappe concept arose during nappes were not emplaced simultaneously and the excavation of the Simplon tunnel in the that all were subjected to at least two sub- Central Alps. Recent detailed structural and sequent phases of deformation resulting in petrologic investigations in this classic area major folding. One of these was a phase of have confirmed the concept in general outline. isoclinal folding of regional importance which A complicated structural history has been de- caused widespread inversion of the original duced, however, with two phases of major structural succession. On the basis of these new folding and a period of large-scale faulting after surface findings, an attempt is made to cor- the phase of nappe emplacement. The earlier relate surface with tunnel geology, and a new of the subsequent fold phases was of regional cross section along the tunnel trace is presented. importance and caused widespread inversion of the original structural succession. During this PETROGRAPHIC AND phase, the basement rocks were in their most STRATIGRAPHIC CONSIDERATIONS ductile state and suffered the main part of their The petrography of the area to the southeast internal deformation. of the Simplon Pass (Fig. 1) has recently been described in great detail (Ragni, 1960; Milnes, INTRODUCTION 1964; Wieland, 1966). Two general petro- At 7:20 a.m. on Friday, February 24, 1905, graphic complexes are recognized: "crystalline the last rock barrier in the Simplon tunnel was basement"—consisting of gray-weathering broken through, and a new concept in Alpine quartzo-felspathic gneiss, schistose gneiss, and geology was born, the basement nappe. Al- schist (with or without biotite, garnet, stauro- though the correlation between tunnel and lite), with amphibolite and ultramafic rocks surface geology was open to various interpreta- locally important; and "sedimentary cover" — tions (compare Schardt, 1904; Schmidt, 1908), mainly brown-weathering calcareous schist and the fact of large sheets of pre-Triassic basement impure marble (called variously "Biindner- lying on top of younger, presumably Mesozoic, schiefer" or "calcescisti"), with thin but locally cover rocks had been conclusively demon- important associations of dolomitic, gypsum- strated. The Simplon structure provided a key bearing, and quartzitic rocks (referred to as to the understanding of the Alpine internal "Trias" in the older literature, for instance, zone from the Mediterranean to the Hungarian Schmidt and Preiswerk, 1908). The cover is plain (Heim, 1921, p. 507), and the Simplon considered to represent Mesozoic sediments, profile has been reproduced in textbooks and metamorphosed during the Alpine orogeny, in field guides up to the present day (for instance, the present area under amphibolite facies con- Cadisch, 1953, Fig. 46; Badgley, 1965, Fig. ditions. The basement represents the eroded 3-31; Bearth and others, 1967, Fig. 1). De- stumps of earlier metamorphic and granitic tailed remapping has now been completed complexes on which the cover sediments were over a wide area to both sides of the tunnel deposited. The relative age of basement and trace (Milnes, 1968, 1973; Bearth, 1972) and cover, on which the whole basement nappe the time is ripe for a reconsideration of this concept depends, has been definitely proved at classic cross section. In the following, the basic only one locality (loc. X, north of Varzo, Fig. concept of a series of basement nappes is re- 1), where boulders of basement granite are Geological Society of America Bulletin, v. 84, p. 269-274, 3 figs., January 1973 269 Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/84/1/269/3443615/i0016-7606-84-1-269.pdf by guest on 02 October 2021 Figure 1. Geologic-tectonic map of the area south- and Italy (in part after Bearth, 1972). east of the Simplon Pass, Lepontine Alps, Switzerland Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/84/1/269/3443615/i0016-7606-84-1-269.pdf by guest on 02 October 2021 Figure 2. Structural profile along part of the lection (specimens every 10 m or less, 500 thin sections, (Schardt, 1898-1906) and its southern approaches recumbent synform; mi, m2, im, and wi = axial traces Simplon tunnel and its southeastward extension (for and unpub. notes, deposited in the Geological Museum, (Stella, 1906). The lines in the ornamentation indicate of major folds related to the regional synform; line of section, see Fig. 1), based on detailed surface Swiss Federal Institute of Technology, Ziirich, Switzer- the trace of the main foliation. M-W = postulated axial base of Monte Leone nappe, — base of mapping, a review of the Schardt Simplon tunnel col- land), and the official reports on the tunnel itself trace of the regional Monte Leone/Wandfluhhorn Lebendun nappe. MILNES, FIGURE 2 Geological Society of America Bulletin, v. 84, no. 1 Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/84/1/269/3443615/i0016-7606-84-1-269.pdf by guest on 02 October 2021 STRUCTURAL REINTERPRETATION OF SIMPLON TUNNEL, CENTRAL ALPS 271 enclosed in marble of the cover (Milnes, 1964, TABLE 1. GEOLOGIC COLUMN p. 18-19). calcescisti {?Lower Jurassic) The cover/basement boundary is generally ------------- unconformity well defined and easily mapped, and con- stitutes the main petrographic feature on which Cover Trias an unravelling of the structure depends. ------------- unconformity Within the two main complexes mappable scisti bruni (Permian and lithologic boundaries are only locally present, Carboniferous) gradational and intercalated transitions are the general rule, and lithologies are not necessarily Transitional psephite, psarrniite constant parallel to the main penetrative folia- ----------or - intrusivunconformite contacy t tion or to the cover/basement contact. This crystalline rocks should be emphasized because too often in these Basement (high-grade metamorphic rocks deeper zones of the Alps the structure has been and granite) deduced on the basis of petrographic criteria Note: Since this column is seen through the mists of two or three phases of intense deformation and a long period with little regard for the actual structural rela- of Alpine metamorphism, there is small wonder that its out- tions. In Figure 1, the structure has been line remains unclear. brought out by coloring the cover black and distinguishing various basement units. No MAJOR STRUCTURAL EVENTS attempt has been made to decide which cover Structural analysis has now been carried out "belongs" to which basement, since criteria for over a large part of the western Lepontine determining whether a given contact is a de- Alps, of which the Simplon is the western flank, formed stratigraphic boundary or an early and a complicated deformational history is slide are generally absent (with the exception emerging (Higgins, 1964; Hall, 1972; Milnes, of the contact at loc. X mentioned above). The 1973). In the region o£ the Simplon tunnel, uniform signatures, however, should not belie the structural history can be summarized as the petrographic complexity of the units. follows, starting with the youngest event: One important unit, the Lebendun nappe, 5. Faulting (Veglia and Simplon-Centovalli falls outside the above generalizations, or rather fault zones) shows cover in some places, and in other places, 4. Local folding (Rebbio fold zone) basement characteristics. For this reason, the 3. Regional isoclinal folding (Monte Leone Lebendum is referred to here as "transitional." and Wandfluhhorn fold systems) It is made up of two lithologic members which 2. Basement nappe emplacement (Berisal, are not found in the other two complexes: Monte Leone, and Antigorio nappes) gray-weathering psephitic and psammitic 1. Early thrusting (Lebendun nappe) gneiss, and brown-weathering, heterogeneous, This sequence of events has been built up noncalcareous to calcite-bearing schist (known mainly on the basis of detailed surface mapping as "scisti bruni"). The brown schist presents a and on qualitative observation of the type, areal real problem where it occurs in direct contact distribution, and relative ages of minor struc- or intercalated with the calcareous schist of the tures and strain markers, and to a much lesser cover. Features used to distinguish it are the extent on the geometric-statistical treatment of occurrence of thin conglomeratic horizons, the orientation data. development of disorientated biotite por- phyroblasts, and the low content or absence of Veglia and Simplon-Centovalli Fault Zones carbonate (according to unpublished data from The Simplon-Centovalli fault zone, separat- Schardt, the mean CaCC>3 content of the "scisti ing the Simplon nappe complex (lower Pen- bruni" in the Simplon tunnel was 7 percent nine) from the upper Pennine St. Bernard [204 analyses] whereas that of the adjacent nappe (Fig. 1), does not intersect the tunnel cover calcareous schists was 52 percent [97 trace and has been discussed elsewhere (Bearth, analyses]). In spite of some recent advances in 1956, p. 280; Hunziker, 1970, p. 158), so it will this direction (for instance, Friz, 1963; Joos, not be treated further here. The Veglia fault 1969, p. 286), stratigraphy in the Lebendun zone, however, intersects the tunnel
Recommended publications
  • A Construction Project Serving Europe – Factfigures
    NEW RAIL LINK NEDERLAND THROUGH Rotterdam THE ALPS (NRLA) Duisburg Zeebrugge Düsseldorf A ONCE-IN-A- Antwerpen Köln CENTURY PROJECT Gent Mechelen Aachen FOR EUROPE Montzen DEUTSCHLAND BELGIË Mannheim Karlsruhe FRANCE Freiburg im Breisgau Basel SWITZERLAND Gotthard Base Tunnel Lötschberg Base Tunnel Domodossola Luino Ceneri Base Tunnel Chiasso Novara Milano ITALIA Genova © Federal office of transport FOT transport office of © Federal FACTS AND FIGURES NRLA The New Rail Link through the Alps (NRLA) is the largest railway construction project ever undertaken in Swiss history. It includes the expansion of two north- south axes for the rail link. The main components of the NRLA are the Lötsch- berg Base Tunnel, the Gotthard Base Tunnel and the Ceneri Base Tunnel. Since 2007 Successful operation of the Lötschberg Base Tunnel 11 December 2016 Commissioning of the Gotthard Base Tunnel The world’s longest railway tunnel will be commissioned on schedule on 11 December 2016. Up to 250 freight trains a day will then travel on the Gotthard axis instead of 180 previously. Transalpine rail transport will become more cost-effective, flexible and rapid. 2020 Opening of the Ceneri Base Tunnel 2020 Four-metre corridor on the Gotthard axis The expansion of the Gotthard axis to create a larger tunnel profile is a key part of the Swiss policy of transferring freight from road to rail. It will enable semi- trailers with a four-metre corner height to also be loaded onto railway wagons for transport on the Gotthard axis on a continuous basis. This further fosters the transfer of transalpine freight transport from road to rail.
    [Show full text]
  • The Simplon Tunnel
    The Simplon Tunnel THE SIMPLON STORY The commemorative stamp issued this year (1956) celebrated, strictly speaking, only the opening of the first tunnel gallery. The story of the tunnel, one of the greatest engineering feats in railway history, goes back to the year 1877 when M. Lommel, the chief engineer of the "Compagnie du Chemin de Fer", a privately owned undertaking, produced the first plans for the tunnel. The Swiss and Italian governments and private enterprise in both countries agreed, after many years of study, to finance the ambitious project for the building of a 19,803m long tunnel, the cost of which was estimated at the then fantastic sum of over 700 million Swiss francs. A state treaty was concluded between Switzerland and Italy on 25th November 1895 and on 1st August 1898 the first drill was put to the rock near Brig, on the north side of the tunnel. After 6 years and 208 days of almost superhuman effort, at 7.20 in the evening, the last hole had boon drilled - letting light into the tunnel on its south end. It was the 24th of February 1905, a date that made history. Landslides, flooding, avalanches and huge caving-in had been fought and conquered. On 1st June 1906 the first regular train service ran through the Simplon providing the shortest railway link between Northern and Western Europe with the South and the Orient. The First World War interrupted construction of the second gallery and it took many years until in 1922 the tunnel was completed, allowing for two-track traffic.
    [Show full text]
  • Late Neogene Extension in the Vicinity of the Simplon Fault Zone (Central Alps, Switzerland)
    Late Neogene extension in the vicinity of the Simplon fault zone (central Alps, Switzerland) Autor(en): Grosjean, Grégory / Sue, Christian / Burkhard, Martin Objekttyp: Article Zeitschrift: Eclogae Geologicae Helvetiae Band (Jahr): 97 (2004) Heft 1 PDF erstellt am: 11.10.2021 Persistenter Link: http://doi.org/10.5169/seals-169095 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch 0012-9402/04/010033-14 Eclogae geol. Helv. 97 (2004) 33-46 DOI 10.1007/S00015-004-1114-9 Birkhäuser Verlag, Basel, 2004 Late Neogene extension in the vicinity of the Simplon fault zone (central Alps, Switzerland) Gregory Grosjean, Christian Sue & Martin Burkhard Key words: Central Alps.
    [Show full text]
  • Selection of the Optimum Tunnel System for Long Railway Tunnels with Regard to the Entire Lifecycle
    SELECTION OF THE OPTIMUM TUNNEL SYSTEM FOR LONG RAILWAY TUNNELS WITH REGARD TO THE ENTIRE LIFECYCLE H. Ehrbar & C. Tannò ETH Zurich, Switzerland H.-P. Vetsch Vetsch Rail Consult, Bützberg, Switzerland ABSTRACT: Since more than 30 years long tunnels with a total length of more than 50 kilometres exist. Many of them show a different tunnel system: double track tunnels with service tunnel, two single track tunnels and two single track tunnels with a service tunnel are the existing systems. The decision on the tunnel system of this long tunnels had to be taken at a time when only few information on operation and maintenance costs were available. Today more information on oration a maintenance is available. The paper shows, how the decision-making process should be made today considering the criteria construction, operation and safety with regard to the entire lifecycle. Recommendations on the selection of the tunnel system will be given for different boundary conditions, based on the operation experience of the long tunnel railway tunnels under operation. 1. PROJECT REQUIREMENTS OF LONG RAILWAY TUNNELS Railway tunnel constructions have the purpose of connecting cities, economic regions (Gotthard-Base Tunnel), countries (Eurotunnel, Cross Border Base Tunnel under the Ore Mountains) or even continents (Gibraltar Strait Tunnel) in order to ensure a rapid and environmentally friendly transport of people and goods. Mountains or straits are the typical topographical obstacles that must be overcome with a tunnel. Such tunnels become quickly very long (> 20 km length) due to special topographic boundary conditions for mountain base tunnels and strait tunnels. Figure 1: Longitudinal profile of a subsea tunnel (Eurotunnel) and a mountain base tunnel (Gotthard Base Tunnel) (source Wikipedia and AlpTransit Gotthard) Very long tunnels have to fulfil many project requirements, as each other civil work also.
    [Show full text]
  • Update on Investments in Large TEN-T Projects ______
    Update on Investments in Large TEN-T Projects ____________________________________________________________________________________________ DIRECTORATE GENERAL FOR INTERNAL POLICIES POLICY DEPARTMENT B: STRUCTURAL AND COHESION POLICIES TRANSPORT AND TOURISM UPDATE ON INVESTMENTS IN LARGE TEN-T PROJECTS STUDY Policy Department B: Structural and Cohesion Policies ____________________________________________________________________________________________ This document was commissioned by the European Parliament's Committee on Transport and Tourism. AUTHORS Fraunhofer, Institut für System- und Innovationsforschung, Germany - Wolfgang Schade, Lucia Mejia-Dorantes Karlsruhe Institute of Technology, Germany - Werner Rothengatter ProgTrans, Switzerland - Olaf Meyer-Rühle, Stephan Kritzinger RESPONSIBLE ADMINISTRATOR Marc Thomas Policy Department B: Structural and Cohesion Policies European Parliament B-1047 Brussels E-mail: [email protected] LINGUISTIC VERSIONS Original: EN EDITORIAL ASSISTANCE Adrienn Borka ABOUT THE EDITOR To contact the Policy Department or to subscribe to its monthly newsletter please write to: [email protected] Manuscript completed in December 2014 © European Union, 2014. This document is available on the Internet at: http://www.europarl.europa.eu/studies DISCLAIMER The opinions expressed in this document are the sole responsibility of the author and do not necessarily represent the official position of the European Parliament. Reproduction and translation for non-commercial purposes are
    [Show full text]
  • Tunnels and Underground Cities: Engineering and Innovation Meet
    Tunnels and Underground Cities: Engineering and Innovation meet Archaeology, Architecture and Art – Peila, Viggiani & Celestino (Eds) © 2019 Taylor & Francis Group, London, ISBN 978-1-138-38865-9 Optimum tunnel system with regard to the entire lifecycle for long rail tunnels H. Ehrbar & C. Tannò ETH Zurich , Switzerland H.-P. Vetsch Vetsch Rail Consult, Bützberg, Switzerland ABSTRACT: Since more than 30 years long tunnels with a total length of more than 50 kilometres exist. Many of them show a different tunnel system: double track tunnels with ser- vice tunnel, two single track tunnels and two single track tunnels with a service tunnel are the existing systems. The decision on the tunnel system of this long tunnels had to be taken at a time when only few information on operation and maintenance costs were available. Today more information on operation and maintenance should be available. The paper shows, how the decision-making process could be adapted today considering the criteria construction, operation and safety and life cycle. Recommendations on the selection of the tunnel system will be given, based on the available operation experience of the long tunnel railway tunnels. 1 MOTIVATION For more than 100 years railway tunnels with lengths of 10 km and more have been built. To a large extent, these tunnels are still operating today (see Table 1). However, the demands posed on such tunnel systems have increased during the past years. For a long-time, the double track Tunnel without a service tunnel was the most popular system (variant 1A). Due to the higher safety standards such a system, even with an additional service tunnel, is no longer permissible nowadays unless drastic operating restrictions for mixed railway traffic apply (Ehrbar et al., 2016).
    [Show full text]
  • Water Supply and Water Drainage System of the Gotthard Base Tunnel
    Proceedings of the World Tunnel Congress 2014 – Tunnels for a better Life. Foz do Iguaçu, Brazil. Water supply and water drainage system of the Gotthard Base Tunnel including a mini power plant: a complex, multipurpose scheme to ensure operational requirement and requirements in case of accident. Davide Fabbri and Raffael Tschupp Lombardi Ltd., Minusio and Lucerne, Switzerland. Günter Späth Alptransit Ltd., Lucerne, Switzerland. ABSTRACT: To ensure operational and safety requirements a complex multipurpose water supply and drainage system scheme has been set in the 57 km long Gotthard Base Tunnel (GBT). The water supply system makes it possible to refill the fire-extinguishing-and-rescue trains at two locations in each single track tube, to provide cooling water for the underground installed cooling systems, as well as to provide 20 l/s in total for the steady flow in the waste water system, charged at the peak of the tunnel. This water flows down towards the portals, to prevent explosions of flammable fluids in the waste water drainage in case of an accident. The water drainage of the GBT, with separate systems for clean mountain water and for waste water from the single track tubes, is completed at both portals with absorption reservoirs and water treatment facilities. Those have the purpose to cool down the collected mountain water as well as to check the quality and quantity of the drainage water. 1 INTRODUCTION water supply systems and at each portal a water treatment facility. The Gotthard Base Tunnel is a railway tunnel The water supply system makes it possible to with two single track tubes, with connects the refill the fire-extinguishing-and-rescue trains at Italian with the German part of Switzerland and two locations in each single track tube, to will be used for high speed rail and heavy provide cooling water for the underground freight trains (Figure 1).
    [Show full text]
  • Measurements of Train-Induced Pressure Variations
    Simplon Tunnel (CH/IT) Measurements of train -induced pressure variations Description The 20 km long Simplon rail tunnel connects the Italian and Swiss railway networks. It is op- erated by the Swiss Federal Railways (SBB). The free cross-sectional area of the two single- track tunnel tubes of the Simplon tunnel is smaller than the free cross-sectional area of the Lötschberg base tunnel as well as the existing rail tunnels (double-track) at Gotthard and Lö- tschberg. Accordingly, in the Simplon tunnel Northern portal of the Simplon tunnel more extreme aerodynamic conditions appear at the same speed compared to other existing rail tunnels in Switzerland. The train-induced pressure variation had to be determined for an increase of travel speed from V train = 140 km/h to V train = 160 km/h in the tunnel. Train-induced pressure variations in railway tunnels are caused by: − Train entry and exit of tunnel − Train passages at changes of cross- sectional area (for example in crossover) − Train passage at the measurement location due to pressure changes along the train Installation inside of the cross-passage for data acquisition (left) Services HBI Haerter Consulting Engineers provided the Passage 160 km/h Passage 170 km/h following services: − Elaboration of the concept for measure- ments, commissioning of the measurement system and realization of the measure- ments of train-induced pressure variations [kPa] in the Simplon tunnel − Analysis of the measured data and check- ing of the plausibility of the data − Determination of the maximum positive
    [Show full text]
  • NATURE [October 27, 1904 Sequent Report of This Discussion in Your Journal These Views Is Blown in Bv Powerful High-Speed Fans Working with Were Suppressed
    NATURE [OcTOBER 27, 1904 sequent report of this discussion in your Journal these views is blown in bv powerful high-speed fans working with were suppressed. The abstract of the . rejected paper was a water-gauge of nearly 9 inches, the other being the printed in the annual report of the British Association, just outlet; in case of derailment of a train occurring it issued, among the Section B papers, from the officers of cannot possibly run into a train in the opposite direc­ which section I had received uniform courtesy and consider­ tion; when repairs are required one tunnel can be ation· throughout. the transaction. Now such a joint resolution as I have mentioned ought closed for a time, the traffic being conducted in the to have precluded any referee from rejecting a paper which had already been approved, and I have to suggest that a by-law be framed to render an occurrence of this kind impossible in the future. WILLIAM AcKROYD. Striped Hawk-moths in Sligo. THERE has been a letter or two in recent numbers of NATURE on the finding of rare moths in England. It n1ay be of interest to the writers to know that in the middle of last September there was caught in the town of Sligo a specimen of the striped hawk-moth. It was captured in ihe printing office of the Sligo Independent, its great bulk first attracting attention and then its beautiful markings. I know but very little about insects,· the honey ·bee excepted, but I carefully compared the living object with a description and coloured plate in a work on Lepidoptera, and have no doubt but that it was the very thing your correspondents are making so· much ado about.
    [Show full text]
  • CISALPINO “The Best Way to Travel Through the Alps”
    CISALPINO “The best way to travel through the Alps” Cercle Royal Gaulois, Bruxelles, le 15.02.2008 1 Agenda - The Cisalpino Company. - Brief History. - Cisalpino Network 2008. - New services in 2008: the Lötschberg Tunnel. - Global Market Prices: first 2 years of a new pricing model. - New technology on test: ETR610. - Cisalpino Vision, USPs and Strategy 2 THE CISALPINO COMPANY 3 Cisalpino AG is an Italian-Swiss Railway organisation shared at 50% by both SBB AG and Trenitalia S.p.A. Share Capital 162.5 mio CHF Foundation 23th November 1993 Oper. Start-up 29th September 1996, with services on the Geneva – Milan route. Sites Cisalpino AG, Parkterrasse 10, CH 3001 - Bern Cisalpino AG, Bahnhofplatz 14/15, CH 8023 - Zürich Cisalpino AG, Stazione Centrale, I-20125 Milano Superv. Board 6 members of the board with a yearly mandate Business Manag. Managing Director (Alain Barbey, since 2007) Personnel 45 employees (operation and maintenance outsourced to TI/SBB) Losanna 4 Cisalpino’s 2007 results Total Passengers transported 12 Millions Trains/Km Total 4,4 Millions PKM Total 1.525 Millions Daily services 49 Global Income 255 Millions CHF 158 Millions EUR Berna 5 Brief history 6 • September 1996 First services with the multi-voltage ETR 470-tilting trains; • June 2004 (1. Migration) Conventional EC-trains – Deluxe: with Cisalpino-Standard, e.g. Cisalpino restaurant car etc. (“Cisalpino branded“) • December 2004 (2. Migration) Conventional EC-trains - Shuttle (short Cisalpino-branded trains on the Simplon route) • December 2005 (3. Migration) Conventional
    [Show full text]
  • The Simplon Tunnel. Part 1, the First Bore
    The Simplon Tunnel. Part 1, The first bore Autor(en): Jesson, John Objekttyp: Article Zeitschrift: Swiss express : the Swiss Railways Society journal Band (Jahr): - (2015) Heft 121 PDF erstellt am: 23.09.2021 Persistenter Link: http://doi.org/10.5169/seals-853945 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch Freights in 1967 were mostly composed of short-wheelbase wagons, as is this example behind a BLS Ae 8/8 a short distance from Brig. All photos: John Jesson piercing of the Simplon Massif was first bore being fixed in the original contract. Alongside the Theproposed in 1857, following the proposal to build main tunnel, at a distance of 17m from it, was to be a 2.5m the Mont Cenis tunnel.
    [Show full text]
  • Tourist Info Brig Simplon
    deutsch english 2019 Tourist Info Brig Simplon www.brig-simplon.ch Wallis · Schweiz Fotowettbewerb Cover Tourist Info 2020 Wir suchen das perfekte Foto aus der Region Brig Simplon für das „Tourist Info 2020“-Cover. Egal ob Sommer, Winter, Frühling oder Herbst, Natur oder urbanes Leben. Ihrer Kreativität sind keine Grenzen gesetzt. Einsendeschluss ist der 20. September 2019. www.brig-simplon.ch/cover2020 www.brig-simplon.ch/cover2020 Herzlich Willkommen! Welcome! Liebe Gäste Dear Guests Herzlich willkommen in der Ausflugs- und Ferienregion Brig Welcome to the Brig Simplon region Simplon! Wir freuen uns sehr, for your holidays and excursions! Sie als Gast bei uns begrüs- sen zu dürfen, und wünschen This „Tourist Information“ provides Ihnen einen wunderschönen und you with comprehensive information erlebnisreichen Aufenthalt. Brig (alp city of the year 2008) and about the many, varied activities we Geniessen Sie die Zeit in unserer offer for tourists. Stadt und unserer Umgebung und besuchen Sie uns bald wieder. Sie Enjoy your stay in the Brig Simplon wissen ja: Ferien in den Bergen Region. bringen doppelte Erholung! Your team at Ihr Team von Brig implon Tourism Brig Si plon Tourismus Inhaltsverzeichnis Table of contents Chronologie Chronology 5 - 6 Ortsbeschriebe Region 8 - 11 Sehenswürdigkeiten/Führungen Sights/Guided Tours 12 - 15 Kultur Culture 16 - 17 Veranstaltungen Events 18 - 23 Sport & Freizeit Sport and leisure 24 - 31 Wandern Hiking 33 - 41 Unterkünfte Accommodations 42 - 48 Verpflegung Culinary 50 - 52 Gewerbe Trade 53 - 59 Ausflugstipps Excursions 60 - 63 Informationen A-Z Information A-Z 64 - 70 MOUNTAIN CART DER SOMMERSPASS AUF 6 KM ABFAHRTS- STRECKE FÜR DIE GANZE FAMILIE.
    [Show full text]